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Abstract. The present work investigates the nature of the transition to turbulence in thestably stratified
mixing layer, which is a complex process with great importance for geophysical and industrial flows.
In the stably stratified mixing layer, the streamwise density gradient, which corresponds to the span-
wise component of the baroclinic torque in the Boussinesq approximation, feeds the region between
the Kelvin-Helmholtz (KH) vortices with vorticity and forms a thin vorticity layer, called baroclinic
layer. The competition between buoyancy and inertial forces modifies the dynamics of this layer. As
consequence, two different secondary instabilities are found to develop upon the baroclinic layer: one
originated near the core region of the KH vortex, called near-core instability, that propagates towards the
baroclinic layer and the other of Kelvin-Helmholtz type developed in the baroclinic layer itself. The de-
velopment of these instabilities in the baroclinic layer depends on the Richardson number, the Reynolds
number and the initial conditions. The main objective of this paper is to investigatethe occurrence of
secondary instabilities in the baroclinic layer of a three-dimensional stably stratified mixing layer using
Direct Numerical Simulation (DNS). The development of streamwise vortices and its interactions with
the secondary KH structures are focused. Typical Richardson numbers ranging from0.07 to 0.167 are
considered while the Reynolds number is kept constant (500 or 1000). White noise and forced pertur-
bation are used as initial conditions. The Navier-Stokes equations, in the Boussinesq approximation, are
solved numerically using a sixth-order compact finite difference scheme to compute the spatial deriva-
tives, while the time integration is performed with a third-order low-storage Runge-Kutta method. The
numerical results show the development of a jet in the baroclinic layer adjacent to vorticity layers of op-
posite signs. These layers are created baroclinically by convective motions inside the primary KH vortex
and amplifies the near-core instability. It is shown that this instability appears due to the formation of a
negative vorticity layer generated between two co-rotating positive vortices. The negative vorticity layer
unstables the baroclinic layer and forms small vortices of the KH type. The intensity of the negative
vorticity layer depends on the Richardson and Reynolds numbers and defines occurrence or not of sec-
ondary KH structures. Interactions between these secondary KH structures and streamwise vortices are
also observed. They strongly depend on the initial conditions.
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1 INTRODUCTION

The dynamics of the stably stratified mixing layer, mainly its transition to turbulence, is a
problem of considerable interest in fluid dynamics with applications in both geophysical sci-
ences and engineering. The turbulence prevails in most flowsof practical interest and may
strongly affect important global features of these flows. Thus, the precise description of the
instabilities that occur during the transition to turbulence and their reliable prediction are mat-
ters of primary concern in the study of a mixing layer. Recently, Direct Numerical Simulations
(DNS) have added considerably to our understanding of the dynamics of a mixing layer, since
they solve entirely all the spatial and temporal scales of the flow (Caulfield and Peltier, 2000;
Cortesi et al., 1998; Staquet, 1995; Smyth, 2003).

The stably stratified mixing layer develops at the interfaceof two parallel streams of fluid
moving horizontally at different velocities, having different densities, the upper stream being
lighter than the lower one.

Miles (1961) andHoward(1961), based on a linear stability analysis, showed that for the
Kelvin-Helmholtz (KH) instability to occur in the stratified mixing layer from an infinitely small
disturbance, the Richardson number should be less than0.25 somewhere within the flow. This
first instability that occurs in the mixing layer is due to theinflectional nature of the velocity
profile (Michalke(1964)).

In the stably stratified mixing layer occurs a streamwise density gradient(∂ρ/∂x) that cor-
responds to the spanwise component of the baroclinic torquein the Boussinesq approximation.
This streamwise density gradient feeds the region between the KH vortices with vorticity and
forms thin vorticity layers there.

