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Abstract. The present work investigates the nature of the transition to turbulencestethlg stratified
mixing layer, which is a complex process with great importance for geoplyaiw industrial flows.
In the stably stratified mixing layer, the streamwise density gradient, whiclesmonds to the span-
wise component of the baroclinic torque in the Boussinesq approximatieds fiie region between
the Kelvin-Helmholtz (KH) vortices with vorticity and forms a thin vorticity layer,lled baroclinic
layer. The competition between buoyancy and inertial forces modifies thenugs of this layer. As
consequence, two different secondary instabilities are found to geuplon the baroclinic layer: one
originated near the core region of the KH vortex, called near-core iifigtatnat propagates towards the
baroclinic layer and the other of Kelvin-Helmholtz type developed in the tiaiotayer itself. The de-
velopment of these instabilities in the baroclinic layer depends on the Ricimandsnber, the Reynolds
number and the initial conditions. The main objective of this paper is to investigateccurrence of
secondary instabilities in the baroclinic layer of a three-dimensional stallyfistl mixing layer using
Direct Numerical Simulation (DNS). The development of streamwise vortigdsta interactions with
the secondary KH structures are focused. Typical Richardson nsmédoeging from0.07 to 0.167 are
considered while the Reynolds number is kept constano (or 1000). White noise and forced pertur-
bation are used as initial conditions. The Navier-Stokes equations, in tesBesq approximation, are
solved numerically using a sixth-order compact finite difference schemempute the spatial deriva-
tives, while the time integration is performed with a third-order low-storagegRiutta method. The
numerical results show the development of a jet in the baroclinic layer adjeceorticity layers of op-
posite signs. These layers are created baroclinically by convective matgide the primary KH vortex
and amplifies the near-core instability. It is shown that this instability appesrsadthe formation of a
negative vorticity layer generated between two co-rotating positive vertidee negative vorticity layer
unstables the baroclinic layer and forms small vortices of the KH type. Thesityeof the negative
vorticity layer depends on the Richardson and Reynolds numbers anésleficurrence or not of sec-
ondary KH structures. Interactions between these secondary KHwsa@and streamwise vortices are
also observed. They strongly depend on the initial conditions.
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1 INTRODUCTION

The dynamics of the stably stratified mixing layer, mainbytitansition to turbulence, is a
problem of considerable interest in fluid dynamics with aggilons in both geophysical sci-
ences and engineering. The turbulence prevails in most ftdwsactical interest and may
strongly affect important global features of these flows.u§,ithe precise description of the
instabilities that occur during the transition to turbuderand their reliable prediction are mat-
ters of primary concern in the study of a mixing layer. Reggmirect Numerical Simulations
(DNS) have added considerably to our understanding of thamycs of a mixing layer, since
they solve entirely all the spatial and temporal scales effldw (Caulfield and Peltier200Q
Cortesi et al.1998 Staquet1995 Smyth 2003.

The stably stratified mixing layer develops at the interfatévo parallel streams of fluid
moving horizontally at different velocities, having difeat densities, the upper stream being
lighter than the lower one.

Miles (1961 andHoward (1961), based on a linear stability analysis, showed that for the
Kelvin-Helmholtz (KH) instability to occur in the stratifiemixing layer from an infinitely small
disturbance, the Richardson number should be lessit2arsomewhere within the flow. This
first instability that occurs in the mixing layer is due to thélectional nature of the velocity
profile (Michalke (1964).

In the stably stratified mixing layer occurs a streamwisesitgrgradient(0p/Jx) that cor-
responds to the spanwise component of the baroclinic targtiee Boussinesq approximation.
This streamwise density gradient feeds the region betwseKH vortices with vorticity and
forms thin vorticity layers there.

The vorticity layer, which is formed under the action of theofpancy effects and strains
between the billows of the KH, was defined as a baroclinicrlayé&taque{1995 and identified
by Caulfield and Peltief2000. This baroclinic layer, subject to baroclinic vorticityquluction,
is continuously stretched, admitting a strain rate rougibgportional to the circulation around
the cores Corcos and Shermai9769. The development of the secondary instabilities in the
baroclinic layer depends on the stratification degree dfithe(characterized by the Richardson
number,Ri), on the Reynolds numbefR¢) and on the imposed initial conditions.

Evidence of the occurrence of secondary KH instability inagolinic layer was reported
in geophysical flows for the atmospheregssard et /1970 and in the oceanHaury et al,
1979, in a very few laboratory experimentét6avapranee and Ghayih997 Altman, 1988
Thorpe 1985 and through numerical simulatioBfaquet1995 200Q Smyth 2003 Martinez
2006 Martinez et al.20095.

