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Abstract. In many cases hydrocarbon reservoirs present fractures oriented in preferential directions,
which in turn govern fluid flow and reservoir production. This type of reservoirs behaves as anisotropic
media in the seismic range of frequencies. In this work we present a collection of finite element harmonic
experiments to determine at the macroscale a vertical transversely isotropic viscoelastic equivalent to the
hydrocarbon reservoir, which at the mesoscale is described as a fracture fluid-satured porous medium.
Each harmonic experiment is associated with a compressibility or shear test, defined as a boundary value
problem with appropriate boundary conditions. The symmetry axis can be changed using an appropriate
Bond matrix. This approach allows to represent different scenarios of geophysical interest combining
numerical rock physics with wave propagation simulations in the subsurface and wells. In particular,
using amplitude versus offset (AVO) simulations, it is possibly to infer fracture densities, presence of
different fluids and reservoir permeability among others.
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1 INTRODUCTION

Naturally fractured reservoirs have received interest in recent years in hydrocarbon explo-
ration geophysics, since, generally, natural fractures control the permeability of the reservoir.

A dense set of horizontal fractures in a fluid-saturated poroelastic medium behaves as a ver-
tically transversely isotropic (VTI) medium when the average fracture distance is much smaller
than the predominant wavelength of the traveling waves. This leads to frequency and angu-
lar variations of velocity and attenuation of seismic waves. A planar fracture embedded in a
fluid saturated poroelastic background medium can be modeled as a extremely thin and com-
pliant porous layer. P-waves traveling in this type of medium induce fluid-pressure gradients at
fractures and mesoscopic-scale heterogeneities, generating fluid flow and slow (diffusion) Biot
waves, causing attenuation and dispersion of the fast modes (mesoscopic loss). A poroelastic
medium with embedded aligned fractures exhibits significant attenuation and dispersion effects
due to this mechanism, which can properly be represented at the macroscale with an equivalent
VTI medium.

The work by White et al. (1975) was the first to introduce the mesoscopic-loss mechanism
in the framework of Biot theory considering porous and thin plane layers. Next, Gelinsky
and Shapiro (1997) obtained the relaxed and unrelaxed stiffnesses of the equivalent poro-
viscoelastic medium to a finely layered horizontally homogeneous material. Later, Krzikalla
and Müller (2011) combined the two previous models assuming that fluid flow is perpendicular
to the layering plane and independent of the loading direction; they obtained the five complex
and frequency-dependent stiffnesses of the equivalent TIV medium.

In this work, we apply a set of compressibility and shear harmonic finite-element (FE) ex-
periments on fractured highly heterogeneous poroelastic samples to determine the five complex
and frequency dependent stiffnesses characterizing the equivalent medium.

We also present a brief description of different anisotropic media and the necessary equations
to transform an anisotropic symmetry in another, particularly from VTI to HTI (horizontally
transversely isotropic) media. Synthetic seismograms are computed by a domain decomposition
method combined with a frequency domain FE method. This numerical procedure has already
been applied to wave propagation in 2D and 3D media and to different rheological equations.

2 SEISMIC ANISOTROPY

In Seismic, the property of a wave to propagate with a velocity that does not depend on
direction is called isotropy. Moreover, elastic media where seismic velocities depend on the
direction of wave propagation at some physical points, are called anisotropic. In contrast, a
velocity dependence on the spatial location x, is called heterogeneity. It can be said that ordered
heterogeneity on microscale results in anisotropy on macroscale.

The anisotropic phenomena are diverse and difficult to classify. Anisotropy is mainly caused
by the presence of shales and oriented fractures in the subsurface. It also could be caused by
fine layering, but that case usually plays a subsidiary role.

There are different symmetry classes in anisotropic mediums and all of them are described
by the stiffness matrix. This matrix is indeed a fourth-rank tensor that relates the displacement
tensor and the stress tensor through Hooke’s law:

σij = pijklekl, (i, j = 1, 2, 3). (1)
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It is possible to replace a pair of indexes ij with a single index I , according to Voigt’s notation
and write Hooke’s law in a matrix (as opposed to tensorial) form:

σI = pIJeJ , (I = 1, .., 6). (2)

In the present work, transverse isotropy (TI) is used and is the most commonly symmetry
used in seismic data processing and velocity-model building. There are several reasons for
this: TI es geologically plausible (natural causes are shales and fine layering) and TI media are
characterized by relatively few independent stiffness coefficients. Only three combinations of
those stiffnesses are needed to describe P-wave traveltimes.

