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Abstract. Nowadays there are proposals and politics in several planet regions with targets of 
renewable sources adoption. In this context, wind energy presents an important source growing up in 

electrical energy generation, motivated by public politics and by technological maturation, being more 

competitive compared to conventional sources. One of actual problems in wind turbines design is 

parameters determination in structural calculus, which several times arise by experimental 
assumptions. This paper presents an application of Extended Kalman Filter (EKF) methodology for 

parameter identification in structural analysis of three-blade wind turbine, applying a nonlinear 

computational dynamical model from so-called field data. 
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1 INTRODUCTION 

      For centuries wind power has been applied for watering in agriculture by windmills. 

However, at the beginning of the twentieth century practically the wind power extinguished 

due appearance of steam machine and engines. In the 70’s, due international oil crisis, wind 

power gains importance, consolidating after Kyoto Protocol signed in 90`s, enabling the 

manufacturing of wind turbine in commercial scale payable the global investments 

(Edenhofer, 2011).  

Although only to feed about 2% of world demand, the use of wind energy for electricity 

production has increased about 25% annually, being more significant in Europe in countries 

such as Spain, Denmark and Germany. In Brazil, this energy had an increase of 80.6 % in less 

than three years, totaling 4.8 MW in 2013. The machine that converts wind energy into 

electrical energy is called wind turbine. They have two main types of wind turbine: vertical 

and horizontal. Vertical wind turbines have a more targeted application to urban areas due to 

the low noise level and power generation with any intensity of wind. However, its energy 

efficiency is low compared to horizontal wind turbines. Although more efficient, horizontal 

wind turbines depend on a minimum level of intensity of wind and its noise level is 

considered high, being more targeted to wind farms and offshore application. 

The structural design of horizontal wind turbines depends on the determination of the 

stiffness and damping coefficients of that are determined by experiments. Furthermore, these 

parameters change over time due to the use of the equipment, the loosening of semi-rigid 

fixings on the bases and its components as well as change of mass and stiffness due corrosion. 

Therefore, identification of stiffness and damping coefficients becomes strategic and may 

indicate the monitoring of wind turbine structural stability and contribute to reducing the costs 

of field tests for its determination on projects. 

For these reasons, the objective of this paper is to identify the stiffness and damping 

coefficients for a wind turbine with three blades, applying the recursive methods of the 

Extended Kalman Filter suitable for parameter identification in a non-linear mathematical 

model for rigid multibody from treated field data and synthetic data. Extended Kalman Filter 

method for identification is a low computational cost alternative, but there are restrictions on 

its uses. 

2 MATHEMATICAL MODELING OF THE HORIZONTAL WIND TURBINE 

DYNAMICS 

 

 Exciting force acting on wind turbines is coming from the action of wind on the blades, on 

the nacelle and on the tower, as well the gravitational force exerted by this assembly. 

Applying the balance of linear and angular momentum, it is possible to obtain an ordinary 

differential equations system with the number equal to the number of degrees of freedom of 

this system. 

The model developed here was adopted from helicopters dynamics by Gonzaga (2013), 

based on the dynamic equations contained in Tenenbaum (2006), which is consistent to 

models developed by Flowers and Tongue (1988), Robinson et al. (1997) and Saracho (2002). 

This model considers the tower as a concentrated mass along the nacelle, representing a rigid 

body. It also considers the blades as two-dimensional rigid elements with a certain 

eccentricity, being each blade associated with the rotor head through a point here called link 

distant d from origin. 
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      Considering the basis ��� e ��� fixed in inertial frame ℜ and a Cartesian coordinate system 

with origin (O) at the geometric center of the rotor head (figure 1), when at rest position, it 

can write the position of the mass center  of the rotor head (H*) with respect to the origin (O) 

of the coordinate system in function of time (t) as: 

 

        ��∗/
�� = ���� + � cos �� + Ω����� + ���� + � sen �� + Ω�����                               (1) 

 

where��� is the coordinate of the mass center of the rotor head in function of time relative to 

the x-axis, ��� is the coordinate of the mass center of the rotor head in function of time 

relative to the y-axis, � is eccentricity of the rotor head relative to the inertial coordinate 

system, � is the angle caused by eccentricity and Ω is blade rotation. 

