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Abstract. We study the validity of the numerical implementation of the direct Conical Radon Trans-
form, the so called TC. This operator is at the core of imaging based on Compton scattered radiation
emitted by a medical object which has received an injection of radiotracer. The TC is basically an inte-
gral transformation over conical surfaces of fixed axis, and it models the data acquisition step in an ideal
frame. The inversion of the TC by singular value decomposition SVD is shown to be satisfactory on a
3D Shepp-Logan brain phantom, confirming that the numerical implementation of the direct model is ad-
equate. It also provides useful information related to the discretization of the direct problem. Finally, we
analyze the applicability of the SVD technique for Compton imaging reconstruction in this 3D context.
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1 INTRODUCTION

The Conical Radon Transform (CRT) family provides a mathematical model of a new prin-
ciple for camera gamma imaging that takes advantage of Compton scattering to perform image
reconstructions without the need for rotating the detection system around the object (Nguyen
and Truong, 2002; Nguyen et al., 2004; Nguyen and Truong, 2006; Delarbre, 2005; Morvidone
et al., 2010a). The invertibility of these transforms shows that the original activity function can
be reconstructed from a set of projections measured at different positions with different ener-
gies but using a fixed collimated detector, resulting in a non-moving camera gamma. The 2D
members in this family of transforms are: the Bi-dimensional Conical Radon Transform (TV)
and the Bi-dimensional Compounded Conical Radon Transform (TVC). While the symbol C
denotes an integral over the surface of a cone, V remarks that integration is performed over
a V line, which the 2D version of the cone. Aimed at solving a 3D inversion problem, we
have already been working with the CRT family. The approach is rather straightforward: after
testing the invertibility of simple models the more realistic ones are explored. Full models in-
volve more variables and incorporate the third dimension which makes its analytical inversion
more complex and adds significant burden to the algebraic computation of the inverse problem.
All the two-dimensional stages have already been studied and both analytical (Morvidone et al.,
2010a,b, 2011) and algebraic (Cebeiro et al., 2013; Cebeiro and Morvidone, 2013b,a) inversions
have been numerically implemented. The TC incorporates the third dimension to the problem
and is more linked to the real physical model since the acquisition of projections cannot be
done for a simple slice as it can be performed in the classical Radon transform. The numer-
ical simulation of this problem involves two stages: first, generating the projections by using
the direct model, and then, solving the inverse problem either by analytical or algebraic inver-
sion. The aim of this paper is to solve the 3D direct-inverse problem using the TC model. We
implement an algorithm for generating the projections and apply an inversion technique based
in the Singular Value Decomposition of the projection matrix. Although prior results with the
two-dimensional TVC suggest that this technique can succeed in inverting the 3D problem,
several points such as stability of the solution and performance with noisy projections remain
still uncertain. After generating projection matrices allowing numerical reconstruction from
projections of simple and complex activity functions, we test the algorithm with projections
corrupted with additive noise.

2 THE DIRECT MODEL

2.1 The Conical Radon Transform

The conical Radon transform TC appears in a particular imaging process introduced by T.
Truong et al. in (Nguyen and Truong, 2006). The conical Radon transform of the function
f(x, y, z) is defined in Eq.(1).

TCf(xD, yD, ω) = g(xD, yD, ω) =

sinω

∫ ∞

0

∫

2π

0

f(xD + r sinω cosψ, yD + r sinω sinψ, r cosω) dψ
dr

r
(1)

The physical problem described by the TC transform concerns a 3D object in which a non
uniform radioactivity source distribution exists and is represented by a nonnegative integrable
activity function f(x, y, z) with bounded support. Figure 1 represents the situation: a collimated
linear detector is set parallel to the plane of the object, and it collects only outgoing radiation
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Figure 1: The setup for the 3D imaging problem.