The vorticity layer, which is formed under the action of the buoyancy effects and strains
between the billows of the KH, was defined as a baroclinic layer byStaquet(1995) and identified
by Caulfield and Peltier(2000). This baroclinic layer, subject to baroclinic vorticity production,
is continuously stretched, admitting a strain rate roughlyproportional to the circulation around
the cores (Corcos and Sherman, 1976). The development of the secondary instabilities in the
baroclinic layer depends on the stratification degree of theflow (characterized by the Richardson
number,Ri), on the Reynolds number (Re) and on the imposed initial conditions.

Evidence of the occurrence of secondary KH instability in a baroclinic layer was reported
in geophysical flows for the atmosphere (Gossard et al., 1970) and in the ocean (Haury et al.,
1979), in a very few laboratory experiments (Atsavapranee and Gharib, 1997; Altman, 1988;
Thorpe, 1985) and through numerical simulation (Staquet, 1995, 2000; Smyth, 2003; Martinez,
2006; Martinez et al., 2005).

The main objective of this paper is to investigate the occurrence of secondary instabilities in
the baroclinic layer of a three-dimensional stably stratified mixing layer using DNS. The pur-
pose is also to verify the influence of the secondary KH instability in the three-dimensionalization
of the flow. Typical Richardson numbers ranging from0.07 to 0.167 are considered while the
Reynolds number is kept constant and equal to500 or 1000. Two different secondary instabil-
ities are found in the baroclinic layer: one is originated near the core region of the KH vortex,
called near-core instability, which propagates towards the baroclinic layer, another one of KH
type in the baroclinic layer itself.

The near-core instability (Staquet, 1995) is developed near the unstable regions of the pri-
mary KH vortex. This instability appears due to negative vorticity (correspond to the blue color
in the Figure1) generated between two co-rotating vortices, formed by baroclinic layer of pos-
itive vorticity (red color) and the core of the primary KH vortex, by strong streamwise density
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gradient. The negative vorticity layer unstabilizes the baroclinic layer and makes it becomes
similar to a mixing layer. The new mixing layer, when unstable, forms small vortices of the KH
type with the same dynamics as the primary KH vortices, as shows the Figure1.

Figure 1: Development of the secondary near-core instability and secondary KH instability in the baroclinic layer.
Simulation2D in a computational grid of768 × 1 × 961 points forRe = 2000 andRi = 0.167.

In previous simulations (Martinez et al., 2004; Martinez, 2006), at lower values ofRe (<
500), was observed the formation of the baroclinic layer, but without manifestation of the sec-
ondary KH instability. The occurrence of the secondary KH instability in the baroclinic layer
of a 2D stably stratified mixing layer, for different Reynolds numbers (500, 1000, 2000), was
clearly demonstrated usingDNS by Martinez et al.(2005) andMartinez(2006). In these works
were verified that the production of negative vorticity inside the vortex core is fundamental for
generation of secondary vortices of the KH type. The relatedworks had shown that the produc-
tion of negative vorticity in the vortex core is rapidly followedby the growth of the secondary
KH instability in the baroclinic layer; moreover, this instability does not develop if the negative
vorticity is too low compared to the positive one (this instability is referred to as the near-core
instability). In 2D simulations atRe = 500, the secondary KH instability appeared both at
Ri = 0.07 (weak stratification) and atRi = 0.167 (strong stratification). This fact is not re-
ported byStaquet(1995), which showed that the near-core instability amplify in the baroclinic
layer only forRe ≥ 1500, but it is possible the amplification of the secondary KH instability
for Re ≥ 400 whenRi = 0.167. Smyth(2003) showed that the secondary KH instability can
be developed without the occurrence of the near-core instability in a unstable stratified mixing
layer, for high Reynolds numbers. However, the following doubt comes up: How does the
secondary KH instability compete with the3D instabilities?