The main objective of this paper is to investigate the o@noe of secondary instabilities in
the baroclinic layer of a three-dimensional stably strdifinixing layer using DNS. The pur-
pose is also to verify the influence of the secondary KH iribtain the three-dimensionalization
of the flow. Typical Richardson numbers ranging frori7 to 0.167 are considered while the
Reynolds number is kept constant and equdlO@or 1000. Two different secondary instabil-
ities are found in the baroclinic layer: one is originatedmiie core region of the KH vortex,
called near-core instability, which propagates towar@shkthroclinic layer, another one of KH
type in the baroclinic layer itself.

The near-core instabilityStaquet 1999 is developed near the unstable regions of the pri-
mary KH vortex. This instability appears due to negativeiedy (correspond to the blue color
in the Figurel) generated between two co-rotating vortices, formed bgdauic layer of pos-
itive vorticity (red color) and the core of the primary KH vex, by strong streamwise density
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gradient. The negative vorticity layer unstabilizes theobhnic layer and makes it becomes
similar to a mixing layer. The new mixing layer, when unselibrms small vortices of the KH
type with the same dynamics as the primary KH vortices, as/shioe Figurel.

Figure 1: Development of the secondary near-core instghitid secondary KH instability in the baroclinic layer.
Simulation2D in a computational grid of68 x 1 x 961 points for Re = 2000 andRi = 0.167.

In previous simulationsMartinez et al. 2004 Martinez 2006, at lower values ofze (<
500), was observed the formation of the baroclinic layer, buhaut manifestation of the sec-
ondary KH instability. The occurrence of the secondary Kbtamility in the baroclinic layer
of a 2D stably stratified mixing layer, for different Reynolds numd¢00, 1000, 2000), was
clearly demonstrated usirig/N S by Martinez et al(2005 andMartinez(2009. In these works
were verified that the production of negative vorticity desthe vortex core is fundamental for
generation of secondary vortices of the KH type. The relatexks had shown that the produc-
tion of negative vorticity in the vortex core is rapidly folledby the growth of the secondary
KH instability in the baroclinic layer; moreover, this iasility does not develop if the negative
vorticity is too low compared to the positive one (this irsligy is referred to as the near-core
instability). In 2D simulations atRe = 500, the secondary KH instability appeared both at
Ri = 0.07 (weak stratification) and a&: = 0.167 (strong stratification). This fact is not re-
ported byStaquei(1999, which showed that the near-core instability amplify ie traroclinic
layer only for Re > 1500, but it is possible the amplification of the secondary KH agity
for Re > 400 whenRi = 0.167. Smyth(2003 showed that the secondary KH instability can
be developed without the occurrence of the near-core iisyalh a unstable stratified mixing
layer, for high Reynolds numbers. However, the following lolocomes up: How does the
secondary KH instability compete with tBé instabilities?

2 MATHEMATICAL MODEL AND NUMERICAL METHOD

2.1 Governing Equations

The basic governing equations in dimensionless form forsnsagservation, Navier-Stokes
in the Boussinesq approximation, and energy equation, in te§ian frame of reference =
(0;z,y, z) are:

V-i=0, 1)
ou > I |
5 \Y WX U Rzpzz-l-ReVu, (2)
o e 1 2
Eﬂb'v’)_ RePrV P ®)
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whereP(x,y, z,t) is the modified pressure field,z, y, z, t) is density or active scalai(z, y, z, t)

is the velocity field andmeéga is the vorticity field. There are two dimensionless relevaant
rameters: the Reynolds numbRe = UJ;/v based on the half velocity difference across the
shear layer{) and on the initial vorticity thickness defined by= 2U/(du/dz) 4., and the
Richardson numbeRi = gApR6;/poU?, whereApR is density scale and is the ratio of
initial vorticity thickness and the density thickness. Timee is made dimensionless using the
advective scalé; /U.

In these equation, the scales of length, velocity and deasé such as; = 1, U = 1 and
Ap =1/R. Inthis mannerkRe = 1/v andRi = g/po. Att =0, po(z,y, z,t = 0) = po+ p(2),
wherep, is a constant density reference and) is the basic density profile.

