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Abstract. Mathematical models are fundamental tools to analize and predict the behaviour of dynami-
cal processes arising in different disciplines. To ensure a reliable numerically simulated data we need to
choose a model that reflects the dynamics together with a suitable set of parameter values. In this work
we focus on experimental design techniques for the parameter estimation of the Baranyi bacterial growth
model. We present a new criterion for selecting data leading to an accurate estimation of parameters
based on the incremental generalized sensitivity functions. We conduct several numerical experiments
to compare the performance when data is uniformly distributed along time with classical optimal design
methods and the new technique. For each data selection we perform the parameter estimation, calculate
relative errors and compute confidence intervals. We show some typical results. The numerical exper-
iments indicate that the new criterion can be used to obtain a good estimation with few measurements.
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1 INTRODUCTION

In a series of recent works (Banks et al., 2007, 2010, 2011; Banks and Rehm, 2013b,a),
several authors have developed a design framework based on the Fisher information matrix
(FIM) for a system of differential equations to determine when and where an experimenter
should take samples and what variables to measure in collecting information on a physical or
biological process that is modeled by a vector dynamical system. This framework has also been
proposed in inverse problem methodologies in the context of dynamical system or mathematical
model parameter estimation when a sufficient number of observations of one or more states
(variables) are available. Experimental designs using the FIM, based on sensitivity (traditional
and generalized) matrices, are described in Banks et al. (2010) for the case of scalar data.
In Banks et al. (2011), the authors develop an experimental design theory using the FIM to
identify optimal sampling times for experiments on physical processes modeled by an ordinary
differencial equation, in which scalar or vector data are taken. The methodology can be readily
applied to problems involving ordinary, partial and delay differential equations but requires
both a mathematical model and a statistical model. These ideas were successfully applied in
Banks and Rehm (2013b) for an experimentally validated six-compartment HIV model and a
thirty-eight dimensional enzyme kinetics model of the Calvin Cycle in spinach. In Banks et al.
(2013a) and Banks et al. (2013b) numerical results for a distributed parameter system in a 3D
one-layer spherical domain are presented.

The problem of modelling the growth of bacteries is of great interest in microbiology, in
particular in relation with microorganisms in food (Buchanan, 1995; Skinner and Larkin, 1994;
McMeekin et al., 1997). The logistic and Gompertz models and their variants have been fre-
cuently used for this kind of problem (McMeekin et al., 1993; Peleg, 1997; Vadasz et al., 2001;
Verhulst, 1838; Virene, 1968; Zwietering et al., 1990). Among the mathematical models in-
troduced in the literature for bacterial growth problems we can mention Hutchinson model
(Hutchinson, 1948), Gibson model (Gibson et al., 1987) and Baranyi’s model (Baranyi et al.,
1993; Baranyi and Roberts, 1995, 1994). The latter is a dynamical model that combines the
logistic and the Michaelis-Menten’s models and it approximates the time evolution of bacterial
population with great precision (Baranyi et al., 1993). Moreover, it can be easily modified when
environmental conditions vary over time (Baranyi et al., 1995). For this reason Baranyi model
is widely used to describe this kind of processes (George et al., 1996; McClure et al., 1997).

In this paper we numerically study different data selection methods and their influence on
the estimation of the Baranyi modeling parameters. We present a new criterion for collecting
data based on the incremental generalized sensitivity functions. We conduct several numerical
experiments considering data uniformly distributed along time and classical optimal design
methods and the new sampling technique. For each data selection we perform the parameter
estimation, calculate relative errors and compute confidence intervals. We show typical results
and state some conclusions.

2 MATHEMATICAL ASPECTS

2.1 Baranyi bacterial growth model

A well known and widely used mathematical model of the bacterial population growth is the
Baranyi model (see Baranyi et al. (1993)). It combines the logistic and the Michaelis-Menten
models to obtain an equation for y(t) = ln(x(t)), the logarithm of the cell concentration x(t)
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(in CFU/ml) at time t, given by

y(t) = y0 + µmaxt+
ln(e−νt + e−h0 − e−νt−h0)

µmax
(1)

− 1

m
ln
(

1 +
emµmaxt+ln(e−νt+e−h0−e−νt−h0 )/µmax − 1

em(ymax−y0)

)
,

where ymax = ln(tmax) and y0 = ln(t0), being t0 and tmax the initial and the asymptotic values
of cell concentration, respectively; µmax is the maximum specific growth rate, m and ν are the
curvature parameters to characterize the transition from and to, respectively, the exponential
phase; and h0 is a dimensionless parameter that indicates the initial physiological state of the
cells.