2 MATHEMATICAL MODEL AND NUMERICAL METHOD

2.1 Governing Equations

The basic governing equations in dimensionless form for mass conservation, Navier-Stokes
in the Boussinesq approximation, and energy equation, in a Cartesian frame of reference< =
(0; x, y, z) are:

~∇ · ~u = 0, (1)

∂~u

∂t
= −~∇P − ~ω × ~u − Ri ρ ~iz +

1

Re
∇2~u, (2)

∂ρ

∂t
+ ~u · ~∇ρ =

1

RePr
∇2ρ. (3)
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whereP (x, y, z, t) is the modified pressure field,ρ(x, y, z, t) is density or active scalar,~u(x, y, z, t)
is the velocity field and ~omega is the vorticity field. There are two dimensionless relevantpa-
rameters: the Reynolds numberRe = Uδi/ν based on the half velocity difference across the
shear layer (U ) and on the initial vorticity thickness defined byδi = 2U/(du/dz)max, and the
Richardson numberRi = g∆ρRδi/ρ0U

2, where∆ρR is density scale andR is the ratio of
initial vorticity thickness and the density thickness. Thetime is made dimensionless using the
advective scaleδi/U .
In these equation, the scales of length, velocity and density are such asδi = 1, U = 1 and
∆ρ = 1/R. In this manner,Re = 1/ν andRi = g/ρ0. At t = 0, ρ0(x, y, z, t = 0) = ρ0 + ρ(z),
whereρ0 is a constant density reference andρ(z) is the basic density profile.

2.2 Initial and boundary conditions

The initial conditions are defined in terms of velocity and density fields as:

u(z, t = 0) = Uerf

(√
πz

δi

)

(4)

ρ(z, t = 0) = − 1

R
erf

(√
πRz

δi

)

. (5)

With the objective to promote the development the KH instability and to unchain the formation
of the KH billows, a field of perturbations was added to the basic velocity profile. This field
is composed by two waves corresponding to the most amplified wave number (αa) and its firth
sub-harmonic (αa/2), and a white noise in spanwise direction. The associated most unstable
wavelength given by linear stability theory is approximately λa = 7δi where the most amplified
wave numberαa = 2π/λa being0.889δ−1

i (Michalke, 1964). These perturbations promote,
respectively, the development of the KH instability, the pairing process and the formation of
streamwise vortices. In the present case, no density fluctuation is superimposed uponρ(z) at
t = 0.

The boundary conditions for the temporal mixing layer are:
periodic: used in the streamwise (x) and spanwise (y) directions; and
free-slip: used in the vertical direction (z). This condition imposes the following restrictions:
∂u
∂z

= ∂v
∂z

= 0 andw = 0 for z = ±Lz
2

.

2.3 Numerical Method

Equations (1) to (3) are solved numerically, in the domain shown in Figure2, using a sixth-
order compact finite difference scheme (Lele, 1992) to evaluate spatial derivatives. The compact
schemes are implicit ones that relate the value of the derivative in a point to the value of the
derivative in neighboring points. For the spatial discretization considering a uniform mesh,
where the independent variable for each nodei is ξi = (i− 1)∆ξ, 1 ≤ i ≤ N andξ = x, y or z,
the function values for nodes arefi = f(ξi) and first derivativef ′

i = f ′(ξi), is given by:

αf ′

i−1 + f ′

i + αf ′

i+1 = a
fi+1 − fi−1

2∆ξ
+ b

fi+2 − fi−2

4∆ξ
. (6)

The second derivative is given by:

αf ′′

i−1 + f ′′

i + αf ′′

i+1 = a
fi+1 − 2fi + fi−1

∆ξ2
+ b

fi+2 − 2fi + fi−2

4∆ξ2
. (7)
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Figure 2: Schematic view of domain.

The sixth order is obtained with the set of parameters (Lele, 1992) :

α =
1

3
, a =

14

9
, b =

1

9
for Eq.(6),

α =
2

11
, a =

12

11
, b =

3

11
for Eq.(7).

