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Abstract. In this paper we present a simplified model using OpenFOAM® suite to study the hydro-

dynamic behavior of a draining tank, which is part of a second shut down system of an experimental

nuclear reactor. This problem involves the presence of a free surface between a liquid and a cover gas

which should be accurately described during the draining transient of the liquid inside the tank. By us-

ing a three grid approach for the relevant parameter to compute the height of drained liquid, we bound

the uncertainty in the calculations induced by the spatial discretization in agreement with the achievable

computing times. We compute the level of the surface in a local manner and by using global balances.

We compare the solution for the discharge dynamics obtained by the two different methods showing

consistency and concordance between them. We also present an analytical approach which points out

the lowest threshold for the discharge time.

Mecánica Computacional Vol XXXIII, págs. 2927-2938 (artículo completo)
Graciela Bertolino, Mariano Cantero, Mario Storti y Federico Teruel (Eds.)

San Carlos de Bariloche, 23-26 Setiembre 2014

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1 INTRODUCTION

A nuclear reactor together with the space shuttle are maybe the two more complex machines

made by man due to each one is composed by a large amount of diverse interacting systems.

Many of these systems involve fluid flow, heat transfer, chemical and nuclear reactions among

the main ones.

In this work we focus on develop a simple model of a system composed mainly by a draining

tank which is part of a second shut down system of an experimental nuclear reactor. The primary

function of this safety system is to shut down the reactor by removing the neutronic liquid

reflector inside of it through draining just due to the action of gravity. This system requires a

mesoscale description to analyze the fluid dynamics inside the tank while is draining.

The description of fluid flow systems can be made from two complementary points of view: ex-

perimental approach and numerical approach. One of the principal interests of using numerical

simulations to study fluids in movement is that the costs involved are lower than an experimen-

tal approach allowing parametric studies which are important in a design stage. This is true if

the problem to analyze involves a real scale geometry one to one.

Many times the systems to analyze in the nuclear industry are large enough that are modeled

as networks of control volumes composed by 1-D elements connected by flow junctions (NEA

(2007), Hilal (2012)). These concepts are implemented in thermohydraulic codes such as RE-

LAP, TRACE, CATHARE and ATHLET which allows to obtain a macroscopic description of

the problem.

On the other hand, a mesoscale description of the problem could be obtained by using numerical

tools usually known as CFD codes. The incorporation of CFD approach as a well-established

methodology is rising due to the monotonic growth of the available computing power in the

last thirty years which allows simulations of increasing complexity involving larger geometries

as well as getting better time and space resolution of the computed solutions (EPRI (2014),

IAEA-TECDOC-1379 (2003)).

Due to the size of typical problems present in the nuclear industry, these two descriptions be-

come complementary in the sense that in order to fully describe complex systems they can be

linked. The last means that a localized 3-D computation should be performed where it is re-

quired but in the framework of an overall macroscale description, which usually impose values

for the boundary conditions of the three-dimensional model (NEA (2007)).

In order to get a model to describe the three dimensional fluid dynamics of a draining tank

we use the OpenFoam framework (OpenFOAM® (2014)) developed by Jasak (1996). High

quality CFD analysis has many steps that requires a fussy methodology. In first place a suitable

discretization of the geometric domain, some times a parallelization technique to optimize the

computing times, solving the right equations that model the problem, the visualization of the

results and a verification and validation process.

As a test of concept, this work tries to go through all the needed steps to solve the CFD problem

taking knowledge and handle the main details involved to achieve the required engineering

solution.

The paper is organized as follows: in Sec.(2) we describe the principal features of the problem

and we present a theoretical solution. In Sec.(3) we describe the numerical model used in

the simulations. In Sec.(4) we present the discretization of the geometric domain used for

computing the numerical solution and we detail the boundary conditions used along the work.

In Sec.(5) we present and discuss our results with special attention to uncertainty report. Finally

in Sec.(6) we summarize our conclusions.
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2 DESCRIPTION OF THE PROBLEM AND THEORETICAL APPROACH

In the present work, we consider a tank of cylindrical shape with height H = 1.2m and radius

R = 1.0m. At the bottom of the tank there is an orifice of radius R0 = 0.12m. The tank is open

on top, and the reference pressure is equal above and below it. The tank is initially filled with

light water up to h = 1.0m. Figure (1) shows the basic configuration.