By definition, TI solids have a symmetry axis and are invariants with respect to any rotation
around this axis. Therefore it is convenient to describe them in a coordinate frame whose one
axis coincides with the axis of rotational symmetry. Media possessing rotational symmetry
around the vertical are called vertically transversely isotropic (VTI).

Figure 1: VTI (a), HTI (b)

The VTI stiffness tensor is:

P =


p11 p12 p13 0 0 0
p12 p11 p13 0 0 0
p13 p13 p33 0 0 0
0 0 0 p55 0 0
0 0 0 0 p55 0
0 0 0 0 0 p66

 (3)

Where:

p11 = p12 + 2p66 (4)
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VTI media (and more generally TI media) are characterized by five independent stiffness
coefficients. If the symmetry-axis direction of a TI medium deviates from the vertical, such a
medium is called tilted transversely isotropic (TTI). TI media with a horizontal symmetry axis
have a special name. They are called horizontally transversely isotropic (HTI). Their signif-
icance is in providing the simplest model for anisotropy caused by vertical cracks. In a later
section, will be seen that stiffness matrix for an HTI media can be found from a VTI stiffness
matrix by performing appropriate rotations of the reference system.(See Fig. 1)

3 THE BIOT MODEL, EQUIVALENT MEDIUM AND SEISMIC PROPERTIES

Let us consider isotropic fluid-saturated poroelastic layers and let us(x) = (us1, u
s
2, u

s
3) and

uf (x) = (uf1 , u
f
2 , u

f
3) indicate the time Fourier transform of the displacement vector of the solid

and fluid relative to the solid frame, respectively. Here, if Uf denotes the fluid displacement
vector, uf = φ(Uf − us), where φ is the porosity.

Set u = (us,uf ) and let σ(u) and pf (u) denote the time Fourier transform of the total stress
and the fluid pressure, respectively, and let e(us) be the strain tensor of the solid phase. On
each plane layer n in a sequence of N layers, the frequency-domain stress-strain relations are
Carcione (2007)

σkl(u) = 2µ ekl(u
s) + δkl

(
λ

G
∇ · us + αM∇ · uf

)
, (5)

pf (u) = −αM∇ · us −M∇ · uf . (6)

The coefficient µ is the shear modulus of the bulk material, considered to be equal to the shear
modulus of the dry matrix. The other coefficients in (5)-(6) can be obtained from the relations
Carcione (2007)

λG = KG −
2

3
µ, KG = Km + α2M, (7)

α = 1− Km

Ks

, M =

(
α− φ
Ks

+
φ

Kf

)−1

,

where Ks, Km and Kf denote the bulk moduli of the solid grains, dry matrix and saturant fluid,
respectively.

Denoting by ω = 2πf the angular frequency, Biot’s equations of motion in the diffusive
range, stated in the space-frequency domain, are

∇ · σ(u) = 0, (8)
iωη

κ
uf +∇pf (u) = 0, (9)

where η is the fluid viscosity and κ is the frame permeability.

Let us consider x1 and x3 as the horizontal and vertical coordinates, respectively,
Gelinsky and Shapiro (1997) showed that the medium behaves as a TI medium with the ver-
tical symmetry axis at long wavelengths. They obtained the relaxed and unrelaxed limits, i.e.,
the low- and high-frequency limit real-valued stiffnesses, respectively. At all frequencies, the
medium behaves as an equivalent VTI medium with complex and frequency-dependent stiff-
nesses, pIJ , I, J = 1, . . . , 6. For the case of flow normal to the fracture layering and inde-
pendent of the loading direction, these complex stiffnesses can be determined as presented by
Krzikalla and Müller (2011) and Carcione et al. (2011).
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Denoting by τ the stress tensor of the equivalent VTI medium and by ε the solid strain
tensor at the macroscale, the corresponding stress-strain relations, stated in the space-frequency
domain, are Carcione (1992, 2007)

τ11(u) = p11 ε11(us) + p12 ε22(us) + p13 ε33(us), (10)
τ22(u) = p12 ε11(us) + p11 ε22(us) + p13 ε33(us), (11)
τ33(u) = p13 ε11(us) + p13 ε22(us) + p33 ε33(us), (12)
τ23(u) = 2 p55 ε23(us), (13)
τ13(u) = 2 p55 ε13(us), (14)
τ12(u) = 2 p66 ε12(us). (15)

Here, we have assumed a closed system, for which the variation of fluid content ζ = −∇ · uf
is equal to zero. This formulation provides the complex velocities of the fast modes at the
macroscale and takes into account interlayer flow effects.