from the object which is parallel to the direction of the collimator holes. When the detector is
set to absorb gamma photons at energies below E0, the energy of primary photons emitted by
the object, the photons have undergone at least one Compton scattering at a site N in the bulk
of the object under a scattering angle ω. The photon flux density measured at a detecting site
D is due to the sum of scattered radiation flux densities outgoing from the set of scattering sites
N lying along the axis of the collimator at D. As scattered photons have energy E, they have
been deflected from an incident direction by a scattering angle ω, related to E by the Compton
formula. Thus, the totality of the detected flux density for each scattering site N is due to the sum
of all point sources lying on the cone with N as vertex (see coordinates of this image formation
scheme in Fig. 1). For ease of notation, we shall include all physical factors resulting from
Compton scattering into one term K(ω) including the square of the classical electron radius,
the average electron density, and the Klein-Nishina scattering probability function.

The TC transform of function f in Eq. (1) represents the measured photon flux density at D

under a scattering angle ω, assuming that the distance between the detector and the scattering
media is zero, which makes sites N and D the same. It has been shown in (Nguyen et al., 2005)
that this transformation is invertible, i.e., function f may be recovered from data g by means of
an appropriate analytical formula. In this paper we are interested in solving the inverse problem
through algebraic techniques.

2.2 The kernel of the TC and the Point Spread Function

Easy calculations show that the kernel of the TC transform, also called the Point Spread
Function, PSF , has the following expression:

PSF (xD, yD, ω|x, y, z) =
cos2 ω

z2
δ(cosω

√

(x− xD)2 + (y − yD)2 − z sinω). (2)

This concept is an analytical construction that represents the kernel of the transform and
which is strongly linked to the result of applying the direct model to simulate projections of a
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Figure 2: Central point source projections at scattering angles w = 7◦, 14◦, 35◦ and 68◦

punctual source at different positions an in different scattering angles.

g(xD, yD, ω) =

∫ ∫ ∫

dx dy dz PSFTC(xD, yD, ω|x, y, z)f(x, y, z) (3)

As we can see in equation (2) the non-zero values of this projections are located over the
edge of a circumference centered in the point (x, y) whose equation is given in the argument
of the delta function

√

(x− xD)2 + (y − yD)2 = z tan(ω). Figure 2 illustrates this idea for a
central source point (PSF (xD, yD, ω|0, 0, 0)), notice that at scattering angle w = 68◦ all values
are zero because the source point is out of the surface spanned by the cone walls for this angle.

2.3 Algebraic formulation of the TC

Our aim is to describe the TC as a linear system and then apply linear techniques for inverting
the transform. This approach consists in discretizing the projection formula and applying it to
a canonical basis, leading, thus, to a system of linear equations. The activity function f(x, y, z)
is a function of compact support in a cube of dimensions N ×N ×N . Such a function can be
written as a linear combination of basis functions Φi:

f(x, y, z) =
N3

∑

i=0

fiΦi(x, y, z). (4)
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where Φi is the characteristic function of point i, defined by:

Φi(x, y, z) =

{

1, if (x, y, z) = point i

0, otherwise
(5)

A basis for cubic mediums (N3 grid-points) consists of a set of N3 different cubes Φi, each one
containing only one point set to one and the rest set to zero. Now, the value of the projection at
one point of the projection space is:

gj = g(xDl
, yDm

, ωk) = [TCf ](xDl
, yDm

, ωk) =
N3

∑

i=1

fi [TCΦi](xDl
, yDm

, ωk) =
N3

∑

i=1

Ajifi (6)

where gj is the value of the projection with angle ωk at the two-dimensional detector (xD, yD).
In a system having D × D detectors and P scattering angles, indices assume the following
values: 1 ≤ k ≤ P , 1 ≤ l ≤ D, 1 ≤ m ≤ D and 1 ≤ j ≤ D2P .

Then, the matrix formulation of the image formation process reads:

g = Af (7)

Here g is the projection vector, each of its components is a projection value, and its size is
D2P × 1, f represents the object of interest, its size is equal to the number of points in the
discretization N3 × 1, and finally A is the projection matrix, its size is D2P ×N3.
Expression (7) is strongly linked to expression (1) since: g = g(xD, yD, ω), f = f(x, y, z) and
the product Af represents the action of the TC over f(x, y, z). This algebraic formulation of
the problem is in some sense the discrete relative of equation (3).

