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Abstract. From the early works of Tikhonov and Phillips in 1962 and 1963, the treatment of inverse
ill-posed problems has seen an enormous growth. Many methods, tools and ad-hoc algorithms bound to
extract as much information as possible about the exact solution of the problem have been developed. In
particular, during the last two decades a wide variety of newmathematical tools ranging from the use of
variableLp spaces to bounded-variation (BV ) penalization, anisotropic diffusion methods and Bayesian
models and hypermodels has arisen. Although it cannot be expected that a single method be better than
all others for all type of problems, the ability of “detection” of discontinuities and borders and subsequent
“self-adaptation” to different types of patterns, structures and degrees of regularity is a highly desired
property of a regularization method. In this work we presentsome mathematical results on the existence
and uniqueness of global minimizers of generalized Tikhonov-Phillips functionals with penalizers given
by convex spatially-adaptive combinations ofL

2 and isotropic and anisotropicBV type. Open problems
are discussed and results to signal and image restoration problems are presented.
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1 INTRODUCTION

A linear inverse problem can be formulated in the form: findu such that

Tu = v, (1)

whereX andY are two infinite dimensional normed spaces (usually Hilbertspaces of func-
tions),T is a bounded linear operator with non-closed range between those two spaces, andv
is the data, which is known or approximately known (with a certain error). In what follows,
and unless we specify it differently,X will be L2(Ω) whereΩ ⊂ R

n is a bounded open convex
set with Lipschitz boundary. Under the above hypotheses it is well known that problem (1) is
ill-posed, the Moore-Penrose pseudo-inverse ofT is unbounded and therefore small errors in
the datav may result in arbitrarily large errors in the approximations ofu (Spies and Temperini
(2006)). For this reason, before attempting to solve problem (1), it must be “regularized”. That
means essentially replacing the problem by a family or sequence of “well-posed” problems
whose solutions converge (in an appropriate way) to a solution of the original problem (1).
Undoubtedly, the most usual way of regularizing a linear ill-posed problem is by means of the
Tikhonov-Phillips method, which can be formulated in a few different ways. First within a
general mathematical theory by means of spectral theory (see Engl et al.(1996)) but also as a
simple unconstrained minimization problem. In fact, the regularized solution obtained by the
Tikhonov-Phillips method and a penalizerW with domainD ⊂ X , is the global minimizer over
D (provided such a minimizer exists), of the functional

Jα,W (u) = ‖Tu− v‖2 + αW (u), (2)

whereα > 0 is a constant called regularization parameter. The original method was proposed
independently by Phillips and Tikhonov in 1962 and 1963 (Phillips (1962), Tikhonov(1963a),
Tikhonov(1963b)) usingW (u) = ‖u‖2

X
. Other penalizers can also be used to regularize the

problem and in the last two decades, considerable research has been devoted studying what
types of functionals can be used for that purpose and, given aproblem, decide which one is
more appropriate to preserve certain known properties of the exact solution. Thus, for instance,
choosingW (u) = ‖u‖2

X
results always smooth regularized approximations which converge, as

α → 0+, to the so called “best approximate solution” (i.e. the least squares solution of min-
imum norm) of problem (1) (seeEngl et al.(1996)) while W (u) = ‖|∇u| ‖2

L2(Ω)
corresponds

to the order-one Tikhonov-Phillips method. On the other hand,W (u) = ‖u‖
BV(Ω)

(where‖·‖
BV

denotes the total variation norm) orW (u) = ‖|∇u| ‖
L1(Ω)

, result in the so called “bounded vari-
ation regularization methods” (Acar and Vogel(1994), Rudin et al.(1992)) which are strongly
suggested when preserving discontinuities or edges that could be present in the exact solution is
an important matter. These methods, however, tend to produce piecewise constant approxima-
tions and therefore they will most likely be inappropriate in regions where the exact solution is
smooth (Chambolle and Lions(1997)), producing the so called “staircasing effect". For general
penalizersW , sufficient conditions guaranteeing existence, uniqueness and stability of the min-
imizers under different types of perturbations were found in Mazzieri et al.(2012). There are
several reasons why it is important to use an appropriate penalizer for regularizing a problem.
The main one being that the penalizing term engraves the approximate solution with particular
properties which one believes, or one has good motives to believe, that the exact solution also
possesses. With that in mind it is reasonable to think that the use of two or more penalizers
of different nature, that could somehow spatially adapt to the local characteristics of the exact
solution, could be more convenient. During the last 15 yearsmany regularization methods have
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been developed in light of this line of reasoning. Thus, for instance, in 1997 Blomgrenet al.
(Blomgren et al.(1997)) proposed the following penalizer:

