
A COUPLED SCHEME FOR THE DETERMINISTIC SAFETY
TRANSIENT ANALYSIS OF THE ATUCHA I NUCLEAR

POWER PLANT

Theler, Germána, Gómez Omil, Juan Pabloa and Mazzantini, Oscarb

aTECNA Estudios y Proyectos de Ingeniería S.A.

Grupo de Cálculo y Análisis de Sistemas Nucleares, Buenos Aires, Argentina

bNucleoeléctrica Argentina S.A.

Grupo de Licenciamiento, Seguridad y Cálculo del Núcleo, Lima, Argentina

Keywords: Atucha, coupled calculations, RELAP, FSAR, safety analysis

Abstract. Every nuclear power plant in the world has to solidly prove that its reactor safety systems

are able to cope with any design-basis accident situation in a satisfactory way using sound mathemat-

ical models and computational tools. On the one hand, more accurate models are developed as new

experimental results are obtained using innovative test loops. On the other hand, computer hardware and

software tools are being continuously improved including remarkable breakthroughs such as massive

parallelization methods or GPU-based computations. Therefore, deterministic safety analysis of nuclear

power plants ought to be regularly updated using state-of-the-art techniques. This article summarizes

how different branches of nuclear engineering—namely neutronics, thermalhydraulics, control systems

and computational fluid-dynamics—have to be merged in order to perform coupled transient calcula-

tions considering the rather different phenomena that take place within a nuclear reactor core, together

with the actuation of the associated safety systems. In particular, the work is focused on the case of a

loss-of-coolant accident that requires the fast injection of a boric acid solution into the moderator tank.

This computation involves different computer codes, each solving a particular engineering problem. The

space and time-dependent evolution of the boron plume is computed by a CFD code and fed into a neu-

tron spatial kinetic code, that takes into account the thermalhydraulic conditions of the core—which are

computed by another code—evaluates the instantaneous power distribution. Additionally, the plant sta-

tus is monitored by a computational implementation of the reactor control and protection systems which

command the actuation of the appropriate safety mechanisms that drive the plant to a safe condition.

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (artículo completo)
Graciela Bertolino, Mariano Cantero, Mario Storti y Federico Teruel (Eds.)

San Carlos de Bariloche, 23-26 Setiembre 2014

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

Atucha I is a pressure-vessel heavy-water reactor with online full-power refueling, both

cooled and moderated by heavy water. The plant is owned and operated by Nucleoeléctrica

Argentina S.A, and started commercial operation on March 1974 rendering it as the first Nu-

clear Power Plant that has been commissioned in Latin America. Due to licensing requirements,

the Final Safety Analysis Report (FSAR) and in particular, chapter 15 “Accident Analyses” has

to be updated. The analysis of postulated events that trigger certain plant dynamics that corre-

spond to incident and accidental scenarios have to be computed using state-of-the-art mathemat-

ical models and computer codes. These methods include up-to-date experimentally-validated

two-phase flow models and correlations, CFD-based calculations in complex geometries, spa-

tial neutron kinetics and a detailed representation of the electronics that implement the reactor

control and protection systems.

The reactor core has 250 vertical cooling channels, each one containing one fuel element.

The complete fuel column has a height of approximately 6 meters, whereas the active length

is 5.30 m long, consisting of 37 rods with a Zy-4 cladding arranged to form an array of con-

centric circles. Within the reactor pressure vessel, the moderator and the coolant are separated.

Due to reactivity reasons, in average, the moderator is maintained approximately 100◦C colder

than the coolant. The moderator tank provide small nozzles that communicate with the upper

plenum in such a way that both the moderator and the coolant are kept at the same pressure

of 115 bar. The original gross electric design power was 330 MWe with a thermal reactor

power of 1100 MW. Two changes were implemented afterward: in 1977 the gross power was

increased up to 357 MWe (8%), generating a net power of 335 MWe and a thermal power of

1179 MW. From 1995 up to 2000, a progressive conversion from natural uranium to slightly

enriched uranium (0.85% of enrichment) was performed.

The plant code RELAP provides both state-of-the-art mathematical models and experimen-

tal correlations of two-phase heat transfer and flow. The reactor control and protection systems

involve many common logic components such as threshold comparators with hysteresis, sliding

limiters, dead bands, etc. that can be implemented using RELAP’s control elementary compo-

nents and logic trips. However, this implementation results in a cumbersome input file that is

hard to debug, to maintain and that takes up almost all of the available component slots provided

by RELAP which could lead to the inability to implement some in-built models like setting the

power dissipated in a heat structure using control variables for a detailed representation of the

core. Even more, for the case of Atucha II (which includes also an intermediate layer of limi-

tation besides the control and protection systems) it was impossible to implement the control,

limitation and protection systems using RELAP’s components to the required level of detail for

transient operational and safety analysis. It was then decided that in order to perform the cal-

culations needed for the Accident Analyses in Chapter 15 of the FSAR a coupling mechanism

between RELAP and an external code that implemented the control logic was needed.

With the objective of updating the FSAR of Atucha I, besides the implementation of the re-

actor’s control and protection logic as a set of Fortran routines that interact with the plant model

in RELAP, the introduction of a three-dimensional neutronic kinetics is desired. In this work,

a brief review of the previous works about coupling RELAP with external codes is performed.

Then, the proposed method for the update of Atucha I’s FSAR is introduced and compared to

the previous schemes. The main features of the proposed coupling scheme are illustrated with

excerpts of input files and short examples of application.