2.2 Initial and boundary conditions

The initial conditions are defined in terms of velocity anasigy fields as:

u(z,t:O):Uerf(\/;z) (4)
p(z,t=0) = ——erf (GRZ) (5)

With the objective to promote the development the KH indiigtand to unchain the formation
of the KH billows, a field of perturbations was added to theibaslocity profile. This field
is composed by two waves corresponding to the most amplifeegwumberd,) and its firth
sub-harmonic¢,/2), and a white noise in spanwise direction. The associatest omstable
wavelength given by linear stability theory is approxintate, = 79; where the most amplified
wave numbery, = 27/), being0.8895; ' (Michalke, 1964. These perturbations promote,
respectively, the development of the KH instability, théripg process and the formation of
streamwise vortices. In the present case, no density flictus superimposed upgn(z) at
t=0.

The boundary conditions for the temporal mixing layer are:
periodic: used in the streamwise) @nd spanwisey directions; and
free- slip used in the vertical direction)( This condition imposes the following restrictions:

8u_ Lz
e = o =0andw =0forz =+

2.3 Numerical Method

Equations 1) to (3) are solved numerically, in the domain shown in Figresing a sixth-
order compact finite difference schemelg, 1992 to evaluate spatial derivatives. The compact
schemes are implicit ones that relate the value of the demvan a point to the value of the
derivative in neighboring points. For the spatial dis@ation considering a uniform mesh,
where the independent variable for each nose; = (i — 1)A¢, 1 <i < Nand{ = z,y or z,
the function values for nodes afe= f(¢;) and first derivativef! = f’(¢;), is given by:

! / ! . fi+1 - fifl fi+2 - fif2
afi—1+fi+afi+1 =a 2AE +b AAE (6)
The second derivative is given by:
7 -2 A 11— 7 2 % i—
”—1+fz‘”+afz‘,f|-1:af+l f+f1+ f+2 f+f2 (7)

AE? AAE?
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Figure 2: Schematic view of domain.

The sixth order is obtained with the set of parameteesg 1992 :

1 14 1
a=g, a=g, b= 9 for Eq.(6),
2 12 3
a= 1, a= 17 b= 1 for Eq.(7).

Equations §) and (7) are valid for three spatial directions,(y, z) in all the mesh points.

The time integration is performed with a third-order lowstge Runge-Kutta methodflliamson,
1980. The integration of EqQ) at timest™ andt™*Y is performed through fractional time
stepp = 0, 1, 2, whered® = @™ anda® = ¢+,

u(p_;H) — u(_}’)

N = a,F®) + g,F0-1) — VIIPH) (8)
V@t =0, (9)
where 1
F=-3x@—Ripi,+—V2q, (10)
Re
I+ L[l Pdt (11)
- = / 7
ando,, 3, are coefficients to each fractional stgpiven byWilliamson (1980:
8 ) —17 3 -5
@0 = 75 Bo = 0; =15 ﬁl_ﬁ’ a2 =7, ﬁz—ﬁ-
The EQ.8) can be split into two steps,
R - -
Vi a, F® + BFe-1) (12)
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u(P_-)i-l) —ut
At

In this conventional fractional method, step- 1 is obtained by solving the Poisson equation.
Thus the incompressibility condition is ensure,

= —VIIPHY, (13)

-

V.- u
At

More details about the numerical code can be fourichimieau et al(2002 andSilvestrini and Lamballais
(2002. Equation B) is solved in the same way as Eg&)(by making,

V- Ve = (14)

p(p+1) — p(p)

~ — apé’(p) + 3,GP), (15)

where

— — 1
G=—i- — V).
U Vp+RePrvP

3 CODE VALIDATION AND AMPLIFICATION RATE

In order to validate the numerical code the evolution of albdisturbance was considered in
a 2D domain. The results were compared with the linear diathleory, where the disturbance
is described by the Taylor-Goldstein equatiétage| 1972).

The computational domain used is a square of dide- 74;, corresponding to the most
amplified wave numbet, = 0.8894; ' given by linear stability theory. The Reynolds number
is 300, the Prandtl number i$ and the Richardson number tested @& 0.1 and0.2. The
initial amplitude of the perturbation wd®—5U.

