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Abstract. From the early works of Tikhonov and Phillips in 1962 and 196@ treatment of inverse
ill-posed problems has seen an enormous growth. Many methaals and ad-hoc algorithms bound to
extract as much information as possible about the exacti@olaf the problem have been developed. In
particular, during the last two decades a wide variety of neathematical tools ranging from the use of
variable LP spaces to bounded-variatioB (") penalization, anisotropic diffusion methods and Bayesia
models and hypermodels has arisen. Although it cannot bectxg that a single method be better than
all others for all type of problems, the ability of “deteaticof discontinuities and borders and subsequent
“self-adaptation” to different types of patterns, struesiand degrees of regularity is a highly desired
property of a regularization method. In this work we presamhe mathematical results on the existence
and uniqueness of global minimizers of generalized TikkemRhbillips functionals with penalizers given
by convex spatially-adaptive combinations/of and isotropic and anisotropi8V type. Open problems
are discussed and results to signal and image restoratiafepns are presented.
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1 INTRODUCTION

A linear inverse problem can be formulated in the form: finslich that
Tu =, Q)

where X and)’ are two infinite dimensional normed spaces (usually Hilkpeces of func-
tions),T" is a bounded linear operator with non-closed range betwezsettwo spaces, and
is the data, which is known or approximately known (with at@er error). In what follows,
and unless we specify it differentlyt, will be L?(Q) whereQ2 C R" is a bounded open convex
set with Lipschitz boundary. Under the above hypothesesvitdll known that probleml is
ill-posed, the Moore-Penrose pseudo-inversg aé unbounded and therefore small errors in
the datav may result in arbitrarily large errors in the approximasai« (Spies and Temperini
(2006). For this reason, before attempting to solve probl&mi{ must be “regularized”. That
means essentially replacing the problem by a family or secgi®f “well-posed” problems
whose solutions converge (in an appropriate way) to a soludif the original problem1().
Undoubtedly, the most usual way of regularizing a lineapdked problem is by means of the
Tikhonov-Phillips method, which can be formulated in a feiifedent ways. First within a
general mathematical theory by means of spectral theogyHgegl et al.(1996) but also as a
simple unconstrained minimization problem. In fact, thgularized solution obtained by the
Tikhonov-Phillips method and a penalizér with domainD C X, is the global minimizer over
D (provided such a minimizer exists), of the functional

Jaw (1) = ||Tu — v||> + oW (u), 2)

wherea > 0 is a constant called regularization parameter. The origimehod was proposed
independently by Phillips and Tikhonov in 1962 and 19B8illips (1962, Tikhonov (19633,
Tikhonov (1963b) usingW (u) = ||u|%. Other penalizers can also be used to regularize the
problem and in the last two decades, considerable reseasihden devoted studying what
types of functionals can be used for that purpose and, givemlalem, decide which one is
more appropriate to preserve certain known propertiessoéfact solution. Thus, for instance,
choosingiV (u) = ||ul|>. results always smooth regularized approximations whiciveme, as
a — 07, to the so called “best approximate solution” (i.e. the tesagiares solution of min-
imum norm) of problem 1) (seeEngl et al.(1996) while W (u) = |||Vl Hi%) corresponds
to the order-one Tikhonov-Phillips method. On the otherchdVi(u) = ||ull, ,, (Where|-||;,
denotes the total variation norm) B (u) = ||[Vul |1 ,,, resultin the so called “bounded vari-
ation regularization methodsA¢ar and Voge(1994, Rudin et al.(1992) which are strongly
suggested when preserving discontinuities or edges thiéd be present in the exact solution is
an important matter. These methods, however, tend to peopliecewise constant approxima-
tions and therefore they will most likely be inappropriateegions where the exact solution is
smooth Chambolle and Lion&l997), producing the so called “staircasing effect”. For gaher
penalizerdV, sufficient conditions guaranteeing existence, uniqueaed stability of the min-
imizers under different types of perturbations were foum¥azzieri et al.(2012. There are
several reasons why it is important to use an appropriatelizen for regularizing a problem.
The main one being that the penalizing term engraves theappate solution with particular
properties which one believes, or one has good motives teveglthat the exact solution also
possesses. With that in mind it is reasonable to think thaiude of two or more penalizers
of different nature, that could somehow spatially adaph®lbcal characteristics of the exact
solution, could be more convenient. During the last 15 yesasy regularization methods have
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been developed in light of this line of reasoning. Thus, fatance, in 1997 Blomgrest al.
(Blomgren et al(1997) proposed the following penalizer:

W(u) = /Q |VulPVDdy, (3)

wherep is a decreasing function SatiSfyintjm+p(u) = 2, limp(u) = 1. Thus, in regions
u—0 U—00

where the gradient af is small the penalizer approximat@ls/u| Hig(m, what corresponds to a
Tikhonov-Phillips method of order one (appropriate for siioregions) while for the gradient
of u large, the penalizer resembles the bounded variation semifi|Vul[| ., which, as
previously mentioned, is appropriate for border detecpiarposes. Although this model for
W is quite reasonable, proving basic properties of the cparding generalized Tikhonov-
Phillips functional turns out to be quite difficult. Exisnof global minimizers of functional
(2) with W given by @), was proved by the authors by using the theory of varidlilepaces.
Also in 1997 Chambolle and Lions suggested a different wagoaifbining these two methods
(Chambolle and Lion§1997) by defining a thresholded penalizer of the form:

Ws(u) = / \Vul|? da +/ |Vu|dz,
[Vu|<B |Vul>p

wheres > 0 is a prescribed threshold parameter. Thus, in regions whenmders are more
likely to be present|Vu| > (), penalization is made with the bounded variation seminorm
while a standard order-one Tikhonov-Phillips method igiustderwise. This model was shown
to be successful in restoring images possessing regiohdwihogeneous intensity separated
by borders. However, in the case of images with non-uniforrighly degraded intensities,
the model is extremely sensitive to the choice of the thriesparameters. More recently,
penalizers of the form

W(u):/g|Vu|p(’”)dx, 4)

for certain functionsp with range in[1,2], were studied inChen et al.(2006§ and Li et al.
(2010. However, it is timely to point out here that all previoushentioned results are valid
only for the case of denoising (no blurring), i.e. for theeeds= id.

In this article we will study penalizers of the form

W(u) = o /Q V1 —0(z) u(z)|* do + ozg/Q |0(x)A(x)Vu(x)|| d (5)

wherea;, o, are positive constantg(z) is a weighting function with values on the interval
[0,1] and A(z) is a symmetric positive definite matrix field. Existence,qu@ness and stabil-
ity results of global minimizers of the corresponding gatieed Tikhonov-Phillips functionals
will be derived. Several remarks are in order. Some of thesalts are anisotropic gener-
alizations of similar results obtained Mazzieri et al.(20143. Note that the extreme case
6(xz) = 0 Vx corresponds to the classical Tikhonov-Phillips method.fo) = 1 Vx one gets
a pureBV method, with the classical Bounded Variation method cpwading to the case of
A(x) = I Vz. Other choices of the matrix field are possible in order to induce an anisotropic
BV penalization. Feasible ways of constructing this mafield can be found for instance in
Calvetti et al.(2009. The general case can then be thought of as a convex conolirtdta
classicalL? and an anisotropi&V penalizers.
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2 MAIN RESULTS

In this section we will state our main results concerningtrice and uniqueness of min-
imizers of particular generalized Tikhonov-Phillips ftionals with combined.?-BV penal-
izers. Due to brevity and since complete proofs of theselteesull appear in a forthcoming
paper, we will include no the proofs here, limiting a someideeper discussion only to those
considered more relevant.

In what follows(2 shall denote a bounded open convex subsit'okith Lipschitz boundary,
M(2) denotes the set of all real valued measurable functionsatkdine andﬂ/l\(Q) the subset
of M(2) consisting of those functions with values|in 1].