G. THELER, J.P. GOMEZ OMIL, O. MAZZANTINI2940

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

control &

protection

point

kineticsplant

dynamics

RELAP

Figure 1: RELAP provides means to compute the plant dynamics, the neutron point kinetics

and the control logic. However, the control components are not flexible enough to model the

control and protection systems of Atucha-like reactors up to the required level of detail.

control &

protection

ReaLL
External

Code

point

kineticsplant

dynamics

RELAP state

vector

control

vector

Figure 2: The main objective of the previous works was to be able to couple RELAP to an

external code that emulates the control and protection systems (Reaktor Leistung Leittechnik).

2 PREVIOUS WORKS

In principle, the plant code RELAP is able to model the plant dynamics, the neutron ki-

netics using the point reactor equations and control logic (figure 1). However, as discussed

in the introduction, the facilities provided by RELAP to model the control and protection sys-

tem of an Atucha-like reactor are not satisfactory for the required level of detail. The main

original objective was thus to be able to exchange information between the plant code RELAP

and a generic external code that should emulate the reactor control, limitation (in the case of

Atucha II) and protection systems. In the German slang, these routines are known as ReaLL

that stand for Reaktor Leistung Leittechnik (figure 2) and due to historical reasons are written

in FORTRAN 77. as a preliminary approach, RELAP should generate a status vector composed

of a certain number of properties (temperatures, mass flows, levels, valve positions, etc.) which

ought to be read by ReaLL, which in turn generates a control vector composed of a number of

actions (movement of control rods, signals to open or close valves, etc.). This control vector is

to be read back by RELAP so the state vector in the next discrete time can be computed.

A brief description of the coupling schemes between RELAP and generic external codes that

were developed ad-hoc for the Atucha II Nuclear Power Plant follows.

2.1 Coupling through RELAP’s restart and input files

This scheme was first proposed by the University of Pisa to perform safety transient analysis

of Atucha II. It is based on information exchange using plain-text files. The main idea can be

resumed with the following steps:

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (2014) 2941

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1. Execute RELAP with an input file that starts a new problem and advances exactly one

single time step

2. Execute again RELAP in strip mode to extract the values of the control variables con-

tained in the state vector

3. Execute a program that reads the ASCII file with the state vector, advances one single

step of the ReaLL routines and writes the control vector into an ASCII file

4. Execute a program that reads the ASCII file with the control vector and generates a RE-

LAP input file where the control variables that belong to the control vector are re-defined

as contants with the values computed by ReaLL

5. Execute RELAP with such input file that advances exactly one single time step loading

the state from a restart-plot file

6. If t < tfinal go to step 2, else quit

The main advantage of this method is that there is no need to modify RELAP’s source code.

However, even though the file-access time can be reduced by using RAM disks, the overhead

of starting and executing different codes in each time step renders this method very inefficient.

Besides, the scheme is fairly rigid and the conversion between the binary data and the ASCII

representation loses precision. Finally, debugging the ReaLL routines to track back why a

certain signal was triggered is tricky because a new session has to be started whenever the time

advances one step. Nevertheless, this method was used to some extent to perform coupled

transient analysis.

2.2 Coupling through RELAP’s control variables

The Argentinian National Atomic Energy Commission (CNEA) developed a modified ver-

sion of RELAP to allow coupled calculations with an external code (Maciel, 2011). This mod-

ified version is called RELAP_MEM and incorporates two new control variable types, namely

“ivar” and “ovar”. RELAP_MEM thus parses the input file as usual but detects these new types

of control variables and, at each time step, when the routine convar that updates the control

variables is executed, first a certain pre-defined segment of shared memory (the state vector)

is written with the content of the ovar-variables following its numerical order. Afterward, the

values of the ivar-variables are overwritten with the information read from another pre-defined

segment of shared memory (the control vector). The synchronization is performed by sending

and receiving a single dummy byte through a shared pipe.

The coupling is effectively achieved when there exists another code that performs the ex-

act opposite operations, i.e. reads the status vector from the shared segment written by RE-

LAP_MEM and writes the control vector into the segment that RELAP_MEM reads, synchro-

nizing accordingly through the shared pipe. Not only should this code read and write data from

shared memory, but it also should pass the information from the state vector to the appropriate

variables of the ReaLL routines and then build the control vector that is to be written into the

shared memory object out of the resulting variables computed by ReaLL. The flow of informa-

tion is depicted in figure 3.

This scheme is of course faster than the Pisa method, and was successfully used to perform

coupled safety transient analysis of Atucha II, which was the main objective. Nevertheless, this

G. THELER, J.P. GOMEZ OMIL, O. MAZZANTINI2942

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

control &

protection

ReaLL
Ctrl Externo

control(96) = zg1

state control

Shared memory

RELAP_MEM

point

kinetics

plant

dynamics

state(123) = ovar(123)

ivar(96) = control(96)

ovar 123 rkfipow

ivar 96 ctrlvar 101

pkbez = state(123)

interface

Figure 3: The coupling scheme proposed by CNEA. A modified version of RELAP called

RELAP_MEM incorporates two new types of control variables “ivar” (for example the position

of the G10 group of control rods zg1) and “ovar” (for example the instantaneous fission power

pkbez) which are read and written into two pre-defined shared memory objects. An external

code reads the state vector, passes the information into the ReaLL routines, advances one time

step, builds the control vector out of the resulting Fortran variables and writes it back to the

shared memory object which is finally read by RELAP_MEM. The interface routines of the

external control code have to be re-written each time the elements of the status or control vector

change.

approach has some limitations that, if overcame, may improve the usage of the code. For exam-

ple, RELAP provides a limited number of control variables and therefore there is an inherent

limit to the size of the data exchanged. Another issue is that the proposed scheme is based on

pre-defined shared memory segments and synchronizes using a shared pipe, which implies that

only one external code can be coupled with RELAP. Moreover, should the order of appearance

of individual variables in both the state and control vector change, a manual intervention to

update the interface routines in the external code is needed. A minor con is that RELAP_MEM

only works for a definite version of RELAP (namely version 5 mod 3.3) and runs only under

Windows.