The coefficients pIJ in (10)-(15) can be determined by applying five compressibility and
shear harmonic FE tests to a representative 2D sample of the fractured poroelastic material.
These tests are associated with boundary value problems for Biot’s equations (8) stated in the
space-frequency domain. The different boundary conditions represent the following virtual
experiments Carcione et al. (2011):

1. A compressibility test in the parallel direction to the fracture layering to determine p11.

2. A compressibility test in the normal directions to the fracture layering to determine p33.

3. A test applying simultaneous compressions in both, the normal and parallel directions to
the fracture layering to determine p13.

4. A shear test applied in the (x1, x3)-plane to determine p55.

5. A shear test in the (x1, x2) plane to determine p66.

Regarding the spatial discretization, the computational domain was partitioned uniformly
into square cells of side length h.

The FE spaces employed to represent each component of the solid displacement vector us are
locally bilinear functions which are globally continuous. The local degrees of freedom (DOF’s)
are the values of the components of us at the four corners of the computational cells.

On the other hand, the relative fluid displacement uf was represented using the vector part
of the Raviart-Thomas FE space of zero order Raviart and Thomas (1975). The local DOF’s are
the values of the normal component of uf at the mid points of the faces of the computational
cells.

The arguments presented in Santos et al. (2009) can be applied here to show that the error of
the FE procedure is of the order of h1/2 in the energy norm and of the order h in the L2-norm.

For a detailed description of the FE tests used in this work, we refer to Carcione et al. (2011),
where the model for these stiffnesses proposed by Krzikalla and Müller (2011) was employed
to validate the procedure.
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The complex velocities of the equivalent TIV anisotropic medium are Carcione (2007)

vqP = (2ρ̄)−1/2
√
p11l21 + p33l23 + p55 + A,

vqSV = (2ρ̄)−1/2
√
p11l21 + p33l23 + p55 − A,

vSH = ρ̄−1/2
√
p66l21 + p55l23,

A =
√

[(p11 − p55)l21 + (p55 − p33)l23]2 + 4[(p13 + p55)l1l3]2,

where ρ̄ = 〈ρ〉 is the thickness weighted average of the bulk density, l1 = sin θ and l3 = cos θ
are the directions cosines, θ is the propagation angle between the wavenumber vector and the
x3-symmetry axis and the three velocities correspond to the qP, qS and SH waves, respectively.
The seismic phase velocity and quality factors are given by

vp =

[
Re

(
1

v

)]−1

and Q =
Re(v2)

Im(v2)
, (16)

where v represents either vqP, vqSV or vSH.

The energy-velocity vector ve of the qP and qSV waves is

ve
vp

= (l1 + l3 cotψ)−1ê1 + (l1 tanψ + l3)−1ê3, (17)

with ψ being the angle between the energy-velocity vector and the x3-axis Carcione (2007),
while the energy velocity of the SH wave is Carcione (2007)

ve =
1

ρ̄vp
(l1p66ê1 + l3p55ê3) . (18)

The FE procedures described above were implemented in FORTRAN language and run in
the SUN workstations of the Department of Mathematics at Purdue University. This approach
yields the five complex stiffnesses pIJ as a function of frequency and the corresponding phase
velocities and dissipation coefficients. For each frequency, the five discrete problems associated
with the harmonic compressibility and shear tests were solved using a public domain sparse
matrix solver package. This approach yields directly the frequency dependent velocities and
dissipation coefficients, instead of solving Biot’s equation in the space-time domain and using
Fourier transforms to obtain the desired frequency domain characterization at the macroscale.

In all the experiments the numerical samples were discretized using a 160 × 160 uniform
mesh representing 10 periods of 15 cm background sandstone and 1 cm fracture thickness.
Both background and fractures have grain density ρs = 2650 kg/m3, bulk modulus Ks = 37
GPa and shear modulus µs = 44 GPa.