 

 

 
Figure 1 - Schematic representation for modeling a horizontal wind turbine. 

  

      Considering that each blade has a phase angle (��), or azimuth, it can determine the 

position of the mass center blade Bi: 

 

�� ∗/
�� = !��� + " cos��� + Ω� + #" + ℎ� 2 & cos'�� + Ω� + (���)* ��� 

+ +��� + " sen��� + Ω� + ," + -. 
� / sen��� + Ω� + (���0 ���(2) 

 

      Deriving from (1) and (2) obtains the velocity of the concentrated mass in the rotor head 

(1�∗ℜ ) and the velocity related to the mass center of each blade (1� ∗ℜ ). 

 

2.1 Linear momentum balance 

 

      Linear momentum balance related to the concentrated mass of the tower with the nacelle 

is given by: 

 

      2�ℜ = 3�1�∗ℜ                                                                     (3) 

 

where 3� is concentrated mass of the tower with the nacelle. 
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      Calculus mass 3� cannot be considered as the direct sum of the nacelle and the tower 

masses, because only the tower is on balance. The effective mass of the tower corresponds to 

the third part of its total mass. Linear momentum for each blade is given by: 

 

                                                                             2� 
ℜ = ∬ 15 

ℜ "3� 
�

�                                                                    (4) 

 

where15 
ℜ  is velocity vector at point Pi for each blade in relation to the link and "3�  is 

infinitesimal mass element of the blade. 

      From the equation (4) and mass center definition can get linear momentum relating to 

each blade: 

 

                    2� 
ℜ = 3� 1� ∗ℜ                                                                   (5) 

 

where3�  is mass of each blade. Considering equal masses of all blades, total linear 

momentum of the system is defined by: 

 

      26ℜ = 2�ℜ + ∑ 2� 
ℜ8�9�                                                                       (6) 

    26ℜ = 3�1�∗ℜ + ∑ �3� 1� ∗ℜ 8�9�                                                               (7)

    26ℜ = 3�1�∗ℜ + :3� ∑ 1� ∗ℜ8�9�                                                                    (8) 

 

Applying the 2
nd

 Newton Law, it has that: 

 

     ∑ ;<=> = 26ℜ?                                                                                     (9) 

 

where;<=> are external forces acting on the system. 

 

 

 
Figure 2 – Acting forces in the modeling of a horizontal wind turbine. 

 

      External forces are considered due to the action of the wind and the gravitational force. 

The multibody model has stiffness and damping, defined by: 

 

  @−B= − �?�� − C=���D��� + �−BE − �? �� − CE��� − ':3� + 3�)F���� = G
G= 26ℜ                        (10) 

 

whereF is gravity acceleration, C= is stiffness coefficient in direction ���, CE is stiffness 
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coefficient in direction ���, B= is the damping coefficient in direction��� and BE is the damping 

coefficient in direction ���. 

      Deriving from total linear momentum, it gets the first two equations of motion: 

 

':3� + 3�)�H�� + B=�?�� + C=��� = �3�Ω� cos�� + Ω� + 3� ," + -. 
� / ∑ I(H��J��'�� + Ω� +8�9�

(���) + ,Ω + (?��/� cos'�� + Ω� + (���)0                        (11) 

':3� + 3�)�H�� + BE�? �� + CE��� + ':3� + 3�)F =
�3�Ω� sen�� + Ω� − 3� ," + -. 

� / ∑ I(H��BKJ'�� + Ω� + (���) − ,Ω + (?��/� sen'�� + Ω� + (���)L8�9�  

(12) 

 

2.2 Angular momentum balance 

 

      Considered system has (N+2) degrees of freedom for two translational degrees of freedom 

and N degrees of freedom for the blades, having the necessity to determine more N equations 

in order to be able to solve the system of non-linear equations. 

      Determining these non-linear equations can use the strategy of replacing the link for each 

one of the blades by the reaction forces and bend momentums. This strategy turn on possible 

to calculate the  angular momentum balance without knowing the magnitudes of the reaction 

forces and bend momentums. 