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (2014) 2943

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

2.3 Coupling through RELAP’s fast array

All the disadvantages of the RELAP_MEM method are minor when compared to the first

approach. However, this layout lacks the possibility of addding another code to the scheme,

which is needed to include a spatial neutronic kinetics code. Therefore, TECNA S.A. acceded

to develop a new coupling layout for NA-SA with the ability to couple an arbitrary number of

external codes to RELAP.

In order to accomplish this objective, the information exchange and synchronization mecha-

nisms should be flexible and general, instead of fixed and pre-defined. Moreover, the access to

RELAP data should not be based on control variables because the already-discussed imposed

limit on the number of variables prevents the temperature, densities and power distributions

within the reactor core—which are needed for spatial neutron kinetics with thermalhydraulic

feedback—to be successfully exchanged between the codes. In this regard, TECNA developed

a modified version called RELAPCPL that besides reading the input file as usual, also reads an-

other file known as the “coupling file.” This file contains alphanumeric keywords that instruct

RELAPCPL to export to (import from) an arbitrary number of shared memory objects—whose

names are defined in the coupling file—an arbitrary number of volume properties (i.e. tempf,

voidg, etc.), junction properties (i.e. mflowj, velgj, etc.), heat structure properties (i.e. htpown,

htvatp, etc.), component properties (i.e. vliq, przlvl, etc.), control variables properties (i.e. cn-

varn, cnvsan, etc.), general table properties (i.e. gtbl) and/or neutron kinetic properties (i.e.

rktpow, rkrn, etc.).1 The instantaneous value of these properties are directly taken from the

internal memory of the RELAP solver, which is known as the “fast” array. When a coupling

file is given using the commandline argument “-a” (which is present but not used in the original

RELAP code), the modified version RELAPCPL locates the offset within the fast array where

RELAP stores each property asked for in the coupling file. Then, each time step (or every k

time steps, or every ∆t seconds, as defined by the user in the coupling file) RELAPCPL syn-

chronizes with the external codes using shared semaphores and exchanges information using

shared memory segments as instructed in the coupling file.

This extension is implemented as a number of routines written in C that parse the coupling

file at start-up and perform the actual synchronization and data exchange at each time step or as

set in the coupling file. The original Fortran routines of RELAP are also slightly modified so the

C functions are called when needed. The actual information exchange is performed inside the

tran routine after calling the RELAP’s convar subroutine that processes the control variables.

The extension was applied to various versions of RELAP, namely version 5 mod 3.3, version 5

3D v2.4.2, SCDAP mod 3.3 and SCDAP mod 3.4. RELAPCPL can be compiled with a variety

of compilers and run both under Windows and GNU/Linux architectures. Some details of the

rationale behind the scheme can be found in Theler (2013). Figure 4 shows an excerpt from a

valid coupling file for RELAPCPL.

With the extended code, complex coupled calculations involving neutronic codes and even

a RELAP-RELAP coupling can be obtained, as shown in Mazzantini et al. (2011). The simple

ivar-ovar coupling scheme is a particular case that RELAPCPL is able to reproduce. In effect,

except for the introduction of semaphores for the synchronization, almost the same external

interface code of figure 3 could be coupled to RELAPCPL, provided the appropriate coupling

1The proposed nomenclature of referring to properties is taken from RELAP Programmers Manual and may be

different to the usual nomenclature used when requesting minor edits. The reason is that there are some properties

that may be useful to import or export—such as the scaling value of a control variable—that are not available as

minor-edit requests.

G. THELER, J.P. GOMEZ OMIL, O. MAZZANTINI2944

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

RELAP_EXPORT {

SHARE_NAME state

SEMAPHORE_READY sem_state

SCALAR cnvarn 3000 0 * estacio

SCALAR tempf 205 04 * tka1

SCALAR tempf 245 04 * tka2

[...]

SCALAR cnvarn 2306 0 * l_diesel3

SCALAR cnvarn 2307 0 * l_diesel4

}

RELAP_IMPORT {

SHARE_NAME control

SEMAPHORE_WAIT sem_control

SCALAR cnvarn 9200 0 * ipkag_1

SCALAR cnvarn 9201 0 * yk1a01_1

SCALAR cnvarn 9202 0 * yk1a02_1

[...]