As suggested in Baranyi and Roberts (1995), m and ν are taking to be ν = µmax and m = 1.
The number of modeling parameters is then reduced to four, µmax, h0, y0 and ymax. Thus, the
equation becomes

y(t) = y0 + µmaxt+ g(t, h0, µmax)− ln

(
1 +

eµmaxt+g(t,h0,µmax) − 1

eymax−y0

)
, (2)

where g. (t, h0, µmax) = ln(e−µmaxt+e−h0−e−µmaxt−h0 )
µmax

.
We denote by θ the vector of modeling parameters to be estimated in equation (2) , that is,

θ = (µmax, h0, y0, ymax) ∈ R4.
In Grijspeerdt and Vanrolleghem (1999), identifiably properties of the Baranyi model were

investigated. The authors proved that the model is structurally identifiable, which means that
noiseless data determine unique parameter values. They also proved that it has acceptable
practical identifiably in the presence of realistic data. Using a D-optimal design criterion they
showed that there are four optimal sampling regions that provide valuable information in order
to perform the estimation.

2.2 Inverse problem formulation

We suppose that there exists a real-valued vector θ0 such that the equation (2) exactly de-
scribes the process and consider the corresponding parameter estimation problem, which con-
sists in estimating the unknown true parameter θ0 from given data.

Since in real experiments the procedure to collect data contains uncertainty and error, a
statistical model is neccesary to study and implement inverse problem techniques properly.
Regarding the statistical model, we consider.

U(t, θ0) = y(t, θ0) + E(t), t ∈ [0, T ],

where E is a vector random process that represents the observation error for the measured vari-
ables. The outputs of the system are realizations of this stochastic process and can be written
as

u(t, θ0) = y(t, θ0) + ε(t), t ∈ [0, T ].

We suppose that the additive noise ε1, .., εn are independent realizations of a centered normal
random variable with variance σ2. In this context the inverse problem consists in the estimation
of the unknown parameter θ0 from

uj(θ0) := y(tj, θ0) + εj , j = 1, .., n.
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The parameter value θ0 may be estimated by a least square (LS) procedure yielding to θ̂, that is,

θ̂ = arg min
θ∈A

JΛ(θ), (3)

where A is the set of admissible parameter values, Λ = {t1, .., tn} the set of observation times,
and JΛ(θ) denotes the sum of the square errors between the measured data and the simulated
outputs at the observation points, namely

JΛ(θ) =
n∑
j=1

|y(tj, θ)− uj(θ0)|2. (4)

We remark that θ̂ is a realization of a random variable Θ̂ that, under suitable hypothesis, Θ̂
has asymptotically normal distribution (see, for instance, Banks et al. (2014); Seber and Wild
(2003))

Θ̂ ∼ N(θ0, (σ
2F (t1, ..., tn, θ0))−1), (5)

where F (t1, ..., tn, θ) ∈ R4×4 is the Fisher information matrix whose ij-th entries are defined
by

Fij(t1, ..., tn, θ) =
n∑
k=1

∂u

∂θi
(tk, θ)

∂u

∂θj
(tk, θ). (6)

The partial derivatives
∂u

∂θj
(tk, θ) are the (traditional) sensitivity functions that, assuming smooth-

ness on u, quantify the variations in u with respect to changes in the j-th component of θ. A
precise discussion on the hypothesis and the approximations involved in the above statements
is given in Banks et al. (2014). For the model we consider, the sensitivities of u with respect to
θj, j = 1, ..., p, that we plot in Figure 1, can be easily computed from the equation (2).
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Figure 1: Sensitivity functions ∂u
∂θj

(tk, θ0) for the Baranyi model.

Different choices of the instants t1, . . . , tn ∈ Λ might lead to different estimates. In conse-
quence it is important to look for a set of observation points that will lead to accurate parameter
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estimations. This is the purpose of the optimal design methods. In this work we choose the set
Λ = {t1, . . . , tn} based on four different criteria: uniformly distributed in [0, T ], the D-optimal
and SE-optimal designs and a new criterion based to the incremental generalized sensitivity
functions (defined below).