Figure 1: Schematic diagram of the problem.

An analytical approach can be made by applying the conservation of mechanical energy (Bird et al.

(2002)). From first principles, the draining time of the liquid due to the action of the volumetric

gravity force in the geometry described by Figure (1) can be obtained by solving:

2h(t)
d2h(t)

dt2
− [

R4

R4
0

− 1](
dh(t)

dt
)2 + 2gh(t) = 0 (1)

This second order non-linear ODE allows us to obtain the dependence of the liquid height within

the tank with time. We conveniently define:

N =
R4

R4
0

η =
h

h0

The initial conditions (IC) for the Eq.(1) are:

IC 1) t = 0 → h = h0

IC 2) t = 0 →
dh

dt
= 0

The final draining time of the whole liquid in the tank expressed in a compact manner is:

tdrained = −

√

(N − 2)h0

2g

∫ 1

0

dη
√

η − 2η(N−1)

N

(2)
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Equation (2) can be solved by applying an adaptive Gauss-Kronrod quadrature integrator. The

results are displayed in Figure (2). It can be seen that a monotonic and smooth evolution of the

liquid height is obtained. The height of the remaining liquid inside the tank at the particular

time t = 15s is h = 0.27m, and by that instant the volumetric flow is nearly half than the initial

one.

                Theoretical solution of the remaining liquid in the tank and Volumetric discharge flow
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Figure 2: (Upper panel) Temporal evolution of the theoretical solution for the liquid height in the cylindrical

tank. The parameters for the problem are: R = 1.00m, R0 = 0.12m, h0 = 1.0m, g = 9.81m

s
2 . (Lower panel)

Volumetric discharge flow.

3 NUMERICAL MODEL

We also solved the problem using OpenFOAM® to study the hydrodynamic behavior of the

cylindrical draining tank in three dimensions.

The interFoam precompiled solver for the Unsteady Reynolds Averaged Navier Stokes Equations

(URANSE) was employed (UG.OpenFoam.ESI (2013)). In this work, turbulence closure was

done by using the two-equation model κ − ε (Durbin and Pettersson-Reif (2011)). The solver

also includes the surface tension effect between the phases, and the description of the interphase

is made by Volume of Fluid method (Hirt and Nichols (1981)). In this method, a function α in-

dicates the relative fraction of gas and liquid in each cell of the physical domain. The function

α is transported with the mean velocity of the fluid (U). It should be emphasized that with the

present model we solve the mean velocity of the fluid and we do not describe the instantaneous

flow velocity (U) with all the spatial and temporal details.

It is also important to notice that in this model an effective fluid is taken into account along the

whole domain, which changes its properties according to the indicator function α in each cell

in the following form:
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ρ = αρL + (1− α)ρG

µ = αµL + (1− α)µG

U = αUL + (1− α)UG

The subscripts G and L denote the gas and liquid phases respectively, ρ is the density and µ is

the dynamic viscosity of the fluid.

In the present problem we considered an isothermal fluid system composed by two initially

segregated, incompressible and newtonian phases (light water and air). The system of equations

which describes the problem is:
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∂t
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ξ = −∇· ( ∇α
|∇α|

)

(3)

Here νT is the turbulent kinematic viscosity which is the coupling variable between the URANSE

and the κ − ε model, ν is the kinematic viscosity, σ is the surface tension, ξ is the curvature

of the free surface, κ is the turbulent kinematic energy, ε is the dissipation rate of the turbu-

lent kinematic energy, and C1ε, C2ε and γ0 are characteristic constants of the κ − ε model:

C1ε = 1.44, C2ε = 1.92, γ0 = 1.30, and Cµ = 0.09.

The coupling between the equation for κ and the equation for ε with the momentum equation is

made by the turbulent kinematic viscosity.