SCALAR cnvarn 9507 0 * rises

SCALAR cnvarn 9508 0 * mwtr1i

SCALAR cnvarn 9509 0 * mstm2i

}

Figure 4: Excerpt from a RELAPCPL coupling file. An arbitrary number of exports and/or

imports can be defined, each one containing an arbitrary number of RELAP properties. For

exports, the properties asked for (the value of control variable 3000, the fluid temperature of

the fourth cell of pipe 205, etc.) are written into the POSIX shared memory object (“state”)

in the given order. For imports, the properties asked for (the value of control variables 9200,

9201, etc.) are read from the POSIX shared memory object (“control”). It should be taken

into account that the internal RELAP fast array is accessed. Exports will result in copies of

the properties computed by RELAP. Imports will directly write the data contained in the shared

memory object to the fast array, which may be overwritten again by RELAP if the imported

property is a derived one. For example, to import control variables, they should be declared as

“constant” in the RELAP input file, otherwise their content will be rewritten. In the same sense,

to import thermalhydraulic information, the internal energy of a cell has to be read instead of

the fluid temperature, as this last property is computed from the former by RELAP whenever

the time step is advanced.

files are prepared. Nevertheless, in the spirit of flexibility regarding data manipulation and

execution control, a different approach was chosen. Instead of writing a set of dummy interface

routines that just passed information back and forth from shared memory and Fortran routines,

an attempt to write a control code able to compute algebraic and differential operations to signals

(such as time integrals or first-order lags) and to output them to ASCII files in an user-controlled

way using plain text files with alphanumeric keywords (in the same sense of coupling files) was

performed. This control code should be able, on the one hand, to exchange information with

shared memory segments and to synchronize the processes involved using shared semaphores

in a way completely defined by keyword written by the user in the input file. On the other hand,

it should be able to execute arbitrary binary instructions given in the form of binary objects (i.e.

the ReaLL routines).

Such external control code was called colach, and it provided some added flexibility to the

user with respect to the external control code of figure 3. For example, it allowed the user to

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (2014) 2945

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

[...]
IMPORT SHM_OBJECT state {
 [...]
 pkbez
 [...] }
CALL reall
EXPORT SHM_OJBECT control {
 [...]
 zg1
 [...] }
[...]

input file

ReaLL

state control

Shared memory

RELAPCPL

point

kinetics

plant

dynamics

cnvarn(101) = control(96)
state(123) = rkfipow

pkbez = state(123)
colach

interface

colach

pkbez = pkbez
ReaLL

interface

colach

zg1 = zg1
ReaLL

control(96) = zg1
colach

colach

colach's implementation of

IMPORT/EXPORT keywords

in the input file

122 scalars

more scalars

95 scalars

more scalars

some colach instructions

more colach instructions

coupling file

RELAP_EXPORT {
 SHARED_NAME state
 [...]
 SCALAR rkfipow 0 0
 [...]
}
RELAP_IMPORT {
 SHARED_NAME control
 [...]
 SCALAR cnvarn 101 0
 [...]
}

122 scalars

more scalars

95 scalars

more scalars

Figure 5: The colach-based approach to coupling RELAP with the ReaLL routines. The possi-

bility of defining how the shared memory objects are accessed and how the output is generated

using an input file instead of hard-coding instructions in the executable gives the user more flex-

ibility than the “ivar-ovar” approach shown in figure 3. The colach’s input file can be edited by

the user and is expected to mirror RELAPCPL’s coupling file. However, the interface routines

that transfer values between colach and ReaLL have to be manually updated by the user should

the state or control vectors change. The ReaLL routines coded in FORTRAN 77 are statically

linked into the colach executable, so a complete re-compilation is needed also if some parame-

ter that is not contained into the exchange vector is to be changed for a certain computation or

a change in the ReaLL routines is needed for a given transient.

control the access to shared objects and the output text files from a keyword-based input file

that was read at run-time instead of having to re-compile the code each time a modification was

needed. The colach approach is depicted in figure 5. Apart from performing safety transient

analysis for FSAR Chapter 15, the coupling scheme can be used for other applications. Indeed,

the University of Pisa employed the colach-based approach to allow RELAP 3D’s embedded

neutronic code NESTLE to efficiently read a time-dependent distribution of boron inside the

moderator tank of Atucha II computed by CFD calculations. The resulting reactivity was then

used to compute the actual safety transients using point kinetics.

The ReaLL routines that emulate the limitation and protection systems are compiled into

object files which are statically embedded into the colach executable. These routines are based

G. THELER, J.P. GOMEZ OMIL, O. MAZZANTINI2946

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

on the code DYNETZ developed by KWU for the Atucha II project, which was itself a con-

tinuation of the code NLOOP, applicable to German Convoy reactor design. In this layout, the

perturbations that trigger a certain transient situation (e.g. a pump failure) are supposed to be

hard-coded into the Fortran source code (e.g. by changing the status of a flag) and the cor-

responding executable should be re-compiled. Thus, some computations are performed with

one executable and some others with another one. The colach-ReaLL solution developed by

TECNA included a simple difference-tracking system that reported either to the screen or to the

output files which changes a particular binary contained with respect to a certain base source

tree. In any case, this coupling scheme was successfully utilized by NA-SA and PISA to study

the postulated transients in Chapter 15 of Atucha II’s FSAR using RELAP 3D as the plant code.

3 PROPOSED COUPLED CALCULATION LAYOUT

As stated in the introduction, NA-SA is updating the Atucha I’s FSAR using state-of-the-art

codes, models and methods. With the objective of designing a robust coupled layout that could

be used for a wide variety of applications, TECNA decided to tackle the design flaws of the

colach approach and proposed a similar but slightly different scheme. First, the code wasora

replaced colach. The new code follows the same basic ideas but it was re-written almost from

scratch shifting complexity from algorithms to data structures, as recommended by the rule of

representation of the UNIX Philosophy (Raymond, 2003), which instructs to “fold knowledge

into data so code logic can be stupid and robust.” These features include pointers to structures,

linked lists, hashed tables, numerical libraries, a debugger-like interactive interface and the

possibility to load dynamic plugins at run-time.