W (u) =

∫

Ω

|∇u|p(|∇u|)dx, (3)

wherep is a decreasing function satisfyinglim
u→0+

p(u) = 2, lim
u→∞

p(u) = 1. Thus, in regions

where the gradient ofu is small the penalizer approximates‖|∇u|‖2L2(Ω), what corresponds to a
Tikhonov-Phillips method of order one (appropriate for smooth regions) while for the gradient
of u large, the penalizer resembles the bounded variation seminorm ‖|∇u|‖L1(Ω), which, as
previously mentioned, is appropriate for border detectionpurposes. Although this model for
W is quite reasonable, proving basic properties of the corresponding generalized Tikhonov-
Phillips functional turns out to be quite difficult. Existence of global minimizers of functional
(2) with W given by (3), was proved by the authors by using the theory of variableLp spaces.
Also in 1997 Chambolle and Lions suggested a different way ofcombining these two methods
(Chambolle and Lions(1997)) by defining a thresholded penalizer of the form:

Wβ(u) =

∫

|∇u|≤β

|∇u|2 dx+

∫

|∇u|>β

|∇u| dx,

whereβ > 0 is a prescribed threshold parameter. Thus, in regions whereborders are more
likely to be present (|∇u| > β), penalization is made with the bounded variation seminorm
while a standard order-one Tikhonov-Phillips method is used otherwise. This model was shown
to be successful in restoring images possessing regions with homogeneous intensity separated
by borders. However, in the case of images with non-uniform or highly degraded intensities,
the model is extremely sensitive to the choice of the threshold parameterβ. More recently,
penalizers of the form

W (u) =

∫

Ω

|∇u|p(x)dx, (4)

for certain functionsp with range in[1, 2], were studied inChen et al.(2006) and Li et al.
(2010). However, it is timely to point out here that all previouslymentioned results are valid
only for the case of denoising (no blurring), i.e. for the caseT = id.

In this article we will study penalizers of the form

W (u) = α1

∫

Ω

|
√
1− θ(x) u(x)|2 dx+ α2

∫

Ω

‖θ(x)A(x)∇u(x)‖ dx (5)

whereα1, α2 are positive constants,θ(x) is a weighting function with values on the interval
[0, 1] andA(x) is a symmetric positive definite matrix field. Existence, uniqueness and stabil-
ity results of global minimizers of the corresponding generalized Tikhonov-Phillips functionals
will be derived. Several remarks are in order. Some of these results are anisotropic gener-
alizations of similar results obtained inMazzieri et al.(2014a). Note that the extreme case
θ(x) = 0 ∀x corresponds to the classical Tikhonov-Phillips method. For θ(x) = 1 ∀x one gets
a pureBV method, with the classical Bounded Variation method corresponding to the case of
A(x) = I ∀x. Other choices of the matrix fieldA are possible in order to induce an anisotropic
BV penalization. Feasible ways of constructing this matrixfield can be found for instance in
Calvetti et al.(2006). The general case can then be thought of as a convex combination of a
classicalL2 and an anisotropicBV penalizers.
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2 MAIN RESULTS

In this section we will state our main results concerning existence and uniqueness of min-
imizers of particular generalized Tikhonov-Phillips functionals with combinedL2-BV penal-
izers. Due to brevity and since complete proofs of these results will appear in a forthcoming
paper, we will include no the proofs here, limiting a somewhat deeper discussion only to those
considered more relevant.

In what followsΩ shall denote a bounded open convex subset ofR
n with Lipschitz boundary,

M(Ω) denotes the set of all real valued measurable functions defined onΩ andM̂(Ω) the subset
of M(Ω) consisting of those functions with values in[0, 1].

2.1 The isotropic case

Definition 2.1 Givenθ ∈ M̂(Ω), we define the functionalW0,θ(u) with values on the extended
reals by

W0,θ(u)
.
= sup

~ν∈Vθ

∫

Ω

−u(x) div(θ(x)~ν(x)) dx, u ∈ M(Ω) (6)

whereVθ

.
= {~ν : Ω → R

n such thatθ~ν ∈ C1
0
(Ω) and|~ν(x)| ≤ 1 ∀ x ∈ Ω} and | · | denotes the

euclidean 2-norm inRn.