νT = Cµ

κ2

ε

The Reynolds stress term U ′
iU

′
j is given by:

−U ′
iU

′
j = νT (

∂Ui

∂xj

+
∂Uj

∂xi

)−
2

3
κδij

The system employs the prgh, which is the difference between the real pressure field p and the

field ρg⃗ · x⃗ :

prgh = p− ρg⃗ · x⃗

Here g⃗ is the gravity acceleration and x⃗ is the location of the fluid particle.
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The transient solutions were obtained with the PIMPLE algorithm in the PISO mode. The nu-

merical method applied to solve each differential operator of the system of equations Eq.(3) and

the order of convergence are listed in Table (1). In the OpenFOAM framework the specifica-

tion of how each differential operator will be solved is made through the dictionary fvSchemes.

Table (1) shows the scheme employed to solve each operator in the system of equations given

by Eq.(3). The Gaussian scheme refers to the Standard Gaussian finite volume integration

that is based on summing values on cell faces which must be interpolated from cell cen-

ters (SG.OpenFoam.ESI (2013),UG.OpenFoam.ESI (2013)). The interpolationSchemes sub-

dictionary allows the user to specify the interpolation method for the task of calculating the

value of the analyzed variable on the corresponding cell face based on the known values at cell

centers.

Term Scheme Order of convergence Interpolation scheme
∂
∂t

, ∂2

∂t2
Euler O(h)

∇ Gauss O(h2) linear

∇· (ρϕ, U) Gauss O(h2) linear

∇· (ϕ, α) Gauss O(h2) vanLeer

∇· (ϕ, κ) Gauss O(h) upwind

∇· (ϕ, ε) Gauss O(h) upwind

∇2 Gauss O(h2) linear corrected

Table 1: Numerical scheme and order of convergence of each differential operator of the system of Eq.(3).

4 MESH GENERATION AND BOUNDARY CONDITIONS

The meshes used in this problem were generated using Gmsh Version 2.4.2 (Geuzaine et al.

(2009a),Geuzaine et al. (2009b)). Gmsh is an open-source three-dimensional finite element

grid generator. In Figure (3) we display the geometric domain which is a cylinder of 1.2m
height and 1.0m of radius. At the bottom of the cylinder, there is an orifice with diameter

0.24m, which may be centered in some cases and non-centered in others. The meshes are

non-structured composed by tetrahedrons, in which no transformation exists that could get a

meeting of the grid lines at right angles, and besides the nodes coordinates, a conectivity list

should be specified (Dari and Buscaglia (1994)). Due to the fact that in a next step it is planned

to add more details inside the tank, we choose a non-structured mesh because of the ability of

nodalize very complex geometries. In Figure (4) we show a typical surface mesh used along this

work. During the meshing procedure, physical surfaces should be defined in order to apply the

associated boundary conditions for each one. For this problem we have defined four physical

surfaces that bounds the geometric domain:

• Upper wall

• Floor

• Lateral wall

• Hole
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Figure 3: Geometric domain. Definition of “Physical Groups” where BC will be applied.

Figure 4: Non-structured mesh of 703707 tetrahedrons. Only the surface mesh is shown.

Mesh number N tetrahedrons Volume [m3] hcell [m] Aspect ratio Min. Vol. [m3] Max. Vol. [m3] Mesh non-orth Max. angle [o] Max. Skewness

1 2260711 3.76970 0.01186 9.0000 1.97× 10−10 1.66× 10−5 70.5288 1.0000
2 727575 3.76942 0.01730 7.6197 1.26× 10−9 4.18× 10−5 70.5295 0.9985
3 370512 3.76912 0.02167 7.8162 4.83× 10−9 8.67× 10−5 71.1327 0.8934

Table 2: Main properties of meshes.

Near the discharge hole, a graded refinement was applied (Figure (4)). Table(2) describes the

main features of the meshes used in this work. Mesh number (1) is the finest one and the results

obtained with it will be used as the “true solution”.