It is this last feature that introduces most of the novelty of the scheme with respect to the

previous approach taken by NA-SA. In this layout, the Fortran ReaLL routines are compiled

along with a few C functions that act as fixed entry points of a shared library which can be

dynamically loaded at runtime from wasora. Apart from this fact, the main difference with

the colach-based approach discussed in section 2.3 is that the plugin’s configuration script that

builds the makefiles is able to parse the Fortran routines (provided they follow the DYNETZ

standards) and detect the storage location of all the global variables, vectors and matrices—i.e.

the ones stored inside common blocks—which are involved in the computation of the ReaLL

routines. Therefore, after loading the plugin, the initialization entry point function dynamically

defines equivalent variables, vectors and matrices that are directly accessible from the wasora

input file and whose value holder points directly to the location of the corresponding Fortran

symbols within the common blocks. Therefore, any symbol that is relevant for the ReaLL

computation—whether it belongs to the state or control vector or not—can be accessed either

from wasora or from Fortran without needing to explicitly copy the values when advancing

the time step. Any variable can be initialized from a Fortran block data, be assigned from the

wasora input—optionally getting its value from an algebraic expression, an ASCII or binary

file or, of course, a shared-memory object—and be transparently used inside a Fortran routine.

Every variable can be an input and every variable can be an output. The scheme is depicted in

figure 6.

With this approach, the details of the coupling scheme are completely defined by instructions

contained both in RELAPCPL’s coupling file and in wasora’s input file. Besides, the content

of any global symbol can be accessed from the wasora input, its value overwritten using wa-

sora’s facilities (which include algebraic expressions, one and multi-dimensional interpolation

of point-wise defined functions, numerical integration and differentiation, etc.) and/or translated

into an ASCII representation via a user-defined C’s printf-compatible format string and written

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (2014) 2947

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

ReaLL

state control

Shared memory

RELAPCPL

point

kinetics

plant

dynamics

state(123) = rkfipow
cnvarn(101) = control(96)

pkbez = state(123)
wasora

control(96) = zg1
wasora

wasora

reall_cna1 plugin

initialization

ReaLL's common block

pkbez = &pkbez
wasora' holder

ReaLL's common block

 zg1 = &zg1
wasora' holder

coupling file

RELAP_EXPORT {
 SHARED_NAME state
 [...]
 SCALAR rkfipow 0 0
 [...]
}
RELAP_IMPORT {
 SHARED_NAME control
 [...]
 SCALAR cnvarn 101 0
 [...]
}

122 scalars

more scalars

95 scalars

more scalars

[...]
READ SHM_OBJECT state {
 [...]
 pkbez
 [...] }
CALL reall
WRITE SHM_OBJECT control {
 [...]
 zg1
 [...] }
[...]

input file

122 scalars

more scalars

95 scalars

more scalars

some wasora instructions

more wasora instructions

wasora's implementation of

READ/WRITE keywords in the

input file

code automatically generated by

the plugin's configuration script

Figure 6: The new proposed method to couple RELAP with the ReaLL routines. The RE-

LAPCPL side is identical to the colach case (figure 5). The improvement resides in the way

the ReaLL routines are incorporated into the control code wasora, which reads the pkbez vari-

able from the shared-memory object as before, but does not need to explicitly pass the value

to ReaLL because the holder of wasora’s pkbez variable points to the memory address of the

Fortran’s pkbez variable, and conversely for zg1. The need of recompilation is thus reduced.

The ReaLL plugin also takes care of the low-level implementation of the restart mechanisms.

Information about history and changes in the Fortran routines is included into the binary and

can be reported at run-time (see figure 8).

into a file, whose name can also contain evaluated expressions in its name. Under these con-

siderations, the cases where re-compiling the ReaLL plugin is mandatory are highly reduced.

These few situations include fictitious (but sometimes needed) cases where a ReaLL routine has

to be bypassed for example to simulate failure of the actuation of the control rods; sometimes

a limitation signal has to be reset before and after calling a ReaLL routine and a change in the

Fortran source is needed. Nevertheless, further improvements may even remove this drawback.

In the proposed layout, the C functions of the plugin use Bazaar as a version control system

and the Fortran source tree of the ReaLL routines use the Git version control system. Not only

G. THELER, J.P. GOMEZ OMIL, O. MAZZANTINI2948

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://bazaar.canonical.com/
http://git-scm.com/

(a)

(b)

Figure 7: Web-based interface of the Git distributed version control system showing (a) the

history of changes of Atucha I’s ReaLL routines and (b) the differential change of a particular

routine. The system is designed at coping with collaborative development and eases the man-

agement and tracking of changes in the code. For example, all the developers get an e-mail

notification each time a new commit is pushed into the repository.