The dry bulk and shear modulus of the samples were determined using the model given by
Krief et al. (1990),

Km

Ks

=
µ

µs
= (1− φ)3/(1−φ). (19)
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4 TRANSFORMATION PROPERTIES OF THE STIFFNESS MATRIX IN ANISOTROPIC
MEDIA

4.1 Rotation

In the current seismic terminology, a transversely isotropic medium has the symmetry axis
along the vertical direction, i.e., the z-axis,as it was presented in expressions (3) and (4).

By performing appropriate rotations of the coordinate system, the medium may become
azimuthally anisotropic. The displacement vector ui and the strain and stress tensor εij , σij
must be transform too.

If the transformation matrix is:

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (20)

the new tensors will be:

ε′ = Nε

σ′ = Mσ

where M and N are called Bond matrices and have the form:

N =


a2

11 a2
12 a2

13 a12 a13 a13 a11 a11 a12

a2
21 a2

22 a2
23 a22 a23 a23 a21 a21 a22

a2
31 a2

32 a2
33 a32 a33 a33 a31 a31 a32

2 a21 a31 2 a22 a32 2 a23 a33 a22 a33 + a23 a32 a21 a33 + a23 a31 a22 a31 + a21 a32

2 a31 a11 2 a32 a12 2 a33 a13 a12 a33 + a13 a32 a13 a31 + a11 a33 a11 a32 + a12 a31

2 a11 a21 2 a12 a22 2 a13 a23 a12 a23 + a13 a22 a13 a21 + a11 a23 a11 a22 + a12 a21

 ,

(21)

M =


a2

11 a2
12 a2

13 2 a12 a13 2 a13 a11 2 a11 a12

a2
21 a2

22 a2
23 2 a22 a23 2 a23 a21 2 a21 a22

a2
31 a2

32 a2
33 2 a32 a33 2 a33 a31 2 a31 a32

a21 a31 a22 a32 a23 a33 a22 a33 + a23 a32 a21 a33 + a23 a31 a22 a31 + a21 a32

a31 a11 a32 a12 a33 a13 a12 a33 + a13 a32 a13 a31 + a11 a33 a11 a32 + a12 a31

a11 a21 a12 a22 a13 a23 a12 a23 + a13 a22 a13 a21 + a11 a23 a11 a22 + a12 a21

 .

(22)

If P is the stiffness matrix in the original system, after the rotation it results:

P′ = M ·P ·M>, (23)

where MT is the transposed matrix of M.
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For instance, by doing a rotation of an angle ψ about the y-axis:

A =

 cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 (24)

and:

M =


cos2 ψ 0 sin2 ψ 0 − sin(2ψ) 0

0 1 0 0 0 0
sin2 ψ 0 cos2 ψ 0 sin(2ψ) 0

0 0 0 cosψ 0 sinψ
1
2

sin(2ψ) 0 −1
2

sin(2ψ) 0 cos(2ψ) 0
0 0 0 − sinψ 0 cosψ

 . (25)

By using the previous results, an HTI medium can be found through a clockwise rotation by
π/2 about the y-axis,

A =

 0 0 −1
0 1 0
1 0 0

 , (26)

M =


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 −1 0 0

 , (27)

and:

P′ =


p33 p13 p13 0 0 0
p13 p11 p12 0 0 0
p13 p12 p11 0 0 0
0 0 0 p66 0 0
0 0 0 0 p55 0
0 0 0 0 0 p55

 . (28)
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4.2 Azimuthal anisotropy

By making appropriate rotations of the coordinate system, the medium may become az-
imuthally anisotropic. An example is a transversely isotropic medium whose symmetry axis is
horizontal and makes an angle θ with the x-axis. To obtain this medium, we perform a clockwise
rotation by π/2 about the Y-axis:

A =

 0 0 −1
0 1 0
1 0 0

 (29)

followed by a counterclockwise rotation by θ about the new Z-axis:

B =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (30)

The corresponding total rotation matrix is given by:

ROT = A B. (31)

The associated Bond transformation matrix is:

M =


0 sin2 θ cos2 θ sin(2θ) 0 0
0 cos2 θ sin2 θ − sin(2θ) 0 0
1 0 0 0 0 0
0 0 0 0 − sin θ cos θ
0 0 0 0 − cos θ − sin θ
0 −1

2
sin(2θ) 1

2
sin(2θ) − cos(2θ) 0 0

 , (32)

and therefore the new stiffness coefficients can be found with this matrix.