2.1 The isotropic case

Definition 2.1 Givené € /T/I\(Q), we define the functiondl; ,(u) with values on the extended
reals by
Woo(u) = sup/ —u(x)div(f(z)v(x)) de, ue M(Q) (6)
vEVy JQ
whereV, = {7 : Q — R" suchthatv € C;(Q2) and|v/(z)| < 1Vz € Q} and| - | denotes the
euclidean 2-norm ifR".

It is important to point out that ifs and# are both inC*(€2), then it can be proved that
Woo(w) = [0Vl | 1(0)-

In Mazzieri et al (2013 a result regarding existence and uniqueness of globahmuers of
the functional

Ey(u) = | Tu —vlly, + o[V = Oullfa, + s Woo(u),  ue L¥(Q) (7)

was proved. However, the proof of such a result (see TheordnmdMazzieri et al.(2013)
precludes the case in whiélassumes the extreme values O or 1 on a set of positive me#sare.
timely to point out nonetheless that both cases are of palctiterest since in some cases a pure
BV regularization in some regions and a piiferegularization in others may be desired. The
next three theorems deal precisely with results aboutentst and uniqueness of minimizers
of functional (7) for the cases in which the weighting functi@rtan take the extreme values 0
or 1 on sets of positive measure. Complete details on thdgaofdhe following theorems can
be found in Mazzieri et al, 20143.

Theorem 2.2 Let X = L*(Q2), Y a normed vector space, € ), «,, a, positive constants,
0 € M(Q) andQ, = {z € Qsuchtha¥(z) = 0}. If ; € L=(Q;) and 15 € L'(Q;) then
functional (7) has a unique global minimizer € L?(Q) N BV (Q¢).

Theorerp\2.3 LetX, Y, v, a;, a, asin Theoren2.2 Assume further thay is a Hilbert space,
let) € M(Q) andQ, = {z € Qsuchtha¥(z) = 1}. If n < 2, 5 € L=(Q), 15 € L'(Q9)
and Ty, # 0, then functional 7) has a global minimizer* € L?(Q) N BV (Q¢). If moreover
T is injective, then such a global minimizer is unique.

'Ijleorem 24 Letn, X, Y, v, o, s, €2, as in TheorenR.3, €}, as in TheorenR.2andf

M(Q). If 5 € L=(Q), 5 € L=(Q:) andT is injective, then functional7j has a unique

global minimizer* € L?(Q) N BV (Q: N Q).
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2.2 The anisotropic case

In this section we will state a few results regarding the easehich the penalizetV, , in
(6) is modified to take into account anisotrog@sd” —diffusion. This will be achieved by means
of an appropriately constructed matrix field The construction of this matrix field is a very
important matter on which we shall not get any deeper herewilV@nly mention that there
are several ways of constructing this so-called “anisatropatrix field”, either from structural
prior information or from the available data (sKaipio et al. (1999, Calvetti et al.(20086,
Grasmair and Lenze2010).

Definition 2.5 Giveng € M(f2) and a measurable matrix field : © — R>*2 we define the
functionallV, ,(u) with values on the extended reals by

Wy 4(u) = sup /Q—u(:p)diV(@(:p)A(x)ﬁ(x))dx, u e M(Q) (8)

7€V, A
whereV, , = {7 : Q — R? such that Az € C}(Q) and|#(z)] < 1Vz € Q}.

Just like in the isotropic case, it can be proved that if € C'(Q2) andA € C*(Q, R**?) is
a symmetric measurable matrix field, théf , (u) = [|0 [AVul || 11 (q).
Consider the functional

Fya(u) = |Tu— o]} + ) [VI = 0u| oy, + e Wy a(w),  ue L*(9Q). (9)

Theorem 2.6 Let2 C R? be a bounded open convex set with Lipschitz boundary, L*(),
Y a normed vector space,< ), «,, a, positive constants} € M ((2) such thatli—e e L'(Q)

and; € L=(Q), A : Q — R>? a measurable matrix field such thati=*(z)|| < 1Vz € Q.
Then functionaF, , defined by %) has a unique global minimizer: € BV (Q)).