      Angular momentum balance for one blade M� with respect to a reference link point Li  can 

be obtained by: 

 

     N� /O 
ℜ = ∬ �5 /O  ×  15 

ℜ "3� 
�

�                                                   (13) 

 

where�5 /O  is position vector of a reference blade point  Pi in relation to link point Li and 15 
ℜ  is 

velocity of the point Q�  of this blade, determined as 

 

     15 
ℜ = 1O 

ℜ + R� 
ℜ × �5 /O                                                              (14) 

 

whereR� 
ℜ is angular velocity of bladeM� contained in ℜ and 1O 

ℜ  is velocity vector at link point 

Li. Thus, angular momentum balance of a blade M� can be rewritten as: 

 

  N� /O 
ℜ = ∬ ��5 /O  ×  15 

ℜ "3� 
�

� + ∬ �5 /O × �R� 
ℜ × �5 /O "3� 

�
�                                 (15) 

 

      From the definition of mass center and knowing that blade inertia vector in relation to link 

point S� is defined as the product of blade inertia tensor regarding S� with unit vector in the 

same direction of the angular velocity R� 
ℜ  (in that case,��T), it can obtain the following 

expression for angular momentum (TENENBAUM , 2006) : 

 

    N� /O 
ℜ = �� ∗/O  × 3�  1O 

ℜ + U�
� /O . R� 

ℜ                                                   (16) 

 

whereU�
� /O  is blade inertia tensor in relation to S�. Equation (16) shows an extra member 

(highlighted in blue). This member appears due to the fact that link point Li does not coincide 

with the blade mass center and for being in motion (1O 
ℜ ≠ 0). For this same reason, the sum of 

Mecánica Computacional Vol XXXIII, págs. 1849-1860 (2014) 1853

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



the external bend momentums with respect to Li (∑ Y<=> O ) must have an additional member 

(TENENBAUM , 2006):  

  

    ∑ Y<=> O = N? � /O 
ℜ + � 1O 

ℜ × 2� 
ℜ                                                               (17) 

 

Considering that the rate of blade angular momentum (N? � /O 
ℜ  must be obtained from inertia 

tensor being invariant with respect to time, it is possible to write: 

 

∑ Y<=> O = U�
� /O . Z� 

ℜ + �� ∗/O  × 3�  [O 
ℜ + R� 

ℜ × U�
� /O . R� 

ℜ + R� 
ℜ × �� ∗/O  × 3�  1O 

ℜ + � 1O 
ℜ × 2� 

ℜ                                  
(18) 

 

where Z� 
ℜ is blade angular acceleration vector and [O 

ℜ  is the acceleration vector of link point Li. 

The equation solution (18) depends on the development of the inertia tensor (U�
� /O ). For that it 

can consider the blade as a parallelepiped with rectangular section in relation to its mass 

center, height like blade total length (ℎ� ), width �\�  and negligible thickness. 

      In the same way of equation (10), the first member of equation (18) refers to sum of bend 

momentums relation to link point Li (Y<=> O ), described for: 

  

  ∑ Y<=> O = +−B] (?̂ �� − C] (��� − 3� F ," + -. 
� / cos��� + Ω� + (���0 ��T                 (19) 

 

whereC]  is blade stiffness coefficient (lag) and B]  is blade damping coefficient (lag). 

      Therefore, developing equation (18) and taking equation (19) it obtain the N missing 

equations for the solution of ordinary differential equations system: 

 

!,-. _`. /a

�� + ," + -. 
� /�* 3� (Ĥ + B] (?̂ �� + C] (��� + 3� ," + -. 

� / "Ω� sen'(���) + 3� F ," +
-. 

� / cos��� + Ω� + (��� = 3� ," + -. 
� / b��H��sen'�� + Ω� + (���)� − ��H ��cos'�� + Ω� + (���)�c(20) 

 

The equations (11), (12) and (20) for each blade form the system of ordinary differential 

equations and non-linear coupled to be solved numerically. 

 

2.3 Parameter identificatoion – Extended Kalman Filter 

 

      Parameter identification determines values that minimize the difference between observed 

and calculated data of certain magnitudes, implying uncertainty in their results (Costa, 2006). 

This identification can be a sequential estimation (recursive) of the parameters of a dynamic 

system using a sequence of measurements with noise generated by itself (Ristic et al., 2004). 

      Among the identification methods applied for nonlinear systems have a method by 

analytical approach, the method of the Extended Kalman Filter. This method was originally 

developed to estimate the states of a system, providing dynamic responses. However, it can be 

used to identify parameters with appropriate adaptations. 