5 THE SEISMIC MODELING METHOD

The algorithm used to simulate the wavefields is the FE method in the space-frequency do-
main, where the frequency-dependent anelastic effects can be described exactly without approx-
imations Carcione et al. (2006); Carcione (2007). Let us consider a 2D volume of an anisotropic
and viscoelastic medium, Ω = [0, 1]2, with boundary Γ = ∂Ω. Let u(x, ω) denote the displace-
ment vector at the angular frequency ω. We work with an HTI media which is obtained by
applying a rotation as described in section 4.

The equation governing the motion is

−ρ(x)ω2u(x, ω)−∇ · σ[u(x, ω)] = f(x, ω), x ∈ Ω, (33)

with absorbing boundary conditions
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−σ[u(x, ω)] · ν = iω
√
ρD1/2u(x, ω), x ∈ Γ, (34)

where

D =

 p11ν
2
1 + p55ν

2
3 2(p15ν

2
1 + p35ν

2
3)

2(p15ν
2
1 + p35ν

2
3) p55ν

2
1 + p33ν

2
3

 . (35)

In equation (33), σ and f represent the stress tensor and the external-source vector, respec-
tively. The boundary Γ is transparent for normally incident waves and ν denotes the unit out-
ward vector normal on Γ. The derivation can be found in Love (1994) and Lovera and Santos
(1988).

We proceed to formulate the variational form of (33)-(34): Find u(x, ω) ∈ [H1(Ω)]2 such
that

−(ρω2u, ϕ) + (σ(u), ε(ϕ)) + iω
〈√

ρD1/2u, ϕ
〉

Γ
= (f, ϕ), ϕ ∈ [H1(Ω)]2, (36)

where ε is the strain tensor. Here (f, g) =
∫

Ω
fg∗dx and 〈f, g∗〉 =

∫
Γ
fg∗dΓ indicate the

complex [L2(Ω)]2 and [L2(Γ)]2 inner products, where “∗" denotes complex conjugate. H1(Ω)
denotes the usual Sobolev space of function in L2(Ω) with first derivatives in L2(Ω). The
arguments given in Ha et al. (2002) and Douglas et al. (1994) can be used to show that existence
and uniqueness holds for the solution of (36).

Numerical dispersion is an important aspect to be taken into account when using wave prop-
agation algorithms. It is shown in Zyserman et al. (2003) that using the nonconforming FE
spaceNCh described in Douglas et al. (1995) allows to use about half the number of points per
wavelength to achieve a desired tolerance in numerical dispersion as compared with standard
conforming bilinear elements. Thus, we will employ the FE space NCh described below to
compute an approximate solution of (36).

Let τh be a quasi-regular partition of Ω̄ such that Ω̄ = ∪Jj=1Ωj with Ωj being rectangles of
diameter bounded by h. Set Γj = ∂Ω ∩ ∂Ωj and Γjk = Γkj = ∂Ωj ∩ ∂Ωk; we denote by ξj and
ξjk the centroids of Γj and Γjk, respectively. Consider the reference rectangular element

R = [−1, 1]2, S(R) = Span

{
1, x, z,

(
x2 − 5

3
x4

)
−
(
z2 − 5

3
z4

)}
.

The degrees of freedom associated with S are the values at the mid points of the faces of R.

For example, if a1 = (−1, 0), a2 = (0,−1), a3 = (1, 0) and a4 = (0, 1), the basis function
ψ1(x, z) = 1

4
− 1

2
x − 3

8

[
(x2 − 5

3
x4)− (z2 − 5

3
z4)
]

is such that ψ1(a1) = 1 and ψ1(aj) = 0,
j = 2, 3, 4.

Then,

NCh = {ϕ ∈ [L2(Ω)]2 : ϕj ∈ [S(Ωj)]
2, ϕj(ξjk) = ϕk(ξjk)∀j, k},

where ϕj denotes the restriction of ϕ as seen from Ωj . Now the global nonconforming
approximation uh to the solution u of (36) can be stated as follows: Find uh ∈ NCh such that

−(ρω2uh, ϕ) +
∑
j

(σ(uh), ε(ϕ))Ωj
+ iω

〈√
ρD1/2uh, ϕ

〉
Γ

= (f, ϕ), ϕ ∈ NCh. (37)
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It can be shown (see Ha et al. (2002) for the isotropic case) that for h sufficiently small the
error associated with the global procedure (37) is of order h2 in the L2-norm and of order h in
the broken H1-energy norm.