Remark 2.7 Note thatiff(z) = 0 Vz € Q, thenF, , as defined ing) is the classical Tikhonov-
Phillips functional of order zero while fof(z) = 1 Yx € Q a pure anisotropicBV penalty

is obtained. Although the hypotheses of TheoPe@tlearly excludes the later case, the next
theorem provides conditions for existence and uniquenkasgtobal minimizer of §) when
O(x) =1Vzx € Q.

Theorem 2.8 (Anisotropic BV) Let Q) C R? be a bounded open convex set with Lipschitz
boundary,X = L*(2), Y a Hilbert spacey € ), o a positive constantd : Q — R?*?
a measurable matrix field such thatl~!(z)|| < 1V2 € Q and assumé’y, # 0. Then the
functional

Fi(u) = ||Tu — ’UH; + a sup / —u(z) div(A(z)v(z)) du, (10)

veVa JQ

whereV, = {7 : Q — R?suchthatd7 € C!(Q2) and|/(z)] < 1Vx € Q}, has a global
minimizeru* € L*(2). Moreover, ifT is injective then such a global minimizer is unique.

Currently we also have partial results for this anisotraitication in cases in which the weight-
ing functiond can take the extreme values O or 1 on sets of positive meaShigresearch is
currently underway and detailed results will be publisimeaiorthcoming articleNlazzieri et al.
(20141).
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3 NUMERICAL RESULTS

The purpose of this section is to show some applicationseofa@ularization methods pre-
sented in the previous section consisting in the simultasese of penalizers df* and of
bounded-variation1) type to signal and image restoration problems.

3.1 APPLICATIONS TO SIGNAL RESTORATION

A basic mathematical model for signal blurring is given bynaalution, as a Fredholm inte-
gral equation of first kind:

o(t) = /0 k(t, 5)u(t)ds, (11)

wherek(t, s) is the blurring kernel or point spread functionjs the exact (unknown) signal
andv is the blurred signal. For the examples that follow we tookaaussian blurring kernel,

e k(t,s) = o exp(—(t;?2),with o, > 0. Equation {1) was discretized in the usual way
Yi¥ea O'b
(using collocation and quadrature), resulting in a digcnebdel
Af =gy, (12)

whereAisa(n+1) x (n+1) matrix, f, g € R™! (f; = u(t;), g; = v(t;), t; = 1,0 < j < n).
We tookn = 130 ando, = 0.05. The datay was contaminated with a 1% zero-mean Gaussian
additive noise (i.e. standard deviation equal to 1% of tingesofg).

We considered a signal which is smooth in two disjoint indds\and piecewise constant in
the complement of their union, having three finite jumps. Sig@al was blurred and noise was

added as described. The original and blurred-noisy sigealepicted in Figure 1.

4.5

Figure 1. Original { -) and blurred-noisy-) signals.

Figure 2 shows the restorations obtained with the clasziead-order Tikhonov-Phillips
method (left) and with a pur&V —penalizer (i.e. 7) with 0(x) = 1Vz € Q) (right). In
all cases the regularization parameters were optimallgeno As expected, the regularized
solution obtained with the later method is significantlyteethan the one obtained with the
classical Tikhonov-Phillips method near jumps and in regiwhere the exact solution is piece-
wise constant. The opposite happens where the exact solsitsmooth.
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Figure 2: Original signal-(-) and regularized solutions<) obtained with Tikhonov-Phillips
(left) and bounded variation seminorm (right).

An ad-hoc binary weight function theta for this example wafireed on the intervdD, 1] as
0(t) = 1fort € [0.3, 0.65] andd(t) = 0 for ¢t € [0, 0.3) U (0.65, 1]. The regularized solution
obtained with this weight function and the combingd BV method is shown in Figure 3. The
improvement with respect to any of the single classical pueéhods is clearly notorious.