2.2.1 Generalized and Incremental Generalized Sensitivity Functions

The GSF were introduced in Thomaseth and Cobelli (1999) to analyze the information con-
tent in a data set with respect to model parameters. It was meant to understand how the es-
timation of model parameters is related to observed system output. In that work, the authors
introduce the GSF along with the incremental generalized sensitivity Functions (IGSF). Their
definitions are related and both were introduced for a dynamical system as discrete functions
defined on a finite set of observations at some time instants.

Definition 2.1 (Thomaseth and Cobelli, 1999) Consider a nonlinear parametric dynamical sys-
tem

ẏ(t, θ) = f(t, y, θ) (7)

where θ ∈ Rp, y, f,∈ RN , together with a set of observations u1(θ), .., un(θ) of the form

uj(θ) = y(tj, θ) + ej, j = 1, ..., n (8)

where the ej,∈ R are realizations of i.i.d. random variables with fixed variance σ2. The GSF
at tk, k = 1, ..., n, is the vector gs(tk) = (gs1(tk), .., gs`(tk), ..., gsp(tk)) ∈ Rp given by

gs(tk) =
1

σ2

k∑
j=1

[F−1∇θu(tj, θ0)]�∇θu(tj, θ0), k = 1, ..., n. (9)

The vector of incremental generalized sensitivity functions (IGSF) at tk, k = 1, ..., n, is defined
by

igs(tk) =
1

σ2
[F−1∇θu(tk, θ0)]�∇θu(tk, θ0). (10)

In these expressionsF is the corresponding p×p Fisher information matrix, F = F (t1, ..., tn, θ),
and the symbol "�" represents element-by-element vector multiplication.

We point out that `-th component of igs(tk), is given by

igs`(tk) =
1

σ2
[F−1∇θu(tk, θ0)]`

∂u

∂θ`
(tk, θ0) (11)

and, for the sake of simplicity, we have omitted the dependence of the vector functions gs and
igs on t1, ..., tn and θ0.

Note that the gs and igs are defined only at a set of discrete time points t1, ..., tn at which
measurements are taken. In the case of the GSF, the value for each tk, k = 1, ..., n, involves all
the contributions of those measurements up to and including tk. On the other hand, the IGSF at
tk for a given parameter `, i.e. igs`(tk), measures the contribution provided by the information
at the tk-th observation over t1, · · · , tn.
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2.3 Optimal Design Techniques

In practical experiments it is important to avoid running the experiment many times to reduce
costs and invasive procedures. Thus, it is useful to have some criteria to determine when or
where the measurements should be taken. This is the goal of the optimal design techniques: to
look for a set of observation points yielding to accurate estimates.

Different criteria give rise to different sets of observation instants. In general, optimal design
methods choose a sampling distribution by minimizing a specific cost function.

In view of the asymptotic distribution given in (5)-(6) it is natural to select ti that minimize
a function of the Fisher matrix F (t1, .., tn, θ0) (see Banks et al. (2007, 2010)). In this work we
consider four sets of n points {t1, . . . , tn} following different criteria:

• Uniform: Uniformly distributed points in [0, T ], i.e.

ΛU := {tunifi = (i− 1)
T

n− 1
, i = 1, · · · , n}.

• D-optimal design: The n points that minimize det F (t1, ...tn, θ)
−1,

ΛD := {tD1 , ...tDn } = arg max
t1,··· ,tn

det F (t1, · · · , tn, θ)−1.

Geometrically, it corresponds to minimize the volume of the confidence ellipsoid for the
covariance matrix Cov = σ2F−1.

• SE-optimal design: The n points that minimize the standard errors

ΛSE := {tSE1 , ...tSEn } = arg max
t1,··· ,tn

=
∑
i

(F (t1, ...tn, θ)
−1)ii.

• IGS-Design: We propose a design based on the highest values of each IGSF given in

equation (11) and the sensitivity functions
∂u

∂θj
(tk, θ).