There are some mesh features regarding grid quality that may affect the accuracy of the solution

obtained by the finite volume method (Ferziger and Perić (2002)). In first place, the calculation
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of convective fluxes have maximum accuracy if the line connecting the two centers of neigh-

boring control volumes (CV) pass through the center of the common face. A measure of the

distance between the center of the face and the intersection of the line connecting the two CV

centers with the common face relative to the size of the cell face is known as skewness. The

smaller the skewness is, better quality of the mesh is get. Skewness can be reduced through

local grid refinement. It can be seen from Table (2) that mesh (3) has the highest skewness.

On the other hand, a maximum accuracy in the computation of diffusive flux is obtained when

the line connecting the neighboring CV centers is orthogonal to the cell face and passes through

the cell-face center. This is due to the fact that orthogonality increases the accuracy of the cal-

culation of the derivative in the direction normal to the cell-face. Another parameter important

for accuracy is the angle between the line connecting neighboring CV centers and the cell-face

normal (Mesh non-orth Max.angle). In Table (2) it can be seen that the three meshes have al-

most the same non-orth Max. angle. The aspect ratio is another parameter which express the

ratio between the longest and the shortest edges. It should be as close as unity as possible due

to the fact that tetrahedrons with large aspect ratios may induce oscillations in the calculation of

velocity component in the direction of the longest side of the CV. Further details can be check

in Ferziger and Perić (2002).

The boundary conditions (BC) applied on each physical surface are listed in Table (3).

Physical surface BC U BC prgh BC νT BC κ BC ε BC α

Upper wall pressureInletOutletVelocity totalPressure calculated inletOutlet inletOutlet inletOutlet

Floor slip buoyantPressure nutkWallFunction kqRWallFunction epsilonWallFunction zeroGradient

Lateral wall slip buoyantPressure nutkWallFunction kqRWallFunction epsilonWallFunction zeroGradient

Hole zeroGradient fixedValue calculated zeroGradient zeroGradient zeroGradient

Table 3: Boundary condition applied on each physical surface.

5 RESULTS

A three grid approach was used in order to quantify the uncertainty in the calculations due to

the spatial discretization. To make the analysis we have chosen the modulus of the velocity

averaged in the discharge hole area, because it is the variable employed to make the calcula-

tion of the remaining liquid height in the tank by using the mass conservation. The Table (4)

sum up the values for |U| for the first second of time evolution of the problem. To quantify

the discrepancy between them, the Table (5) shows the relative error assuming that the most

precise solution is obtained with the mesh (1). It can be seen that for the mesh (2), an error

lower than 0.050% is achieved and the computing time is much lower than using the mesh (1).

For the following simulations, meshes of sizes similar to mesh (2) were used, and the domain

decomposition based on the graph partitioning method implemented through Scotch library was

used in order to optimize the computing times (Pellegrini (2009)). It should be remarked that

all these calculations were made considering a centered discharge hole.

In Figure (5) we show the velocity profile in the direction of the principal component of the

flow along the discharge hole computed with the three meshes described in Table (4). It can be

seen that a quite good agreement exists between the solution obtained with mesh (2) and the

finest mesh number (1). In this case the relative error is lower than <2% far from edges but

suddenly grows toward the hole boundaries. It can also be seen that the solution obtained with

the coarsest mesh number (3) reveal that a velocity profile with lower mean velocity than the

case associated with mesh (1) and (2) is computed. For further analysis, meshes with similar

characteristics than mesh (2) will be used as a compromise solution with the computing time.
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Figure 5: Velocity profile in the y direction along the diameter of the discharge hole for t = 0.4s. (Inset) Relative

error on velocity for the solutions obtained with meshes (2) and (3).

In order to obtain the remaining liquid height inside the tank, Figure (6) shows a sequence of the

discharge procedure during the first 15 seconds of the evolution. In particular we show a case

with a non-centered hole which center is located in (0.4; 0.0; 0.4)m. The total pressure field and

the velocity field are shown in each cut of the geometric domain. It can be seen that the initial

total pressure at the bottom equals the liquid column and the maximum Reynolds number at the

discharge hole is nearly ReD = 106 from the very beginning of the transient and during the first

five seconds of the dynamics.