3 INVERSE PROBLEM

3.1 Inversion using Singular Value Decomposition

As stated in the previous section, the direct problem described in Sec. 2.1 can also be pre-
sented as a linear system, g = Af , where g is the projection measured at detectors, f is the
original activity function and A the projection matrix. Inversion consists in finding the original
function f from projection data g. Since a straightforward inversion is not always possible, al-
gebraic methods provide reconstruction using either iterative (Cebeiro et al., 2013; Herman and
Mayer, 1993; Guan and Gordon, 1994; Lu and Yin, 2004; Andersen and Kak, 1984; Driol, 2008)
or single step (Driol, 2008; Selivanov and Lecomte, 2001; Shim and Cho, 1981) algorithms. In
scattered radiation problems, we have already tested analytical (i.e. back-projection) (Morvi-
done et al., 2010a,b, 2011) and iterative (i.e. Adaptive Algebraic Reconstruction Technique
with a Random Permutation Scheme, RPS-AART) algorithms (Cebeiro et al., 2013; Cebeiro
and Morvidone, 2013b,a).

The SVD factorization is a non iterative method which enables algebraic inversion. Let A be
an m× n matrix, it can be factorized in the form:

A = Um×m × Sm×n × V t
n×n (8)

where U and V are orthogonal matrices whose columns are eigenvectors of AAt and AtA

respectively and S is a diagonal matrix containing the singular values of A,

S = diag(σ1, . . . , σr, 0, . . . , 0) ∈ R
m×n,
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where r is the rank of the matrix A. This factorization allows us to write the pseudo inverse A†

A† = V × S−1 × U t, (9)

and then
f̃ = A†g (10)

is the solution to the linear least-squares problem min||Af − g||.
Our main aim here is to validate the implementation of the direct model, and this will be

supported by a successful reconstruction from projections. In previous works we showed that
inversion by SVD decomposition provides high quality reconstructions for the two-dimensional
Compton imaging models (TV and TVC) (Cebeiro and Morvidone, 2013b,a). This method has
the advantage that the algorithm does not need to be fit by adjusting parameters such as number
of iterations or permutation order, as required by iterative methods (Cebeiro et al., 2013). For
a detailed description of this method as well as its imaging applications see Selivanov and
Lecomte (2001); Shim and Cho (1981); Hansen (1986); Burden and Faires (2010).

3.2 Regularization by truncation

A major concern when solving an inverse problem is that a small perturbation of data g may
lead to a large pertubation of the solution. As suggested in Hansen (1986), we use SVD trunca-
tion (TSVD) as a regularization technique, i.e., the components of the solution corresponding
to the smallest singular values are neglected, since these contributions to the solution are most
likely to be large. More precisely, the TSVD of A is defined as the matrix

Ak = U × Sk × V t,

where Sk = diag(σ1, . . . , σk, 0, . . . , 0) ∈ R
m×n, i.e, Sk equals S with the smallest n−k singular

values replaced by zeros, and k ≤ r. The TSVD solution to (7) is

f̃k = A
†
kg,

where
A

†
k = V S

†
kU

t, S
†
k = diag(σ−1

1
, . . . , σ−1

k , 0, . . . , 0) ∈ R
n×m,

is the pseudo inverse of Ak.

4 NUMERICAL SIMULATIONS

4.1 Projections

The projections simulation g(xD, yD, ω) was carried out using the data acquisition model
given in equation (1). The object under study is inside a cubic volume of size N ×N ×N . The
volume is placed over a planar square detector array having D×D detectors. We considered P
discretization values of the scattering angle in the open interval (0, 90◦), leading to an angular
resolution ∆ω = 90

◦

P−1
. For the numerical integration a bilinear interpolation algorithm was

applied to calculate the function value at points where the coordinates did not fit grid points.
In this work we present results using two different angular resolutions, ∆ω = 6◦ and ∆ω =

3◦ (corresponding to P = 16 and P = 32 scattering angles, respectively). For the remaining
parameters, the discretization was fixed to D = N = 16, ∆r = 1, and ∆ψ = 0.1.