Note that (37) is a noncoercive elliptic Helmholtz-type problem, so that the usual iterative
procedures like preconditioned conjugate gradient iterative algorithms can not be used. Con-
sequently, to solve the algebraic problem associated with the global nonconforming procedure
(37), we will employ the iterative domain decomposition procedure described below.

Remark: In addition to the low numerical dispersion properties of the space NCh, one of
the main advantages of using nonconforming elements to solve wave propagation phenomena
in parallel architectures is that the amount of information exchanged in a domain decomposi-
tion iterative procedure is reduced by half as compared to the case when conforming elements
are employed. Consider the decomposed problem over Ωj satisfying equation (33) in Ωj , the

boundary condition

−σ[uj(x, ω)] · ν = iω
√
ρD1/2uj(x, ω) , x ∈ Γj,

and the interface consistency conditions

σjkνjk + iβjkuj = −σkjνkj + iβjkuk, x ∈ Γjk ⊂ ∂Ωj,

σkjνkj + iβjkuk = −σjkνjk + iβjkuj, x ∈ Γkj ⊂ ∂Ωk,

where βjk are the components of a positive definite matrix function defined on the interior

boundaries Γjk. The iteration matrix βjk, defined on the interior interfaces Γjk can be taken to be
of the same form as the matrixD in (35) using averaged properties of the coefficients definingD
on the adjacent elements Ωj and Ωk. Since the objective of the domain decomposition technique

is to localize the calculations, we define the iterative procedure at the differential level in the
following manner: Find unj ∈ [H1(Ωj)]

2 such that

(−ρω2unj , ϕ)j +
∑
j

∑
pq

(σpq(u
n
j ), εpq(ϕ))j +

〈
iω
√
ρD1/2unj , ϕ

〉
Γj

(38)

+
∑
k

〈[σ(un−1
k )νjk + iβjk(u

n
j − un−1

k )], ϕ〉Γjk
= (f, ϕ)j, ϕ ∈ [H1(Ωjk)]

2.

To define a discrete iterative procedure we introduce a set Λh of Lagrange multipliers λhjk asso-
ciated with the stress values −σ(uj)νjk(ξjk):

Λh = {λh : λh|Γjk
= λhjk ∈ [P0(Γjk)]

2 = [Λh
jk]

2};

here, P0(Γjk) are constant functions on Γjk.

Motivated by (38), we define the following discrete domain decomposition (hybridized) it-
erative algorithm:

(1) Choose an initial guess
(
uh,0j , λh,0jk , λ

h,0
kj

)
∈ NCh

j × [Λh
jk]

2 × [Λh
kj]

2.
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(2) For all {jk}, compute
(
uh,nj , λh,njk ∈ NCh

j × Λh
jk

)
as the solution of the equations

−(ρω2uh,nj , ϕ)jk +
∑
pq

(σpq(u
h,n
j ), εpq(ϕ))jk + iω

〈〈√
ρD1/2uh,nj , ϕ

〉〉
Γj

+
∑
k

〈〈
λh,njk , ϕ

〉〉
Γjk

= (f, ϕ)j, ϕ ∈ NCh
j (39)

and
λh,njk = −λh,n−1

kj + iβjk[u
h,n
j (ξjk)− uh,n−1

k (ξjk)], on Γjk. (40)

In (39) 〈〈·, ·〉〉Γjk
denote the approximation to the (complex) inner product 〈·, ·〉Γjk

in L2(Γjk)
computed using the mid–point quadrature rule. More precisely,

〈〈u, v〉〉Γjk
= (uv∗)(ξjk)|Γjk|, (41)

where |Γjk| is the surface measure of Γjk. A similar definition holds for 〈〈·, ·〉〉Γj
, changing in

(41) ξjk and Γjk by ξj and Γj , respectively.

The argument given in Ha et al. (2002) for isotropic viscoelastic solids can be applied here
with minor modifications to show that

[uh,n − uh]→ 0 in [L2(Ω)]2 if n→∞,

so that in the limit the global nonconforming Galerkin approximation uh of (37) is obtained.

6 NUMERICAL RESULTS

The procedure described in the previous section is applied in order to model a seismic exper-
iment called AVO (Amplitude versus Offset). In this technique, it is considered the dependency
of the amplitud with the distance between the source and the receiver (offset).