Tests with different computational grid of, x n, points were done (see Tablg. As
expected, the grid size has a great influence over the anagilificrate. In the test with a

Ri N1 N2 N3 Ref.Value
64 x 65 | 64 x 129 | 128 x 129 | Hazel,1972
0 | 0.18732 | 0.18632 0.1861 0.1867

0.1 ]0.19492 | 0.17057 0.1650 0.1594
0.2 ] 0.13597 | 0.16532 0.1329 0.1259

Table 1: Comparison of amplification rate with the referevadee for different grids.

computational grid ofV2 = 64 x 129 points, it was noticed that the streamwise resolution
interferes in the evolution of the wave amplitude (stradifease), when comparing with grid
N1 (see Tablel). Thus, for the stratified casdi{ = 0.1) the grid N2 showed a decrease of
the amplification rate due to the increase in the verticadltg®n, with an error of th&% in
relation to the reference value, whereas far= 0.2 there is an increase in the amplification
rate. Probably this occurs because the streamwise demaiegt is not being well solved.
Figure3 shows the time evolution of the amplitude for different Rics®n numbergX 0.1; 0.2)
obtained from the simulation with grid/3 = 128 x 129 points. Clearly, there is a region of
exponential amplification, which corresponds to regimeegogd by the linear theory. In this
test, the errors found are ef0.32% for Ri = 0, 3.5% for Ri = 0.1 and10.2% for Ri = 0.2.
The comparison of the simulatiaN3 with the numerical results dflazel (1972, shown in
Tablel, gives good agreement for the temporal growth rates théystadatified mixing layer.
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Figure 3: Amplitude evolution for simulatioiv3.

4 PHYSICAL AND COMPUTATIONAL PARAMETERS

The computational parameters for the simulations are giweérable2. The parametes;
denotes the amplitude of the perturbation superimposed®masic velocity profile for the
fundamentali = 1), the first sub-harmoni@ = 2) and for the spanwise modée= 3), respec-
tively. The random component of the initial condition foetbpanwise velocity fluctuation’]
Is composed of small amplitude white noise.

Simulation| Re R; Domain Grid Forcing
(Lmy Ly, Lz) (nr X Ny X nz) (517 €2, 53)

3DI 500 | 0.07 | (14,5,14) | 512 x 32 x 513 | (1%U; 0.1%U; white noise)
3DIT 500 | 0.167 (14, 5,14) | 512 x 32 x 513 | (1%U; 0.1%U; white noise)
3DIIT 1000 | 0.07 (14,5,14) | 512 x 32 x 513 | (1%U; 0.1%U; white noise)

Table 2: Physical and computational parameters.

5 INFLUENCE OF THE SECONDARY KELVIN-HELMHOLTZ INSTABILITY IN
THE TRANSITION TO TURBULENCE

Simulations of pairing process of the KH billows in stratifigow (Smyth 1999 show strong
three-dimensional motions developing in the cores duriaiging, while the region between
vortices remain two-dimensional. However, 81 process is sensitive to the form of the initial
perturbationsCortesi et al.1999.

In stratified mixing layer th&D process is complex due to the greater number of secondary
instabilities that propagate in the flow. The instabilitibat developed in 8D stably stratified
mixing layer may be divided in two groups: one that grows witie vortex core and the other
that develops in the region between the coharfinez et al.200§. Within the cores two types
of instabilities are found. The one found Byerrehumbert and Widna{lLl982), that does not
depend upon the buoyancy effects, called translativebiigjaand the gravitational convective
instability that is driven by buoyancy effectSi{owalter et a].1994).
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The near-core instability, discovered Byaquei(1995, would be located close to the place
where the secondary gravitational convective instabdigyelops. In the region between the
cores two types of instabilities are found: the secondaggsimstability, predicted biglaassen and Peltier
(1991, and the secondary KH instabilitpstaquet 1995, which depends on the stratification
degree of the flowR:) and on the Reynolds numbeRd). In this section it is verified quali-
tatively the way that the secondary KH instability affecB® @rocess and the formation of the
streamwise vortices.

5.1 Dependenceon the Richardson and Reynolds numbers

The Reynolds and Richardson numbers are parameters thahg@evolution of the pri-
mary instability and secondary instability of the KH typetire stably stratified mixing layer.
In previous simulations were verified that when there is ampgbf the simulated vortices both
the near-core and the secondary KH instabilities are aldeaw upon the baroclinic layer.

Figure4 shows results obtained féte = 500 and Ri = 0.167, in a domain configuration of
(Ls, Ly, L,) = (14,5, 14), using a small white noise in the initial condition for therfurbation
velocity field in the spanwise direction whereas for the atlibe forced condition.

t="76 t =280 t=284 t =288

Figure 4: Isosurfaces @ = 0.2 and streamwise cross-sectional plots of spanwise vottiSiimulation3DI1,
Re =500, Ri = 0.167.
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The streamwise vortices are developed after the saturatithe primary vortices of KH in
unstratified case. When the secondary KH instability dewselggon the baroclinic layer of the
stably stratified mixing layer, as shown in the Figdyéhe streamwise vortices can be visualized
after the saturation of the secondary KH vortices.