Figure 3 illustrates projections of the Shepp-Logan phantom, a standard object for testing
medical imaging methods, in the case D = N = 64, ∆r = 1, ∆ψ = 0.1 and ∆ω = 1.42◦,
corresponding to P = 64 different scattering angles.
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Figure 3: Shepp Logan phantom projections at scattering angles w = 7◦, 14◦, 35◦ and 68◦

Figure 4: SVD spectra of matrix A with P = 16 (red) and P = 32 (blue) in log-log scale

4.2 Projection matrix

As stated in Sec. 2.3, the projection matrix is obtained by the action of the TC transform on
each element of the canonical basis of RN3

. We used the discretization parameters described
in Sec. 4.1 for computing the projection matrix, leading to a matrix A of size 4096 × 4096,
when the number of angles is P = 16, and size 8192 × 4096, when P = 32. The matrix A
is decomposed using SVD factorization. Figure 4 shows the singular values of matrix A in
logarithmic scales. Note that the singular values are smaller when the number of projections
diminishes, so more unstabilities are expected in the presence of noise.

4.3 Reconstructions

We perform reconstruction using the SVD pseudo-inversion as in Eq. (10). In order to assess
the quality of reconstructions we used the Root Mean Squared Error (RMSE) with respect to
the original phantom f as a figure of merit.

RMSE = ‖f − f̃‖2
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Figure 5: Shepp-Logan phantom reconstruction at levels z=3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14.

The RMSE was computed after image scaling in such a way that both, the reconstructed im-
age and the original phantom, took values in the rank [0 1]. Figure 5 is an illustration of the
reconstruction of the Shepp-Logan phantom, without truncation. The RMSE was 0.34%.

We perform our tests using a cylinder phantom (see Figure 6). Just as in the case of the
Shepp-Logan phantom, the RMSE was small when reconstructing from noiseless data (0.2%,
see Table 1).

4.4 Reconstruction from noisy projections

In a more realistic context, the data may be perturbed with noise. So, we also performed
simulations considering an additive error in the data

gn(xD, yD, ω) = g(xD, yD, ω) + n(xD, yD, ω),

where n(xD, yD, ω) is a Poisson noise. Several noise levels were considered labelled by the
Signal to Noise Ratio (SNR):

SNR = 20 log(
σg

σn
) (11)
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Figure 6: Original cylinder phantom (top) and reconstructions from noiseless data (bottom).
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measured in decibels, where σg and σn are the variances of the projections and the noise respec-
tively. Figure 7 illustrates the projections in the absence of noise and noisy projections with a
SNR= 9.2dB. Clearly, this level of noise degrades significantly the quality of the data.

In this conditions, the inversion problem becomes unstable and a regularization method must
be applied. As previously stated, we used TSVD as a regularization technique.

Table 1 shows the RMSE for different signal to noise ratios and two different numbers of
angles in projections (P = 16 and P = 32). Several truncation indexes were tested. Figure 8
shows a graphic representations of these tabulated values.

P = 16 P = 32

k σk Signal to Noise Ratio [dB] σk Signal to Noise Ratio [dB]
6.6 9.2 11.7 14.9 16.8 clean 6.6 9.2 11.7 14.9 16.8 clean