It is important to point out that ifu and θ are both inC1(Ω), then it can be proved that
W0,θ(u) = ‖θ |∇u| ‖L1(Ω).

In Mazzieri et al.(2013) a result regarding existence and uniqueness of global minimizers of
the functional

Fθ(u)
.
= ‖Tu− v‖2Y + α1‖

√
1− θ u‖2

L2(Ω)
+ α2 W0,θ(u), u ∈ L2(Ω) (7)

was proved. However, the proof of such a result (see Theorem 3.4 in Mazzieri et al.(2013))
precludes the case in whichθ assumes the extreme values 0 or 1 on a set of positive measure.It is
timely to point out nonetheless that both cases are of practical interest since in some cases a pure
BV regularization in some regions and a pureL2 regularization in others may be desired. The
next three theorems deal precisely with results about existence and uniqueness of minimizers
of functional (7) for the cases in which the weighting functionθ can take the extreme values 0
or 1 on sets of positive measure. Complete details on the proofs of the following theorems can
be found in (Mazzieri et al., 2014a).

Theorem 2.2 Let X = L2(Ω), Y a normed vector space,v ∈ Y , α1, α2 positive constants,
θ ∈ M̂(Ω) andΩ0

.
= {x ∈ Ω such thatθ(x) = 0}. If 1

θ
∈ L∞(Ω c

0
) and 1

1−θ
∈ L1(Ω c

0
) then

functional (7) has a unique global minimizeru∗ ∈ L2(Ω) ∩BV (Ω c

0).

Theorem 2.3 LetX , Y , v, α1, α2 as in Theorem2.2. Assume further thatY is a Hilbert space,
let θ ∈ M̂(Ω) andΩ1

.
= {x ∈ Ω such thatθ(x) = 1}. If n ≤ 2, 1

θ
∈ L∞(Ω c

1
), 1

1−θ
∈ L1(Ω c

1
)

andTχΩ 6= 0, then functional (7) has a global minimizeru∗ ∈ L2(Ω) ∩ BV (Ωc

1). If moreover
T is injective, then such a global minimizer is unique.

Theorem 2.4 Let n, X , Y , v, α1, α2, Ω 1 as in Theorem2.3, Ω0 as in Theorem2.2 and θ ∈
M̂(Ω). If 1

θ
∈ L∞(Ω c

0),
1

1−θ
∈ L∞(Ω c

1) andT is injective, then functional (7) has a unique
global minimizeru∗ ∈ L2(Ω) ∩ BV (Ωc

1
∩ Ωc

0
).
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2.2 The anisotropic case

In this section we will state a few results regarding the casein which the penalizerW0,θ in
(6) is modified to take into account anisotropicBV−diffusion. This will be achieved by means
of an appropriately constructed matrix fieldA. The construction of this matrix field is a very
important matter on which we shall not get any deeper here. Wewill only mention that there
are several ways of constructing this so-called “anisotropic matrix field”, either from structural
prior information or from the available data (seeKaipio et al. (1999), Calvetti et al.(2006),
Grasmair and Lenzen(2010)).

Definition 2.5 Givenθ ∈ M̂(Ω) and a measurable matrix fieldA : Ω → R
2×2 we define the

functionalWθ,A(u) with values on the extended reals by

Wθ,A(u)
.
= sup

~ν∈Vθ,A

∫

Ω

−u(x) div(θ(x)A(x)~ν(x)) dx, u ∈ M(Ω) (8)

whereVθ,A

.
= {~ν : Ω → R

2 such thatθA~ν ∈ C1
0
(Ω) and |~ν(x)| ≤ 1 ∀ x ∈ Ω}.

Just like in the isotropic case, it can be proved that ifu, θ ∈ C1(Ω) andA ∈ C1(Ω,R2×2) is
a symmetric measurable matrix field, thenWθ,A(u) = ‖θ |A∇u| ‖L1(Ω).

Consider the functional

Fθ,A(u)
.
= ‖Tu− v‖2Y + α1‖

√
1− θ u‖2

L2(Ω)
+ α2 Wθ,A(u), u ∈ L2(Ω). (9)

Theorem 2.6 LetΩ ⊂ R
2 be a bounded open convex set with Lipschitz boundary,X = L2(Ω),

Y a normed vector space,v ∈ Y , α1, α2 positive constants,θ ∈ M̂(Ω) such that 1
1−θ

∈ L1(Ω)

and 1
θ
∈ L∞(Ω), A : Ω → R

2×2 a measurable matrix field such that‖A−1(x)‖ ≤ 1 ∀ x ∈ Ω.
Then functionalFθ,A defined by (9) has a unique global minimizeru∗ ∈ BV (Ω).