4.5

I I T I I I I
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 3: Original signal(-) and regularized solutior<{) obtained with the combinetf — BV
method and an ad-hoc binary functién

Although this choice of/(t) is clearly based upora*priori” information about the regular-
ity of the exact solution, other reasonable choice8 o&dn be made by using only data-based
information. For instance, one way of constructing a reabtsnweighting functiort is by
computing the normalized (i), 1]) convolution of a zero-mean Gaussian function with stan-
dard deviatiors;, and the modulus of the gradient of the regularized solutimaioed with a
pure zero-order Tikhonov-Phillips method (see Figure 4y.tRis functiord, the corresponding
regularized solution obtained with the combinett BV method is shown in Figure 5. In all
cases reflexive boundary conditions were us¢ansen(2010) and the optimal regularization
parameters were estimated using Morozov’s discrepanaoipte with— = 1.1 (Engl et al.

(1996).
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Figure 4: Tikhonov-based weight functién
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Figure 5: Original signal-(-) and regularized solutior) obtained with the combinef?- BV

method and functiol showed in Fig4.

Table 1 shows the ISNR values of the four performed restorati These values show once
again a significant improvement of the combined method vedipect to any of the pure (single)

methods.

| Regularization Method

[1SNR |

Tikhonov-Phillips

2.6008

Bounded variation (BV)

2.8448

Mixed L?-BV with binaryd

4.8969

Mixed L2-BV with Tikhonov-based

4.3315

Table 1: ISNR values of the different restorations
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3.2 APPLICATIONS TO IMAGE RESTORATION

For this case the forward blurring model is given by convolutvith a point spread function
of “atmospheric turbulence” type, i.e., with a two-dimesrsl Gaussian function with hori-
zontal and vertical standard deviationsando,, respectively. Data for the inverse problem is
then obtained by adding to the blurred image, a zero-meassgaunoise withr % standard
deviation. Figures (a) shows the blurred noisy image corresponding;te= o, = 0.015 and
o = 2 while Figure6 (b) contains the restoration obtained with a Tikhonov{Risimethod
(pure L? penalizer). This restoration was later used to build theandpic penalization matrix
field A and the weighting functiof of the mixed regularizatioh?-BV .

(b)

Figure 6: (a) Blurred noisy image (observation); (b) Tikbe+Phillips restoration.

Figure7 shows the restorations obtained using pbié penalizers; isotropic case in (a) and
anisotropic in (b). It is clear to observe the better perfamge of the anisotropi8l” method
with respect to isotropic one, particularly in regard to @dgtection. This improvement is also
reflected in the ISNR, which are presented in Table 2.

(@) (b)

i

Figure 7: (a) Isotropid3V restoration; (b) Anisotropi&V restoration.
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Figure8 shows the restoration images obtained with the new miXeV penalizer; isotropic
case in (a) and anisotropic in (b). In both cases, the weigltinctiond was computed in the
same way as previously described for signal restoratiore ddmstruction of the anisotropic
penalization matrix fieldd was realized following the steps given@alvetti et al.(2006.

@ (b)

k i
Figure 8: (a) MixedL?-isotropic BV restoration; (b) Mixed.?-anisotropicBV restoration.

The original image is presented in Fig@&eThe ISNR value was computed in order to have
an objective parameter to measure and compare the quahtyiofage restorations (see Table
2). These values show a improvement of the both combined rdstlsntropic and anisotropic,
with respect to any of the pure methods. In turn, it is impatrta note that the incorporation of
regularity information of the exact solution through theésatropic penalization matrix field
yields better results with respect to the combined isotrapethod.

| Regularization Method | ISNR |
Tikhonov-Phillips 3.166
IsotropicBV 2.745
Anisotropic BV 3.343
Mixed Isotropic 3.403
Mixed Anisotropic 3.844

Figure 9: Original image Table 2: ISNRs of each restoration

4 CONCLUSIONS

In this work we presented several mathematical results erexistence and uniqueness of
global minimizers of generalized Tikhonov-Phillips fulactals with penalizers given by convex
spatially-adaptive combinations &f and isotropic and anisotropigV type. Open problems
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were discussed and results to signal and image restoratodiiepns were presented. These
results are consistent with the intuitive foundations updmnch the new methods are based,
and they show a significant improvement in their performanith respect to the traditional
methods.
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