Equations (6) and (7) are valid for three spatial directions (x, y, z) in all the mesh points.
The time integration is performed with a third-order low-storage Runge-Kutta method (Williamson,

1980). The integration of Eq.(2) at timestn andt(n+1) is performed through3 fractional time
stepp = 0, 1, 2, where~u(0) = ~u(n) and~u(3) = ~u(n+1),

~u(p+1) − ~u(p)

∆t
= αp

~F (p) + βp
~F (p−1) − ~∇Π(p+1) (8)

~∇ · ~up+1 = 0, (9)

where
~F = −~ω × ~u − Ri ρ ~iz +

1

Re
∇2~u, (10)

Π(p+1) =
1

∆t

∫ t(n+1)

tn

P dt, (11)

andαp, βp are coefficients to each fractional stepp, given byWilliamson(1980):

α0 =
8

15
, β0 = 0; α1 =

5

12
, β1 =

−17

60
; α2 =

3

4
, β2 =

−5

12
.

The Eq.(8) can be split into two steps,

~u∗ − ~u(p)

∆t
= αp

~F (p) + β ~F (p−1), (12)
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~u(p+1) − ~u∗

∆t
= −~∇Π(p+1). (13)

In this conventional fractional method, stepp + 1 is obtained by solving the Poisson equation.
Thus the incompressibility condition is ensure,

~∇ · ~∇Π(p+1) =
~∇ · ~u∗

∆t
. (14)

More details about the numerical code can be found inLardeau et al.(2002) andSilvestrini and Lamballais
(2002). Equation (3) is solved in the same way as Eq.(2) by making,

ρ(p+1) − ρ(p)

∆t
= αp

~G(p) + βpG
(p−1), (15)

where
~G = −~u · ~∇ρ +

1

RePr
∇2ρ.

3 CODE VALIDATION AND AMPLIFICATION RATE

In order to validate the numerical code the evolution of a small disturbance was considered in
a 2D domain. The results were compared with the linear stability theory, where the disturbance
is described by the Taylor-Goldstein equation (Hazel, 1972).

The computational domain used is a square of sideL = 7δi, corresponding to the most
amplified wave numberαa = 0.889δ−1

i given by linear stability theory. The Reynolds number
is 300, the Prandtl number is1 and the Richardson number tested are0.0, 0.1 and0.2. The
initial amplitude of the perturbation was10−6U .

Tests with different computational grid ofnx × nz points were done (see Table1). As
expected, the grid size has a great influence over the amplification rate. In the test with a

Ri N1 N2 N3 Ref.Value
64 × 65 64 × 129 128 × 129 Hazel,1972

0 0.18732 0.18632 0.1861 0.1867
0.1 0.19492 0.17057 0.1650 0.1594
0.2 0.13597 0.16532 0.1329 0.1259

Table 1: Comparison of amplification rate with the referencevalue for different grids.

computational grid ofN2 = 64 × 129 points, it was noticed that the streamwise resolution
interferes in the evolution of the wave amplitude (stratified case), when comparing with grid
N1 (see Table1). Thus, for the stratified case (Ri = 0.1) the gridN2 showed a decrease of
the amplification rate due to the increase in the vertical resolution, with an error of the7% in
relation to the reference value, whereas forRi = 0.2 there is an increase in the amplification
rate. Probably this occurs because the streamwise density gradient is not being well solved.

Figure3shows the time evolution of the amplitude for different Richardson numbers (0; 0.1; 0.2)
obtained from the simulation with gridN3 = 128 × 129 points. Clearly, there is a region of
exponential amplification, which corresponds to regime governed by the linear theory. In this
test, the errors found are of−0.32% for Ri = 0, 3.5% for Ri = 0.1 and10.2% for Ri = 0.2.
The comparison of the simulationN3 with the numerical results ofHazel (1972), shown in
Table1, gives good agreement for the temporal growth rates the stably stratified mixing layer.
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Figure 3: Amplitude evolution for simulationN3.