Remark 2.7 Note that ifθ(x) = 0 ∀ x ∈ Ω, thenFθ,A as defined in (9) is the classical Tikhonov-
Phillips functional of order zero while forθ(x) = 1 ∀ x ∈ Ω a pure anisotropicBV penalty
is obtained. Although the hypotheses of Theorem2.6 clearly excludes the later case, the next
theorem provides conditions for existence and uniqueness of a global minimizer of (9) when
θ(x) = 1 ∀ x ∈ Ω.

Theorem 2.8 (AnisotropicBV ) Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz

boundary,X = L2(Ω), Y a Hilbert space,v ∈ Y , α a positive constant,A : Ω → R
2×2

a measurable matrix field such that‖A−1(x)‖ ≤ 1 ∀ x ∈ Ω and assumeTχΩ 6= 0. Then the
functional

FA(u)
.
= ‖Tu− v‖2Y + α sup

~ν∈VA

∫

Ω

−u(x) div(A(x)~ν(x)) dx, (10)

whereVA

.
= {~ν : Ω → R

2 such thatA~ν ∈ C1
0
(Ω) and|~ν(x)| ≤ 1 ∀ x ∈ Ω}, has a global

minimizeru∗ ∈ L2(Ω). Moreover, ifT is injective then such a global minimizer is unique.

Currently we also have partial results for this anisotropicsituation in cases in which the weight-
ing functionθ can take the extreme values 0 or 1 on sets of positive measure.This research is
currently underway and detailed results will be published in a forthcoming article (Mazzieri et al.
(2014b)).
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3 NUMERICAL RESULTS

The purpose of this section is to show some applications of the regularization methods pre-
sented in the previous section consisting in the simultaneous use of penalizers ofL2 and of
bounded-variation (BV ) type to signal and image restoration problems.

3.1 APPLICATIONS TO SIGNAL RESTORATION

A basic mathematical model for signal blurring is given by convolution, as a Fredholm inte-
gral equation of first kind:

v(t) =

∫ 1

0

k(t, s)u(t)ds, (11)

wherek(t, s) is the blurring kernel or point spread function,u is the exact (unknown) signal
andv is the blurred signal. For the examples that follow we took a Gaussian blurring kernel,

i.e. k(t, s) = 1√
2πσb

exp
(
− (t−s)2

2σ2
b

)
, with σb > 0. Equation (11) was discretized in the usual way

(using collocation and quadrature), resulting in a discrete model

Af = g, (12)

whereA is a(n+1)×(n+1) matrix, f, g ∈ R
n+1 (fj = u(tj), gj = v(tj), tj =

j

n
, 0 ≤ j ≤ n).

We tookn = 130 andσb = 0.05. The datag was contaminated with a 1% zero-mean Gaussian
additive noise (i.e. standard deviation equal to 1% of the range ofg).

We considered a signal which is smooth in two disjoint intervals and piecewise constant in
the complement of their union, having three finite jumps. Thesignal was blurred and noise was
added as described. The original and blurred-noisy signal are depicted in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
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4.5

Figure 1: Original (- -) and blurred-noisy (—) signals.

Figure 2 shows the restorations obtained with the classicalzero-order Tikhonov-Phillips
method (left) and with a pureBV−penalizer (i.e. (7) with θ(x) = 1 ∀ x ∈ Ω) (right). In
all cases the regularization parameters were optimally chosen. As expected, the regularized
solution obtained with the later method is significantly better than the one obtained with the
classical Tikhonov-Phillips method near jumps and in regions where the exact solution is piece-
wise constant. The opposite happens where the exact solution is smooth.
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Figure 2: Original signal (- -) and regularized solutions (—) obtained with Tikhonov-Phillips
(left) and bounded variation seminorm (right).

An ad-hoc binary weight function theta for this example was defined on the interval[0, 1] as
θ(t) = 1 for t ∈ [0.3, 0.65] andθ(t) = 0 for t ∈ [0, 0.3) ∪ (0.65, 1]. The regularized solution
obtained with this weight function and the combinedL2-BV method is shown in Figure 3. The
improvement with respect to any of the single classical puremethods is clearly notorious.
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0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 3: Original signal (- -) and regularized solution (—) obtained with the combinedL2−BV

method and an ad-hoc binary functionθ.