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (2014) 2949

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://git-scm.com/

$ wasora -p reall_cna1 --version

reall_cna1 0.2.58 reall (2014-06-23 15:28:48 -0300 clean)

CNA1 ReaLL routines

plugin bzr branch gtheler@tecna.com-20140623182848-nq7wrsjispzb2vtz

plugin last bzr commit on 2014-06-23 15:28:48 -0300 (rev 58 clean)

plugin last build on 2014-07-04 14:14:59 -0300

reall_cna1 last git commit log message:

commit 97e368b3e452047b247503f03fe0e9a6d08bb8dc

Author: Juan Pablo Gomez Omil <jpgomezomil@debian>

Date: Thu Jul 3 17:20:37 2014 -0300

Incorporacion de la memoria del estado de las bombas previo a NOTSTR

--------8<------- git diff output --------8<-------

diff --git a/BKIN.for b/BKIN.for

index c6f01f7..aeb2349 100644

--- a/BKIN.for

+++ b/BKIN.for

@@ -235,7 +235,7 @@ C

& 0.412588,0.204799,0.000000,-1.055599/

C

!Temperature reactivity coefficient (coolant and moderator)

- DATA ALFA_COOLT, ALFA_MODT /2.73E-5, 8.57E-5/

+ DATA ALFA_COOLT, ALFA_MODT /2.51E-5, 8.42E-5/

C

!Density reactivity coefficient (only moderator)

DATA ALFA_MODD /13.633E-5/

diff --git a/POTRE1.for b/POTRE1.for

index 0bba233..35ff2ab 100644

--- a/POTRE1.for

+++ b/POTRE1.for

@@ -162,6 +162,10 @@ C

DIF3 = DIFF2 - (DIFF2 - DIF3)*EXP(-DZEIT/TAUPHI)

DIF33 = DIF3*V3

DIFF3 = DIF1 + DIF2 - DIF33

+C&&&&&&&&&

+! gth: eliminamos el control de potencia temporalmente

+ DIFF3 = 0.0

+C&&&&&&&&&

C

C LA POTENCIA ES ALTA

LEIH1 = .FALSE.

--------8<--------------8<----------------8<-------

compiled on 2014-07-04 14:16:02 by gtheler@barnie (linux-gnu x86_64)

with gcc (Debian 4.7.2-5) 4.7.2 using -g -O0

and GNU Fortran (Debian 4.7.2-5) 4.7.2 using -g -O0 -fdefault-real-8

--------- ------- ----- ---- ----

wasora 0.2.141 trunk (2014-07-03 20:50:36 -0300 clean)

wasora’s an advanced suite for optimization & reactor analysis

branch jeremy@tom-20140703235036-62ttgmvalw4k99pc

last commit on 2014-07-03 20:50:36 -0300 (rev 141 clean)

last build on 2014-07-04 14:15:00 -0300

compiled on 2014-07-04 14:16:02 by gtheler@barnie (linux-gnu x86_64)

with gcc (Debian 4.7.2-5) 4.7.2 using -g -O0 and linked against

GNU Scientific Library version 1.15

GNU Readline version 6.2

wasora is copyright (C) 2009-2014 jeremy theler

licensed under GNU GPL version 3 or later.

wasora is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Figure 8: The information about the branch history of the Fortran routines used to compile

the ReaLL plugin and the changes of the local working tree with respect to the last commit

are shown when run with the “-v” (show version) commandline option. The diff output is

highlighted with colors in GNU/Linux architectures. Using the reported hashes of the base

code (wasora), the plugin (reall_cna1) and the Fortran source (ReaLL), the actual source tree

and its history can be completely tracked back.

G. THELER, J.P. GOMEZ OMIL, O. MAZZANTINI2950

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

does this approach ease the concurrent development of both the plugin and the Reall routines

performed by a different number of experts of TECNA and NA-SA (figure 7), but it also allows

to incorporate information about the history of the Fortran source and its modification with

respect to the master repository into the binary object. This way, when a particular instance

of the plugin is loaded, the user can track back the history of both the plugin and the ReaLL

routines, locate the actual snapshot of source code that was used to generate it through the

hashes reported by the version control system and quickly identify the uncommitted changes

that correspond to the particular physical disturbance introduced into the code to model a certain

transient. All this information is embedded into the binary object, and is shown in the standard

output when wasora is instructed to load the plugin and called using the “-v” command-line

option used to report its version (figure 8). This feature represents a great improvement in terms

of code traceability over the simple diff-based solution of the colach approach, not to mention

the previous works in which changes in the Fortran source had to be manually merged and

updated by the user that performed the transient analysis run.

Moreover, as the Fortran source code is parsed and the actual composition of the global

common blocks can be known, a robust restart system can be implemented. In effect, the plugin

provides new keywords that instruct the code to read or write restart records from files in a

flexible way, as illustrated in figure 9. In the example, whether a new problem has to be started

or a previous state has to be loaded is defined by RELAP’s cards 100 and 103, whose contents

is exported by the coupling extension into shared memory, read by wasora and stored in the

variables called run_num, problemtype05 and restartnum (these instructions are given in the

file input.was). During the transient calculation, whenever RELAP writes a restart record itself,

e n d _ t i m e = i n f i n i t e # run u n t i l RELAP s a y s done = t r u e

NUMBER r e s t a r t = 2 # n u m e r i c a l code f o r r e s t a r t −t y p e prob lems i n RELAP

INCLUDE i n p u t . was # read da t a from RELAP

d e f i n e some wasora f i l e i d e n t i f i e r s

INPUT_FILE r e s t a r t _ l a s t " cna1 .%02.0 f . r s t " run_num−1

INPUT_FILE r e s t a r t _ c u r r e n t " cna1 .%02.0 f . r s t " run_num

i f RELAP s a y s t h e problem t y p e i s r e s t a r t , read t h e asked r e s t a r t r e c o r d

IF p rob l e mtype05 = r e s t a r t

DYNETZ_RESTART READ FILE r e s t a r t _ l a s t REGISTER r e s t a r t n u m RESET_TIME run_num <3.1

ENDIF

i f RELAP w r i t e s a r e s t a r t record , so s h o u l d we

IF i s c a l l r s t r e c 0

PRINT TEXT " \ # Sav ing r e s t a r t number " %02.0 f c o u n t

DYNETZ_RESTART WRITE FILE r e s t a r t _ c u r r e n t REGISTER c o u n t

ENDIF

DYNETZ_STEP # advance one s t e p o f ReaLL

INCLUDE o u t p u t . was # w r i t e da t a from RELAP

PRINT t d t pbez s u r h o

Figure 9: Example of a valid wasora input file (provided the reall_cna1 plugin was loaded with

the “-p” commandline option) that illustrates how the restart records can be flexibly accessed

using high-level plain-text keywords. The actual information exchange is performed in the

included files input.was and output.was. The keywords that start with “DYNETZ_” are provided

and interpreted by the plugin.