Due to the fact that in the present problem the relevant variable to describe the behavior is

the remaining liquid height, in Figure (7) we show in a comparative manner the computed

liquid height. In particular, the remaining liquid height in the tridimensional calculations was

determined in two ways:

• Method 1: By a local measurement over a vertical line of the level of the indicator function

for different values: α = 0.01, α = 0.50 and α = 0.99.

• Method 2: By measuring the volumetric flow in the physical group Hole and applying the

mass conservation.

In particular, we display the associated curves with the case shown in Figure (6),with a non-

centered hole, and an identical case but with a centered discharged hole. It can be seen that

almost no difference exists between them. As a lower threshold for the discharge time, we also

display the theoretical solution given by Eq.(2). It can be seen that the numerical solutions and

the theoretical solution have a similar behavior but the last one predicts a quicker discharge

time. The difference could be due to the fact that the theoretical solution does not takes into

account the sudden contraction that occurs near the hole neither consider the dissipation caused

by the turbulent flow.
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We also display the computed liquid height obtained in a local manner (method 1) for three

different values of the indicator function. The gradient of the indicator function widespread in

approximately 6 cm in the vertical direction. As a check of consistency, from Figure (7) it can

be seen that the evolution obtained with method 2 lies right in the middle of the evolutions com-

puted by method 1. This points out that the numerical schemes selected transport the indicator

function α in an accurate manner without loss of mass.

Time [s] |U |hole
mesh 3[

m
s
] |U |hole

mesh 2[
m
s
] |U |hole

mesh 1[
m
s
]

0.0 0.00000 0.00000 0.00000

0.2 3.32454 3.37809 3.37829

0.4 3.31183 3.36176 3.36162

0.6 3.29691 3.34673 3.34545

0.8 3.28203 3.33141 3.32985

1.0 3.26707 3.31511 3.31382

Table 4: Modulus of velocity averaged in the discharge hole area.

Time [s] ∆|U |hole
mesh 2[%] ∆|U |hole

mesh 3[%]

0.0 0.000 0.000

0.2 0.006 1.591

0.4 0.004 1.481

0.6 0.040 1.451

0.8 0.050 1.436

1.0 0.040 1.411

Table 5: Relative error of the modulus of velocity averaged in the discharge hole area.

Figure 6: Simple model of a draining tank full of light water up to a height of 1m. The radius of the tank is 1m

and a non-centered discharge circular area of 0.24m of diameter is located at the bottom of it. In the left cut we

show the total pressure field, while in the right side of the cut we show the modulus of the velocity during a time

sequence of the draining process. The remaining liquid height after 15 seconds of evolution is 0.4m.
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Figure 7: Temporal evolution of the remaining liquid height inside the tank. Three cases were considered: (A)

The theoretical approximation. (B) Simple model with OF with a centered discharge hole. (C) Simple model with

OF with a non-centered discharge hole. No remarkable difference is observed on the global discharge dynamics

between the cases with a centered hole and non-centered hole. The location of the interphase obtained by a local

measurement of the indicator function (α) for different values (method (1)), contains right in the middle the results

obtained by method (2).

6 CONCLUSIONS

In this work we have shown a numerical model to analyze the main features of the discharge

dynamics of a cylindrical tank using the OpenFOAM framework.

We have shown a posible and accurate chain of tools that allow us to successfully made simu-

lations to evaluate the performance of the system during the required time of the problem.

The three grid analysis allowed us to quantify the uncertainty introduced by the space discretiza-

tion in compromise with the execution times. For the ranges and meshes analized, the relative

error is lower than <1% for the modulus of velocity averaged in the discharge hole area, while

the relative error of the velocity profile in the discharge hole is lower than <5% far away from

edges.

By computing the position of the free surface with two different methods, we verify that the

indicator function is transported in an accurate manner without a significant mass loss. We also

evaluate that the position of the discharge orifice at the bottom of the tank does not play any

significant role on the global draining dynamics.

This simple problem allow us to setup all the details involved in a high quality CFD analysis

according to our computing capacity due to the perspective of this work implies a more complex

and detailed geometry.
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