      Extended Kalman Filter is based on classic Kalman Filter with linearization at each instant 

of nonlinear functions. This local linearization is solved analytically and corresponds to 

Jacobians of functions. 

      This method can be applied in non-linear functions since these are continuous, with cases 

in which their performance is compromised when the nonlinearity of the function is very 
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severe (Ristic et al., 2004). 

      Kalman Filter basis predict the following value based on the previous value. It is assumed 

that the domain d8 , it observes f values (output data) with errors (g to estimate θ. For 

nonlinear systems, the linearized system matrix is inserted into the Kalman gain, which is part 

of the calculation of the prediction value and the covariance. Therefore, Extended Kalman 

Filter is given by (Kaipio and Somersalo, 2005): 

 

     hi_� = 5jklmnkop
�gnko_mnko5jmnkop                                         (21) 

    qn_o = qn + hi_��fn_o − rn_o�qn                                (22)

     Qi_� = �1 − hi_�mn_oQi                                        (23) 

 

3 METHODOLOGY 

      Defined the mathematical model, the coefficients to be identified and identification 

method to be applied must be obtained observed data to be applied in the method of Extended 

Kalman Filter and in coupled nonlinear mathematical for rigid multibody. 

      Data observed in the field correspond to the wind turbine by Enersud, model Verne 555, 

with tubular tower with tensioned steel cables. These data were analyzed with the purpose of 

identifying which portions should be selected, since the proposed mathematical model is the 

assumptions constant direction and speed of the wind.  

 

Figure 3 – Observed data for wind tubine time under wind action (Batista, 2009). 

 

      As can be seen in figure 3, the mostcritical section corresponds to the interval between 

500 and 600 seconds due to its response variable over time deceleration. Data observed in the 

field correspond only to x and y axis(���and ��� respectively) related to accelerometers.  

      For application of the techniques of parameter identification is necessary to make varieties 

of displacements and velocities in the degrees of freedom considered, since these are the input 

data. Therefore, it was integrated the accelerations shown in figure 3 for each variation in real 

time acquired in order to obtain the respective velocities and displacements. 

The first page must contain the Title, Author(s), Affiliation(s), Keywords and the 

Abstract.The second page must begin with the Introduction. The first line of the title is located 

3cm fromthe top of the printing box. 

      Accelerometers were not installed at the ends of the blades for the analysis of these 

degrees of freedom. For that reason it was considered synthetic data related to the blades, 

obtained from the reference curves given by the mathematical model here developed, applied 

values of the stiffness and damping coefficients calculated as literature (Inman, 2001). Above 

the reference curves were added standard deviations of 0.01 mm for displacement and 0.01 

m/s for velocity.  

      For the simulations, the average wind speed considered was 2 km/h, corresponding 1.16 

Accelaration –  y axis Accelaration –  x axis 
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Hz of rotation frequency, below the natural frequencies of the tower and the blades (tower, 

flap and lag), according to BATTISTA, 2009. 

After obtained displacements and velocities obtained from field data and from synthetic 

data it is possible to apply the method Extended Kalman Filter to identify stiffness and 

damping coefficients, using finite differences to approximate the Jacobians of functions, 

linearizing every moment with a centesimal increment. 

Identification process was simultaneous for all coefficients identified totaling ten 

coefficients identified, two for each degree of freedom. The input data for the identification 

are the displacements and velocities at each degree of freedom and the output data are the 

forces due to the acceleration of the system. It was regarded as a model of evolution in each 

iteration for the parameters identified, namelyqn_o = qn. 

      Errors were calculated point by point by the following equation: 

 

tuuKu = ‖wxyz{|}|yx ~�y�}|�|yz{ ��y�y�yz�y ~�y�}|�|yz{‖
‖�y�y�yz�y ~�y�}|�|yz{‖  � 100%                             (24) 

 

      Average error refers to the arithmetic mean of all the errors calculated by equation (24). 

How beaconing quality identification was considered the deviations of ± 2 standard deviations 

(±2 σ). After parameters identification is possible to apply the coefficients identified in the 

non-linear mathematical model coupled to rigid multibody here developed, comparing with 

measure data and reference data. 