For this problem, we select the n points as follows. First, we define a fine grid on [0, T ]
as a domain for each IGSF. Then we take the m = [n/4] highest values of each igs`, ` =
2, 3, 4,

{tIGS2
1 , · · · , tIGS2

m } = arg max
t1,··· ,tm

igs2(t1, · · · , tm),

{tIGS3
1 , · · · , tIGS3

m } = arg max
t1,··· ,tm

igs3(t1, · · · , tm),

{tIGS4
1 , · · · , tIGS4

m } = arg max
t1,··· ,tm

igs4(t1, · · · , tm).

Finally, we choose the remaining nm = n− 3m based on igs1,

{tIGS1
1 , · · · , tIGS1

nm } = arg max
t1,··· ,tnm

igs1(t1, · · · , tnm).

Therefore, the set becomes

ΛIGS = {tIGS1
1 , · · · , tIGS1

nm , tIGS2
1 , · · · , tIGS2

m , tIGS3
1 , · · · , tIGS3

m , tIGS4
1 , · · · , tIGS4

m }.
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Note that nm > m, thus we take more data based igs1, the IGSF for the first parameter,
µmax. This is due to the fact that the highest sensitivity corresponds to θ(1) = µmax, as it
can be seen in Figure 1.

For the sake of simplicity, from here on we refer to this set as

ΛIGS = {tIGS1 , · · · , tIGSn }.

These sampling criteria lead to different sets ΛU , ΛD, ΛSE and ΛIGS , and, possibly, different
estimates of θ0, denoted by θ̂D, θ̂SE , θ̂U and θ̂IGS , respectively.

Notice that, since θ0 is unkown, we must use an initial guess θg to calculate the FIM, and
hence, to calculate the sets of observation points as explained above. The same initial guess
used for the calculation of FIM is be used to perform the LS minimization.

3 NUMERICAL EXPERIMENTS

The numerical results that we present in this section correspond to θ0 = (0.4, 0.1, 2, 10) and
θg = (0.5, 0.08, 1.5, 8).

In order to be able to compare the different estimations, we numerically simulate noisy data
uj(θ0), j = 1, . . . , n, in [0, 50] and randomly generate the perturbations ej ∈ N(0, σ2) where
σ ∈ {0.5, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}. Figure 2 show the simulated Baranyi curve as a func-
tion of time for ej ∈ N(0, 0.32).
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0
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Figure 2: Simulated Baranyi Data for θ0 = (0.4, 0.1, 2, 10) and σ = 0.3.

We calculate four data sets ΛU , ΛD, ΛSE and ΛIGS as described in the previous section, for
n = 5, · · · , 12. Then, for each data set, we estimate the vector parameter θ = (µmax, h0, y0, ymax)
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for the Baranyi model given by the equation (2). The estimations are obtained by minimizing
the sum of the square errors,

JΛ(θ) =
n∑
j=1

|y(tj, θ)− uj(θ0)|2,

where initially θ = θg. A vector parameter estimation is obtained for each data set y(tj, θ), j =
1, . . . , n.

We repeat these procedures K times by generating a new set of perturbations ε1, . . . , εn each
time. Then we average the results to obtain estimates θ̂unif , θ̂D, θ̂SE , θ̂IGS .

For instance, for n = 5, σ = 0.35 and K = 10 we obtain

θ̂unif = (0.4775, 2.9923, 2.0830, 10.0773)

θ̂D = (0.4175, 0.1817, 1.8440, 10.0888)

θ̂SE = (0.3770, 0.1232, 1.8311, 10.0782)

θ̂IGS = (0.3845, 0.0284, 1.8363, 10.1094)

as estimates for θ0 = (0.4, 0.1, 2, 10). Figure 3 show the bacterial growth populations simulated
by using these results. The same color code is used in all figures presented here: blue for
uniform, red for D-optimal, green for IGS and magenta for SE-optimal.
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Figure 3: Simulated curves with the different parameter values. Solid black: θ = θ0 and σ = 0.35. Dashed black:
θ = θg , Blue: θ = θ̂unif , Red: θ = θ̂D, Green: θ = θ̂IGS , Magenta: θ = θ̂SE . The colored stars show the
corresponding time instant in ΛU , ΛD, ΛIGS and ΛSE .