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (2014) 2951

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

the flag iscallrstrec0 is set to true and ReaLL is instructed to save a restart record too. Not only

is the proposed restart handling far more flexible than the previous works (up to and including

the colach approach), where the user had to manually change a reference to the size of the

common blocks if a variable was added or deleted, but also a run-time check is automatically

performed when loading restart records. This way, if the plugin is instructed to load a record

from a file which was generated with a different number of variables contained in the common

blocks, the inconsistency will be detected and the execution will stop with an error message.

Previous implementation would not detect such mismatch and proceed to load a binary blob of

data that would produce a shift of the memory contents resulting in corrupted values for the

individual variables.

To sum up, in the current coupling method, the plant is modeled by RELAP which is ex-

tended to export a state vector plus other administrative information (current time, time step,

flags that indicate the problem type, flag to write restart records, etc.) into a shared memory

object. If a proper wasora code mirroring the shared object definition of RELAPCPL’s coupling

file is to be constructed, then the details of how the information is exchanged are not relevant

for the final user, who has to pay attention to what information is to be printed into the standard

output and what is to be written into other output files. The execution can be stopped at any

point either manually or automatically by setting conditional breakpoints, to enter an interac-

tive debugger-like interface provided by wasora which can be used to watch the instantaneous

values of variables, vectors and matrices. If a more detailed debugging session is needed, an

external debugger can be attached to the wasora process so the individual instructions of the

ReaLL routines can be advanced and inspected step-by-step at the Fortran-instruction level.

3.1 Spatial neutron kinetics

For those transient cases where it is important to take into account the spatial dependance of

either the power distribution or the liquid absorbers (e.g. diluted boron injected by the second

shutdown system) within the core, the introduction of a neutronic code capable of comput-

ing three-dimensional core-level transient problems is needed. Previous works performed by

TECNA used an approach similar to the coupling-file RELAP extension and existing neutronic

codes were modified to be able to exchange information through shared memory objects. How-

ever, following the plugin-based approach of incorporating particular calculation codes into the

general wasora framework, the coupling mechanisms of a neutronic code can be generalized by

implementing it as a wasora plugin. This way, a file-based (i.e PISA’s) or a shared-object-based

coupled scheme (i.e. RELAP5CPL) can be obtained by importing and exporting the plugin’s

internal variable using wasora’s READ/WRITE keywords with the FILE or SHM_OBJECT ar-

guments (and optionally synchronizing with the SEM keyword), respectively. If the other code

that needs neutronic information is implemented also as a wasora plugin, then the information

can be exchanged by explicitly assigning the variables of one plugin to the content of the other

one.

In particular, for some cases contained in Chapter 15 of the Atucha I FSAR, the second

shutdown system is demanded. This system injects a solution of deuteroboric acid into the

moderator tank from high-pressure accumulators through three nozzles. The resulting spatial

and temporal distribution of boron concentration within the core is not trivial, and a detailed cal-

culation using three-dimensional CFD techniques with a spatial discretization mesh is needed

(figure 10). To incorporate this information into the neutronic code, a condensation of such fine

grid into the coarser grid of the core-level neutronic code is required. In the case of Atucha I, this

G. THELER, J.P. GOMEZ OMIL, O. MAZZANTINI2952

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 10: Computation of the transient spatial distribution of boron within the moderator tank

after the demand of the reactor second shutdown system using computational fluid-dynamic

techniques with the finite volume method with three million cells.

Figure 11: Incorporation of the CFD results of figure 10 into the calculation grid of the neutronic

code with approximately two hundred thousand cells. A set of scripts condense the results in the

fine grid into the coarse one, generating a set of ASCII files which can be read and interpolated

using the wasora framework as shown in figure 12.

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (2014) 2953

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

number o f f i l e s w i t h t h e boron d i s t r i b u t i o n (one per t i m e s t e p)

NUMBER n t i m e s 271

t h e s e two v e c t o r s c o n t a i n t h e s p a t i a l d i s t r i b u t i o n o f boron

i n t h e n e u t r o n i c code ’ s c a l c u l a t i o n mesh o f s i z e nx∗ny∗nz

VECTOR c l o u d _ l a s t SIZE nx∗ny∗nz

VECTOR c l o u d _ c u r r e n t SIZE nx∗ny∗nz

t h i s v e c t o r c o n t a i n s t h e i n s t a n t a n e o u s t i m e s a t which t h e

boron d i s t r i b u t i o n was computed

VECTOR t i m e s SIZE n t i m e s

nsub and ncore are a mesh r e f i n e m e n t f a c t o r

$3 i s read from commandline and i n d i c a t e s t h e i d o f t h e c ase

INPUT_FILE t i m e s c l o u d / t imes−$3−%gx%g−%g . d a t nsub nsub n c o r e

INPUT_FILE c l o u d c l o u d / c loud−$3−%gx%g−%g−%04.0 f . d a t nsub nsub n c o r e t i m e s (k +1)

read t h e f i r s t d i s t r i b u t i o n f i l e

IF i n _ s t a t i c

READ ASCII_FILE c l o u d c l o u d _ l a s t

READ ASCII_FILE t i m e s t i m e s

ENDIF

e n d _ t i m e = 2 . 5

d t = 1e−2

k_0 = 1

i f t i m e advanced enough , read t h e n e x t f i l e

IF 1000∗ t > t i m e s (k +1)