4096 3.6−9 49.2 46.8 50.2 55.3 46.0 0.2 0.0016 43.3 57.6 47.3 46.3 52.0 0.2

4050 3.7−6 50.7 52.1 56.1 52.4 48.3 3.4 0.0024 49.7 52.7 51.4 49.7 53.3 1.4
4000 9.4−6 51.4 51.6 50.6 50.7 48.3 4.0 0.0031 45.7 55.1 51.4 45.9 56.1 1.7
3500 5.1−4 44.1 58.3 46.8 46.6 52.4 8.5 0.0105 50.0 44.9 49.6 47.8 52.2 7.2
3000 0.0045 56.1 38.8 51.7 48.8 50.9 10.0 0.0226 46.8 50.5 45.3 45.1 37.1 6.9
2500 0.0176 48.2 53.9 47.4 39.2 34.2 11.5 0.0428 44.8 40.2 38.8 25.6 27.2 8.5
2000 0.0572 37.0 37.0 37.1 30.2 26.6 15.3 0.0803 36.3 34.8 31.5 24.6 25.0 14.8
1500 0.1134 29.7 26.8 21.0 18.7 16.5 12.5 0.1581 25.5 23.2 21.7 15.4 14.7 12.4
1200 0.1844 29.7 19.2 15.6 13.6 13.7 11.7 0.2541 21.9 16.3 13.9 12.7 12.4 11.9
1100 0.2185 25.1 20.5 15.9 14.5 15.2 13.6 0.3015 16.6 17.8 13.1 13.3 12.9 12.5
1000 0.2703 26.7 18.7 14.1 15.0 14.5 14.0 0.3780 17.4 16.0 15.6 14.1 14.1 13.7
930 0.3102 18.6 16.1 17.1 16.0 16.4 15.8 0.4334 16.2 16.2 16.3 15.8 16.0 15.7
900 0.3268 19.3 16.8 17.2 16.4 16.4 15.9 0.4576 16.8 16.6 16.2 15.7 16.6 15.8
800 0.4111 27.1 26.2 27.9 28.0 27.7 27.4 0.5768 29.0 28.7 28.2 27.6 28.4 27.4

Mean RMSE 36.6 34.5 33.5 31.8 30.5 11.7 32.9 33.6 31.4 28.5 29.9 10.7

Table 1: RMSE (%) for reconstructions with several levels of noise and in the absence of noise

5 DISCUSSION

High quality reconstructions were obtained from complete and noiseless data (RMSE <

0.5%). When performing the inversion by TSVD the reconstruction error naturally increased,
since useful data is being discarded.

Reconstructions from noisy data exhibited important deviations but the error decreased for
regularized reconstructions. When too many singular values are set to zero, the error increases
again, suggesting there is an optimal value for the truncation parameter. A decision criterion
for the choice of this parameter like the L-curve suggested by Hansen Hansen (2000) could be
interesting to study.

Generally, a lower SNR lead to worse reconstructions but this is not a systematic result,
as one may expect. This may be caused by the statistical nature of the problem, and more
trials should be performed to get consistent results. Besides, the error obtained with a specific
truncation in the absence of noise was never reached by the corresponding regularized solution
from noisy data. Thus, the error of regularized reconstructions in the noiseless case behaves
as a lower bound for the TSVD reconstruction error in the noisy context (see Fig. 8, the lower
green line shows the error in the noiseless case).

The duplication in the number of projections does not improve significantly the reconstruc-
tions. Nevertheless, the minimum error for fixed SNR and k is always smaller in the P = 32
case than in the P = 16 case (compare values in bold letters on Table 1). Errors for fixed SNR
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(a)

(b)

Figure 7: Noiseless projections (a) and noisy projections (b) of the cylinder with P = 16.
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Figure 8: RMSE with different truncations with normal and noisy projections. Top: P = 16. Bottom: P = 32.
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Figure 9: Reconstructions from SNR = 9.2dB projections at two different truncation levels 2000 and 1200.
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are also smaller for P = 32 in the mean over all truncation parameters (see the bottom line on
Table 1). So, more available data lead to more precise solutions in the presence of noise.

6 CONCLUSIONS AND FUTURE WORK

We have presented a numerical implementation of the conical Radon transform TC. We
worked using an algebraic formulation of the direct problem to solve the inverse problem by
SVD. Satisfactory reconstruction results validate our algorithm for the simulation of the direct
problem. We also performed tests for data perturbed by noise using different numbers of avail-
able projections, and using TSVD as a regularization technique. We conclude that the bigger
the number of projections the better are the reconstructions, but more trials should be performed
to obtain more conclusive results. As a future work, we will study the pertinence of the L-curve
Hansen (2000) as a decision criterion for the choice of the truncation parameter for the TSVD.
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