We compute the relative errors ejunif , ejD, ejSE , ejIGS , j = 1, .., K for the modeling parameters
µmax, h0, y0, ymax:

ejdesign(µmax) :=
‖θ̂jdesign(1)− θ0(1)‖

‖θ0(1)‖
, ejdesign(h0) :=

‖θ̂jdesign(2)− θ0(2)‖
‖θ0(2)‖

,
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ejdesign(y0) :=
‖θ̂jdesign(3)− θ0(3)‖

‖θ0(3)‖
, ejdesign(ymax) :=

‖θ̂jdesign(4)− θ0(4)‖
‖θ0(4)‖

,

and we average them

ēdesign(θ(`)) =
1

K

K∑
j=1

ejdesign(θ(`)), ` = 1, · · · , 4. (12)

Figures 4, 5, 6, 7 show the mean relative errors when K = 10 for n = 5, . . . , 12 and
σ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 for the different sampling designs.
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Figure 4: Mean relative errors for θ(1) = µmax vs. n for σ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35.
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Figure 5: Mean relative errors for θ(2) = h0 vs. n for σ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35.
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Figure 6: Mean relative errors for θ(3) = y0 vs. n for σ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35.
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Figure 7: Mean relative errors for θ(4) = ymax vs. n for σ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35.

3.1 Statistical Analysis of the Estimations

To compare the statistical relevance of θ̂unif , θ̂D, θ̂SE and θ̂IGS , we compute the confidence
intervals (CI). We first generate four sets of simulated observations {ui,unif}1≤i≤n, {ui,D}1≤i≤n,
{ui,SE}1≤i≤n, {ui,IGS}1≤i≤n using the sets of observation points Λunif , ΛD, ΛSE , ΛIGS respec-
tively. The estimated variances σ̂2

unif , σ̂2
D, σ̂2

SE , σ̂2
IGS are computed as

σ̂2
design =

1

n− 4

n∑
i=1

(
ui,design − u(tdesigni , θ̂design)

)2

.

The standard errors SE(θ̂unif ), SE(θ̂D), SE(θ̂SE), SE(θ̂IGS) ∈ R4 are then defined as

SE2
` (θ̂design) = σ̂2

design

(
F
(
tdesign1 , . . . , tdesignn ; θ̂design

)−1)
``
,

where ` = 1, . . . , 4.
The approximated CI at the 100(1 − α)% level for the `-th component of θ0 corresponding

to θ̂unif , θ̂D, θ̂SE and θ̂IGS are then[
θ̂design,` − t1−α/2 SE`(θ̂design) , θ̂design,` + t1−α/2 SE`(θ̂design)

]
(13)

where t1−α/2 is the t-score that has cumulative probability of α/2 for the Student’s t distribution
with n− 1 degrees of freedom.

Figure 8 show the CI at the 90% level when σ = 0.3. The horizontal solid black and dashed
cyan lines correspond to the true and the initial guess values of the parameter, respectively. The
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blue, red, magenta and green vertical segments correspond to the CI for the uniform, D, SE and
IGS estimators, respectively, for n = 6, · · · , 12.
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Figure 8: Confidence interval for each parameter vs. n for σ = 0.3. Solid black: True value, dashed cyan: guess
value red, magenta and green: CI for uniform, D, SE and IGS methods, respectively.

4 CONCLUSIONS

In this work, we consider a model introduced by Baranyi to describe the growth of a bacteria
population with the purpose of analyzing the performance of different optimal desing tech-
niques for parameter estimation.
We numerically simulate noisy data in the time interval [0, 50]. We choose n observation in-
stants before performing the estimation following four different criteria: uniformly distributed
instants in [0, 50], D-optimal and the SE-optimal design techniques, and a new criterion, intro-
duced here, based on the incremental generalized sensitivity functions. In order to measure the
accuracy of the estimations we compute the relative errors and the confidence intervals of the
estimators. From the numerical experiments we conclude that, in all cases the length of the
confidence intervals as well as the mean relative error do not decrease significantly for n > 8.
The D-optimal design technique and the IGS provide a set observations points, that in general,
lead to a more accurate estimation. The relative errors as well as the length of the confidence
interval are smaller when we select the observation instants following these two criteria and we
remark that the calculations that are neccesary to implement the IGS are easier than the ones
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associated to the D-optimal. In the case of IGS the optimization is performed over a finite set
of points while the D-optimal design requires the optimization over the interval of interest and
an initial set of points.

The results obtained encourage us to explore more deeply this new IGS design and its appli-
cation to other problems of modeling parameter estimations.
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