4 RESULTS 

 

      Results of stiffness coefficients identification are shown in figure 4 to 6, for damping 

coefficients are shown in figure 7 to 9. Results for the blades are shown only for the blade 1, 

since for other blades the results are very similar. 

 

 
 

Figure 4 – Stiffness coefficient identification C=. 

 

In figure 4 it can be seen the dispersion of the data by the change of wind direction between 

20 and 40 times. Average error obtained during the identification was 0.23 %. 
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Figure 5 – Stiffness coefficient identification CE. 

 
      In Figure 5 it can see the data dispersion by changing wind direction. Values for the 

identified coefficient converge to 1650 N/m after 30 seconds, also stabilizing the error. The 

average error was 0.66 %. 

 

 
Figure 6 – Stiffness coefficient identification C]l. 

 
      In figure 6 is seen that even than the observed data are synthetic, identification presents 

itself around a level above the reference value. The average error obtained during the 

identification was 1.60%. 

      In figure 7 is possible to agree that, despite the convergence by Extended Kalman Filter 

identification, this proved to be more sensitive due changing wind direction for identification 

of the damping coefficient B=, with a larger amplitudes and average error obtained during the 

identification, corresponding to 5.41%. 

 
Figure 7 – Damping coefficient identification B=. 
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Figure 8 – Damping coefficient identification BE. 

 

      Likewise, in figure 8 shown also a marked error when changing wind direction for 

identification of damping coefficient BE. The average error obtained for identification 

corresponds to 4.53%. 

 

 
Figure 9 – Damping coefficient identification B]l. 

 

      In figure 9 it notice that the error shown in the identification of damping coefficient B]l 

was smaller than in the identification of the other coefficients, according to synthetic data. 

The average error was 0.01%. 

      From figure 10 to 12 presents the results using the coefficients identified in the 

mathematical model considered here or “model”, compared with the results of “reference” 

and the observed data or “measure”. In these results it is possible to see, despite errors in the 

identification of damping coefficients have been presented with larger magnitudes, the results 

using the parameters identified in relation to the results of “reference” were satisfactory and 

showed very similar behaviors. 

 

   
Figure 10 – Displacement and velocity in direction x-axis, comparing to the reference and 

measure data. 
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Figure 11 – Displacement and velocity in direction y-axis, comparing to the reference and 

measure data. 

 

 
Figure 12 – Displacement and velocity in blade 1, comparing to the reference and measure 

data. 

5 CONCLUSIONS 

      Nonlinear mathematical model proposed by Gonzaga (2013), subsequently applying 

parameters identification by method Extended Kalman Filter was implemented. 

      From obtained results it can be seen that the mathematical model here developed showed 

to be well suited for implementation and easy identification of parameters. 

      For this application, the Extended Kalman Filter method for parameter identification 

proved to be very efficient. Horizontal wind turbines have a control system that is possible to 

smooth wind bursts and over speed winds, turn it non-linearity less severe. Scenarios with 

other values of the initial conditions were simulated, which are indifferent to the 

identification. Therefore, it is concluded that we can start the process in any point, making in 

possible on-line monitoring. 

      Errors presented by the Extended Kalman Filter method were reasonable, despite showing 

to be unstable. Just for comparison, it was also identified by SIR Particle Filter method with 

2,000 particles. Errors obtained by Extended Kalman Filter method were very similar than 

those obtained by SIR Particle Filter although unstable. This shows the efficiency of 

linearization by finite differences with centesimal increase. 

      The computational cost of the identification by the Extended Kalman Filter method was 

only 30 seconds and can be applied for online monitoring. Using the same machine that 

supplied the performance of 30 seconds by the Extended Kalman Filter method, the 

computational cost for SIR Particle Filter method with 2,000 particles was 103 hours. 

      Therefore it is concluded that the parameter identification by Extended Kalman Filter 

method was efficient for the mathematical modeling of the dynamics of three-bladed wind 

turbines, can be applied in monitoring structural stability and for reducing the costs with field 

tests for the determination of design parameters. 

Future work can be developed by improving the mathematical model developed here, 

considering the possibility of changing the wind direction and speed, through a stochastic 
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process. Others methodologies of  parameter identification can be also used, like Unscented 

Kalman Filter method. 
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