The subsurface is represented by a thin HTI layer embedded between two isotropic media.
The P-wave velocity is 2230 m/s for the top layer and 3215 m/s for the layer deeper. The
anisotropic material is at a depth of 1 km and its thickness is 100 m. To analyze the type of fluid
that fills the fractures, the first experiment takes into account brine-filled fractures, being the
vertical P-wave velocity 3905 m/s and the horizontal P-wave velocity 2570 m/s. In the second
experiment, gas-filled fractures are considered and the vertical and horizontal P-wave velocity
are 3678 m/s and 1895 m/s, respectively.

The 2D domain is a square which side measures 1500 m. We use 300x300 elements. The
source is a Ricker wavelet whose principal frequency is 30 Hz and the solution is computed
for 160 frequencies in the range of interest from 0 to 80 Hz. The source and the receivers are
located at the surface, where 24 receivers are equally distributed between a minimum offset of
250 m and a maximum offset of 1350 m.

The real part of the stiffness coefficients computed were, in the brine case:
28.15 5.33 5.33 0 0 0
5.33 12.2 5.33 0 0 0
5.33 5.33 12.2 0 0 0

0 0 0 2.87 0 0
0 0 0 0 2.87 0
0 0 0 0 0 2.87

 , (42)
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and, in the gas case: 
24.34 0.66 0.66 0 0 0
0.66 6.45 0.66 0 0 0
0.66 0.66 6.45 0 0 0

0 0 0 2.87 0 0
0 0 0 0 2.87 0
0 0 0 0 0 2.87

 (43)

whose values are expressed in GPa.

The synthetic seismograms representing the vertical velocity field of the P-wave are shown
below (see Fig. 2 and Fig. 3) .The horizontal and vertical axis indicate offset and reflection
time, respectively. It can be observed that the amplitudes of the traces are different for both
experiments. The case of gas-filled fractures presents large reflectivities at all offsets for the base
of the anisotropic layer. Therefore, the numerical results are consistent with the real seismic
data.

7 CONCLUSIONS

In first place, this work has a considerable importance in computational poroelasticity, par-
ticulary in the use of Finite Element Method to solve Biot’s equations.

In this study we present a detailed description of the variational formulation of FEM equa-
tions, applied to Biot’s equations. We also introduce a brief review of concepts related with
anisotropy phenomenon.

We have used a set of numerical quasi-static harmonic experiments to determine the com-
plex and frequency dependent stiffnesses of a viscoelastic transversely isotropic homogeneous
medium equivalent to a fluid-saturated poroelastic material containing a dense set of planar frac-
tures. The numerical simulators are based on the finite-element solution of Biot’s equations in
the diffusive range with boundary conditions representing compressibility and shear tests. The
fractures are modeled as very thin highly permeable poroelastic layers of small frame moduli.

The numerical experiments consider brine-filled fractures and gas-filled fractures, represent-
ing two different cases.

As a result of these experiments, the stiffness coefficients of the medium were obtained. By
performing appropriate rotations in the coordinate system, the VTI medium was converted into
an HTI medium as well as the stiffness coefficients.

Finally, the new stiffness matrix was used to build synthetic seismograms. The modeling
methodology is based on a finite-element solution of the equations of motion in the space-
frequency domain.

The numerical results obtained are consistent with observations in real seismic data. The
theory and numerical solver proposed in this work can be applied to more complex geological
situations (lower symmetries, stochastic heterogeneities, etc.) and implemented in the process-
ing and interpretation of real seismic data for characterization purposes.
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Figure 2: The vertical velocity field of the P-wave for an anisotropic layer with brine saturated fractures.
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Figure 3: The vertical velocity field of the P-wave for an anisotropic layer with gas saturated fractures.

R. MARTINEZ CORREDOR, P.M. GAUZELLINO, J.E. SANTOS, R.S. HAWRYSZCZUK2216

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	INTRODUCTION
	SEISMIC ANISOTROPY
	THE BIOT MODEL, EQUIVALENT MEDIUM AND SEISMIC PROPERTIES
	Transformation properties of the stiffness matrix in anisotropic media
	Rotation
	Azimuthal anisotropy

	The seismic modeling method
	NUMERICAL RESULTS
	CONCLUSIONS