Although this choice ofθ(t) is clearly based upon “a-priori” information about the regular-
ity of the exact solution, other reasonable choices ofθ can be made by using only data-based
information. For instance, one way of constructing a reasonable weighting functionθ is by
computing the normalized (in[0, 1]) convolution of a zero-mean Gaussian function with stan-
dard deviationσb and the modulus of the gradient of the regularized solution obtained with a
pure zero-order Tikhonov-Phillips method (see Figure 4). For this functionθ, the corresponding
regularized solution obtained with the combinedL2-BV method is shown in Figure 5. In all
cases reflexive boundary conditions were used (Hansen(2010)) and the optimal regularization
parameters were estimated using Morozov’s discrepancy principle with τ = 1.1 (Engl et al.
(1996)).
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Figure 4: Tikhonov-based weight functionθ.
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Figure 5: Original signal (- -) and regularized solution (—) obtained with the combinedL2-BV

method and functionθ showed in Fig.4.

Table 1 shows the ISNR values of the four performed restorations. These values show once
again a significant improvement of the combined method with respect to any of the pure (single)
methods.

Regularization Method ISNR
Tikhonov-Phillips 2.6008
Bounded variation (BV) 2.8448
MixedL2-BV with binaryθ 4.8969
MixedL2-BV with Tikhonov-basedθ 4.3315

Table 1: ISNR values of the different restorations
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3.2 APPLICATIONS TO IMAGE RESTORATION

For this case the forward blurring model is given by convolution with a point spread function
of “atmospheric turbulence” type, i.e., with a two-dimensional Gaussian function with hori-
zontal and vertical standard deviationsσh andσv, respectively. Data for the inverse problem is
then obtained by adding to the blurred image, a zero-mean gaussian noise withσ% standard
deviation. Figure6 (a) shows the blurred noisy image corresponding toσh = σv = 0.015 and
σ = 2 while Figure6 (b) contains the restoration obtained with a Tikhonov-Phillips method
(pureL2 penalizer). This restoration was later used to build the anisotropic penalization matrix
field A and the weighting functionθ of the mixed regularizationL2-BV .

(a) (b)

Figure 6: (a) Blurred noisy image (observation); (b) Tikhonov-Phillips restoration.

Figure7 shows the restorations obtained using pureBV penalizers; isotropic case in (a) and
anisotropic in (b). It is clear to observe the better performance of the anisotropicBV method
with respect to isotropic one, particularly in regard to edge detection. This improvement is also
reflected in the ISNR, which are presented in Table 2.

(a) (b)

Figure 7: (a) IsotropicBV restoration; (b) AnisotropicBV restoration.
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Figure8shows the restoration images obtained with the new mixedL2-BV penalizer; isotropic
case in (a) and anisotropic in (b). In both cases, the weighting functionθ was computed in the
same way as previously described for signal restoration. The construction of the anisotropic
penalization matrix fieldA was realized following the steps given inCalvetti et al.(2006).

(a) (b)

Figure 8: (a) MixedL2-isotropicBV restoration; (b) MixedL2-anisotropicBV restoration.

The original image is presented in Figure9. The ISNR value was computed in order to have
an objective parameter to measure and compare the quality ofall image restorations (see Table
2). These values show a improvement of the both combined methods, isotropic and anisotropic,
with respect to any of the pure methods. In turn, it is important to note that the incorporation of
regularity information of the exact solution through the anisotropic penalization matrix fieldA
yields better results with respect to the combined isotropic method.

Figure 9: Original image

Regularization Method ISNR
Tikhonov-Phillips 3.166

IsotropicBV 2.745
AnisotropicBV 3.343
Mixed Isotropic 3.403

Mixed Anisotropic 3.844

Table 2: ISNRs of each restoration

4 CONCLUSIONS

In this work we presented several mathematical results on the existence and uniqueness of
global minimizers of generalized Tikhonov-Phillips functionals with penalizers given by convex
spatially-adaptive combinations ofL2 and isotropic and anisotropicBV type. Open problems
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were discussed and results to signal and image restoration problems were presented. These
results are consistent with the intuitive foundations uponwhich the new methods are based,
and they show a significant improvement in their performancewith respect to the traditional
methods.
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