4 PHYSICAL AND COMPUTATIONAL PARAMETERS

The computational parameters for the simulations are givenin Table2. The parameterεi

denotes the amplitude of the perturbation superimposed on the basic velocity profile for the
fundamental(i = 1), the first sub-harmonic(i = 2) and for the spanwise mode(i = 3), respec-
tively. The random component of the initial condition for the spanwise velocity fluctuation (v′)
is composed of small amplitude white noise.

Simulation Re Ri Domain Grid Forcing
(Lx, Ly, Lz) (nx × ny × nz) (ε1, ε2, ε3)

3DI 500 0.07 (14, 5, 14) 512 × 32 × 513 (1%U ; 0.1%U ; white noise)
3DII 500 0.167 (14, 5, 14) 512 × 32 × 513 (1%U ; 0.1%U ; white noise)
3DIII 1000 0.07 (14, 5, 14) 512 × 32 × 513 (1%U ; 0.1%U ; white noise)

Table 2: Physical and computational parameters.

5 INFLUENCE OF THE SECONDARY KELVIN-HELMHOLTZ INSTABILITY IN
THE TRANSITION TO TURBULENCE

Simulations of pairing process of the KH billows in stratified flow (Smyth, 1999) show strong
three-dimensional motions developing in the cores during pairing, while the region between
vortices remain two-dimensional. However, the3D process is sensitive to the form of the initial
perturbations (Cortesi et al., 1998).

In stratified mixing layer the3D process is complex due to the greater number of secondary
instabilities that propagate in the flow. The instabilitiesthat developed in a3D stably stratified
mixing layer may be divided in two groups: one that grows within the vortex core and the other
that develops in the region between the cores (Martinez et al., 2006). Within the cores two types
of instabilities are found. The one found byPierrehumbert and Widnall(1982), that does not
depend upon the buoyancy effects, called translative instability, and the gravitational convective
instability that is driven by buoyancy effects (Showalter et al., 1994).
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The near-core instability, discovered byStaquet(1995), would be located close to the place
where the secondary gravitational convective instabilitydevelops. In the region between the
cores two types of instabilities are found: the secondary shear instability, predicted byKlaassen and Peltier
(1991), and the secondary KH instability (Staquet, 1995), which depends on the stratification
degree of the flow (Ri) and on the Reynolds number (Re). In this section it is verified quali-
tatively the way that the secondary KH instability affects 3D process and the formation of the
streamwise vortices.

5.1 Dependence on the Richardson and Reynolds numbers

The Reynolds and Richardson numbers are parameters that governthe evolution of the pri-
mary instability and secondary instability of the KH type inthe stably stratified mixing layer.
In previous simulations were verified that when there is a pairing of the simulated vortices both
the near-core and the secondary KH instabilities are able togrow upon the baroclinic layer.

Figure4 shows results obtained forRe = 500 andRi = 0.167, in a domain configuration of
(Lx, Ly, Lz) = (14, 5, 14), using a small white noise in the initial condition for the perturbation
velocity field in the spanwise direction whereas for the others the forced condition.

t = 60 t = 64 t = 68 t = 72

t = 76 t = 80 t = 84 t = 88

Figure 4: Isosurfaces ofQ = 0.2 and streamwise cross-sectional plots of spanwise vorticity. Simulation3DII,
Re = 500, Ri = 0.167.
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The streamwise vortices are developed after the saturationof the primary vortices of KH in
unstratified case. When the secondary KH instability develops upon the baroclinic layer of the
stably stratified mixing layer, as shown in the Figure4, the streamwise vortices can be visualized
after the saturation of the secondary KH vortices.

The Figure shows isosurfaces using the Q-criterium and streamwise cross-sectional plots of
spanwise vorticity for different times. In this simulationit was verified that the secondary KH
instability is of two-dimensional nature (Figure4, t = 60 − 64), through successive cross-
sectional plots of spanwise vorticity. Figure4 shows that the secondary KH vortices have the
same dynamics that the primary KH vortices (t = 64) even when the flow is3D.