The Figure shows isosurfaces using the Q-criterium andmsingse cross-sectional plots of
spanwise vorticity for different times. In this simulatidgrwas verified that the secondary KH
instability is of two-dimensional nature (Figuré, t = 60 — 64), through successive cross-
sectional plots of spanwise vorticity. Figudeshows that the secondary KH vortices have the
same dynamics that the primary KH vortices= 64) even when the flow i8D.

Figure5, for Ri = 0.07, shows that the secondary KH instability appears with lesse
tensity that forkR: = 0.167. The secondary KH instability does not develop as in the oase
strong stratification, possibly because the vorticity efblaroclinic layer and the adjacent layer
of negative vorticity are too weak to allow the developmérthe instability. Thus the respon-
sible mechanism for the generation or local destructionooficity becomes weakened and as
conseqguence the streamwise vortices are not formed.

t=>54 t =58 t =62

Figure 5: Isosurfaces @) = 0.2 and streamwise cross-sectional plots of spanwise vorti§tmulation3D1,
Re = 500, Ri = 0.07.

In Figure®, it is observed the temporal evolution of the positive angktige vorticities ¢,)
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for simulations3DI and3DII. It can be noticed that the vorticity &: = 0.167 increases
beyond the initial value and, after the pairing proces% (28) a negative vorticity decrease,
presenting a symmetry in relation with the positive votyicit is observed that the secondary
KH instability developed in the flow if the negative vortigits of comparable value with the
positive one. This fact makes possible the successive dacpiiKH vortices displayed in the
flow, permitting the existence of a baroclinic layer of higherticity than the maximum ini-
tial vorticity, as well as the generation of negative vatyicThis non-conservation of the local
vorticity is also a fundamental feature of three-dimenalaarbulent flows. The maximum vor-
ticity of the flow for Ri = 0.167 is reached at time equ&) when the flow has become turbulent.
The Reynolds number has influence on the development of tlemdary KH instability and

| |

S+

P
0 , |
; —%M *\ N o SR .
2 f 7%,/ 7
4 + |
-6 | |
_8 I ) ) ‘
0 20 40 60 80 100
time

Figure 6: Temporal evolution of the maximum and minimum gt (w,), for R; = 0.07 and R; = 0.167
(Re = 500), simulation3D1 and3DI1, respectively.

formation of the streamwise vortices, as it is verified inufgj for Ri = 0.07 and Re = 1000.

The precise numerical treatment of the turbulence reqthisghe entire band of scales wich
ranges from the energy-carrying to the dissipative motisnssolved in time and space. Figure
8 shows the spectrum of kinetic energy in function of the stnesse wavenumber at different
times, forRi = 0.07 andRi = 0.167 and Re = 500.

It is seen that the energy spectrum takes its maximum witilerddw-wavenumber regime,
while it shows behavior turbulent in high-wavenumber. T¥pgctrum suggest a mechanism of
transference of energy towards dissipative scales. Theipehe timet = 2 corresponds to the
most amplified wavenumber, Figur@ After de pairing { = 38 - 44) the spectrum reaches a
law E(k,) ~ k2 for wave numbers: 20, as shows the segment of straight line of the Figlre
For wave numbers between and30, is reached a small zone of laki(k,) ~ k3, followed
of a zone of exponential decline.
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t =62

Figure 7: Isosurfaces @) = 0.2 and streamwise cross-sectional plots of spanwise vattiSiimulation3DI11,

Re = 1000, Ri = 0.07.

0.01 F
le-04 £
1e-06

le-08

kinetic energy
kinetic energy

le-10
le-12

le-14

le-16

0.01

1e-04

1le-06
1le-08
le-10
le-12
le-14

le-16

1 10 100

Figure 8: Spectrum of kinetic energy in function of the stnease wave number at different times aRd = 500.

(a) Simulation3DI, Ri = 0.07, (b) Simulation3DI1I, Ri = 0.167.
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6 CONCLUSIONS

The purpose of the present work was to investigate the aeacerof secondary KH instabil-
ity in the baroclinic layer of a three-dimensional stablasfied mixing layer and its influence
in the formation of the streamwise vortices, using DNS. Tamerical results showed that the
intensity of the negative vorticity layer, generated betwavo co-rotating vortices, depends on
the Richardson and Reynolds number and defines the occurrence of the secondary KH
structures in the flow. We can conclude, based on the simukpresented in this work, that
the calculation code employed solves the small scales atahitities found in the baroclinic
layer and that the resolution of the computational grids evexsen in agreement.
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