CLOSE c l o u d

k = k + 1

c l o u d _ l a s t (i) = c l o u d _ c u r r e n t (i)

READ ASCII_FILE c l o u d c l o u d _ c u r r e n t

ENDIF

l i n e a r l y i n t e r p o l a t e be tween t h e c u r r e n t and t h e l a s t f i l e s

x i = (1000∗ t−t i m e s (k)) / (t i m e s (k +1)−t i m e s (k))

t _ i n t e r p = (1− x i) ∗ t i m e s (k) + x i ∗ t i m e s (k +1)

v e c _ c a l c b o r o n (i) = 3800 ∗ ((1− x i) ∗ c l o u d _ l a s t (i) + x i ∗ c l o u d _ c u r r e n t (i))

advance one s t e p o f t h e s p a t i a l k i n e t i c s n e u t r o n i c c o m p u t a t i o n

PLUMITA_STEP

Figure 12: Excerpt from a wasora input with the plumita neutronic plugin that reads the in-

stantaneous boron distribution from a series of discrete ASCII files containing a vector of size

nx × ny × nz (order of magnitude 2 × 105). The actual boron distribution used in the tran-

sient neutronic calculation is linearly interpolated between the current and the previous file as

the time step advances. The neutronic plugin provides the PLUMITA_STEP instruction and

maps the wasora’s vector named vec_calcboron to the internal vector that holds the boron dis-

tribution for the neutronic computation. The rest of the instructions are provided by the wasora

framework.

G. THELER, J.P. GOMEZ OMIL, O. MAZZANTINI2954

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

step is performed by using a set of awk scripts that write the boron distribution within the neu-

tronic mesh as one ASCII file for a number of sampling time steps (figure 11). If the neutronic

code is implemented as a wasora plugin, this information can be easily read and incorporated

into the low-level vectors needed by the calculation code with the high-level instructions pro-

vided by the wasora code. Figure 12 illustrates one way of reading the discrete boron clouds

contained in the ASCII files and interpolating them so they can be evaluated at any arbitrary

time t, which in a coupled calculation is to be determined by RELAP according to the transient

termalhydraulic conditions. If, on the other hand, a classical point kinetics calculation is needed

instead of a full three-dimensional coupled computation, the proposed method of incorporating

the transient boron distribution into the neutronic code can be still be used to flexibly perform

an off-line computation of the boron reactivity-worth reactivity curve as a function of time to

be incorporated into RELAP’s point kinetics equations.

4 CONCLUSIONS

From the authors’ point of view, the proposed coupling scheme based on both shared-

memory objects and run-time dynamically loadable plugins gives far more flexibility and trace-

ability than the previous methods provided. The advantages overcome the added complexity

to the methodology of calculation and analysis of accidents. The collaborative development of

the ReaLL routines of Atucha I amongst several experts from NA-SA and TECNA was greatly

simplified by the implementation of a distributed version control system, that also allowed to

track full histories and particular modifications for the execution of transient problems. Writing

the low-level implementation of the restart mechanism in C from a parsed representation of the

Fortran common blocks allows to shift the focus of the end user away from the programming

details toward the analysis and debugging of results. The automatic checking of the format of

the binary restart records prevents the execution of ill-conditioned problems which may result

in unfruitful engineering time. Finally, the flexibility that the wasora framework provides for

reading data from assorted source not only allows coupled calculations to be completely defined

by plain-text input files but also complex computations such as the evaluation of the reactivity

worth of a transient boron cloud as computed with CFD techniques can be performed with rela-

tively low effort. As flexible as the RELAPCPL extension is as compared with previous works,

the plugin-based approach can be further exploited by re-writting RELAP as a wasora plugin so

fluid properties can be directly mapped to wasora variables, which can then be further accessed

by other calculation codes. For example, there exist a wasora plugin that is able to execute

arbitrary Python code, providing even further flexibility and extensibility, which was the main

objective of the proposed coupling scheme for deterministic safety assessment of nuclear power

plants.

REFERENCES

Maciel F. Coupling the RELAP code with external calculation programs (shared memory ver-

sion). Technical Report NUREG/IA-0405, U.S. Nuclear Regulatory Commission, 2011.

Mazzantini O., Schivo M., Di Cesare J., Garbero R., Rivero M., and Theler G. A coupled

calculation suite for Atucha II operational transients analysis. Science and Technology of

Nuclear Installations, 2011:785304, 2011.

Raymond E.S. The Art of UNIX Programming. Addison-Wesley, 2003.

Theler G. A shared-memory-based coupling scheme for modeling the behavior of a nuclear

power plant core. Mecanica Computacional, XXXII(18), 2013.

Mecánica Computacional Vol XXXIII, págs. 2939-2955 (2014) 2955

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.gnu.org/software/gawk/

	Introduction
	Previous works
	Coupling through RELAP's restart and input files
	Coupling through RELAP's control variables
	Coupling through RELAP's fast array

	Proposed coupled calculation layout
	Spatial neutron kinetics

	Conclusions