Figure5, for Ri = 0.07, shows that the secondary KH instability appears with lesser in-
tensity that forRi = 0.167. The secondary KH instability does not develop as in the caseof
strong stratification, possibly because the vorticity of the baroclinic layer and the adjacent layer
of negative vorticity are too weak to allow the development of this instability. Thus the respon-
sible mechanism for the generation or local destruction of vorticity becomes weakened and as
consequence the streamwise vortices are not formed.

t = 42 t = 46 t = 50

t = 54 t = 58 t = 62

Figure 5: Isosurfaces ofQ = 0.2 and streamwise cross-sectional plots of spanwise vorticity. Simulation3DI,
Re = 500, Ri = 0.07.

In Figure6, it is observed the temporal evolution of the positive and negative vorticities (ωy)
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for simulations3DI and3DII. It can be noticed that the vorticity atRi = 0.167 increases
beyond the initial value and, after the pairing process (t ≥ 28) a negative vorticity decrease,
presenting a symmetry in relation with the positive vorticity. It is observed that the secondary
KH instability developed in the flow if the negative vorticity is of comparable value with the
positive one. This fact makes possible the successive secondary KH vortices displayed in the
flow, permitting the existence of a baroclinic layer of higher vorticity than the maximum ini-
tial vorticity, as well as the generation of negative vorticity. This non-conservation of the local
vorticity is also a fundamental feature of three-dimensional turbulent flows. The maximum vor-
ticity of the flow forRi = 0.167 is reached at time equal80 when the flow has become turbulent.
The Reynolds number has influence on the development of the secondary KH instability and
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 0  20  40  60  80  100

w
y

time

Ri=0.07
Ri=0.167

Figure 6: Temporal evolution of the maximum and minimum vorticity (ωy), for Ri = 0.07 andRi = 0.167
(Re = 500), simulation3DI and3DII, respectively.

formation of the streamwise vortices, as it is verified in Figure7 for Ri = 0.07 andRe = 1000.

The precise numerical treatment of the turbulence requiresthat the entire band of scales wich
ranges from the energy-carrying to the dissipative motionsis resolved in time and space. Figure
8 shows the spectrum of kinetic energy in function of the streamwise wavenumber at different
times, forRi = 0.07 andRi = 0.167 andRe = 500.

It is seen that the energy spectrum takes its maximum within the low-wavenumber regime,
while it shows behavior turbulent in high-wavenumber. Thisspectrum suggest a mechanism of
transference of energy towards dissipative scales. The peak in the timet = 2 corresponds to the
most amplified wavenumber, Figure8. After de pairing (t = 38 - 44) the spectrum reaches a
law E(kx) ∼ k−2

x for wave numbers< 20, as shows the segment of straight line of the Figure8.
For wave numbers between20 and30, is reached a small zone of lawE(kx) ∼ k−3

x , followed
of a zone of exponential decline.
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t = 42 t = 46 t = 50

t = 54 t = 58 t = 62

Figure 7: Isosurfaces ofQ = 0.2 and streamwise cross-sectional plots of spanwise vorticity. Simulation3DIII,
Re = 1000, Ri = 0.07.
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Figure 8: Spectrum of kinetic energy in function of the streamwise wave number at different times andRe = 500.
(a) Simulation3DI, Ri = 0.07, (b) Simulation3DII, Ri = 0.167.
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6 CONCLUSIONS

The purpose of the present work was to investigate the occurrence of secondary KH instabil-
ity in the baroclinic layer of a three-dimensional stably stratified mixing layer and its influence
in the formation of the streamwise vortices, using DNS. The numerical results showed that the
intensity of the negative vorticity layer, generated between two co-rotating vortices, depends on
the Richardson and Reynolds number and defines the occurrence or not of the secondary KH
structures in the flow. We can conclude, based on the simulations presented in this work, that
the calculation code employed solves the small scales and instabilities found in the baroclinic
layer and that the resolution of the computational grids waschosen in agreement.
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