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Abstract. In this paper some numerical results for vortex-induced vibrations (VIVs) of a cylinder at
low Reynolds number are presented. The main goal of these preliminary results is the capturing of
synchronization/lock-inphenomenon when Reynolds number is swept for low dimensionless mass ra-
tio (m∗ ' 153.3524). This fluid-structure interaction problem (FSI) contains three main problems to
be solved, the computational fluid dynamics (CFD), the computational mesh dynamics (CMD) and the
multi-body dynamics (MBD). In this work this last problem is oversimplified to a single body dynamics,
the cylinder. A stabilized ALE (Arbitrary Lagrangian-Eulerian) formulation is used to solve the incom-
pressible laminar Navier Stokes equations. The cylinder is considered as a rigid body and it is free to
vibrate along the vertical (transverse) direction and it is fixed to move in the horizontal one. The mesh
dynamics may be solved in general by a global optimization strategy, however, in some special cases, a
simple ad-hoc procedure may be adopted. For each sub-problem a second order accurate in time scheme
is adopted. The fluid-structure interaction problem is solved with a strong coupling using a fixed point
iteration strategy. It consists of an additional loop over the three problems forcing the convergence in-
side each time step. Hysteretic and vortex-shedding modes are two additional topics that deserve special
attention and they are going to be included in a future work.
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1 INTRODUCTION

The interaction of fluid flow with rigid body systems is often found in many areas of civil,
mechanical and aerospace engineering. Moreover, in this context, the interaction between fluid
and multibody systems may be regarded as a generalization of this topic, always included in a
more general framework that belong to computational multiphysics.

The objective of this paper is merely the validation of the present implementation with some
benchmarks. However the way in which the strong coupling is carried out deserves some addi-
tional discussion.

The main idea is based on the coupling between the fluid flow with sets of multibody sys-
tems that have translational and rotational degrees of freedom. Due to the complexity of the
physical response of such systems, in the present work only simple tests are going to be pre-
sented. These problems have the attractive feature that they had been deeply analyzed by other
researchers and they have an interesting physical behavior that deserves special attention. For
example, a uniform fluid flow through an oscillating cylinder produces a vortex-induced vi-
bration (VIV) that is very important for also engineering practice. The practical significance
of vortex-induced vibration has led to a large number of fundamental studies, many of which
are discussed in the comprehensive reviewsSarpkaya(1979); Griffin and S.(1982); Bearman
(1984); Parkinson(1989); Blevins(1990); Naudascher and Rockwell(1993); Sumer and Fred-
soze(1997) In the specific case of VIV around cylinders there are many papersMeneghini and
Bearman(1995); Gabbai and Benaroya(2005); Khalak and Williamson(1999); Mittal and Tez-
duyar(1992); Singh and Mittal(2005); Nomura and Hughes(1992); Nomura(1994); Dettmer
and Peric(2006) with contributions for the case of a oscillating cylinder only in the trans-
verse direction or free to move in the two directions (transverse and in-line). This problem
had been formulated for different approximation levels. One of them considers the problem
as characterized by one or two dynamical systems, always one for the spring-mass cylinder is
present and the other identifying the fluid behavior through a second order, in time, ordinary
differential equation (ODE) may be added. In the former the fluid force is included through
a forcing right hand side (rhs) term proportional to a combination of fluid displacements, ve-
locities and accelerations. Each component of this forcing term is modeled arising algebraic
coefficients extracted from experiments. In the latter, both ODE’s have rhs terms that produce
the two way coupling with coefficients that are chosen according to patterns observed from ex-
periments. These semi-empirical models (like wake-oscillator model,sdof,force-decomposition
models,variational approach ) (Gabbai and Benaroya, 2005; Lu et al., 1996; Facchinetti et al.,
2004) are very simple and they have additional advantages specially for high Reynolds numbers
where direct numerical simulation is currently very difficult to use. Even though the coefficients
may be extracted also from CFD, their evaluation is one of the main disadvantages for such a
model. In the spirit of avoiding the difficulties associated with the modeling of turbulence and
the necessity of calibrating coefficient with experiments, a CFD for low Reynolds number flows
may be an interesting starting point to validate FSI with rigid body. Due to the high tendency
to produce instabilities at the cylinder wake even at low Reynolds numbers, the VIV around
cylinders is commonly solved at low Reynolds number.

In this work, only transverse oscillations of an elastically mounted rigid cylinder are ana-
lyzed. In (Khalak and Williamson, 1999) the influence of a low mass and damper system is
studied. Fundamental questions concerning the vibration phenomena are included:

• the influence of the combined mass-damper parameter
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• how the amplitude grows comforming the mass and damping ratio are lowered

• how is the response mode (wake vortex dynamics) and how about their jumps

• how the synchronization is defined

From the computational point of view the incompressible fluid flow is solved via a sta-
bilized equal order velocity-pressure finite element formulationstreamline upwind / pressure-
stabilizing/ Petrov Galerkinmethod (SUPG-PSPG) (Tezduyar et al., 1992b) in a moving domain
(Tezduyar, 1992). For linear interpolation this method may be regarded as aGalerkin/least
squarestabilization technique, commonly used in Eulerian finite element formulations in fluid-
mechanics. Anarbitrary Lagrangian-Eulerian(ALE) description is used to account for the
deformation of the fluid domain arising from the displacement of the rigid bodies. Other alter-
native, not included here, is the space-time finite element formulation (Shakib, 1989) on moving
domains, with several different implementations (Tezduyar et al., 1992c,d, 2006; Guler et al.,
1999). The time integration for the fluid and the rigid body system is performed by a trape-
zoidal rule. In the former a second order Crank-Nicolson is commonly invoked and for the
latter the second order system is split into two for displacement and velocity unknowns. Future
improvements of this topic may be the usage of thegeneralizedα-method (Jansen et al., 2000)
for the fluid and some energy preserving integration scheme for the rigid body. To keep the sec-
ond order while solving partitioned systems a second order predictor is added for the structural
degrees of freedom when solving the fluid dynamics problem (Piperno and Farhat, 2001).

The coupling between these two systems is accomplished by an staged partitioned algorithm.
It consists of an extra outer loop inside each time step that guarantees the convergence of the
whole problem like a fixed point iteration over all the problems (Storti et al., 2006).

Beyond the physical and engineering importance, this problem is interesting from the com-
putational point of view as a paradigm of multiphysics code implementation that reuses preexis-
tent fluid and elastic solvers. The partitioned algorithm is implemented in the PETSc-FEM code
(http://www.cimec.org.ar/petscfem ) which is a parallel multi-physics finite ele-
ment program based on the Message Passing Interface MPI and the Portable Extensible Toolkit
for Scientific Computations PETSc. Two instances of the PETSc-FEM code simulate each
subproblem and communicate interface forces and displacements via Standard CFIFO files or
‘pipes’. The key point in the implementation of this partitioned scheme is the data exchange
and synchronization between both parallel processes. These tasks are made in a small external
C++ routine.

2 THE GOVERNING EQUATIONS

This special fluid-structure interaction problem needs to solve the fluid dynamics problem
(CFD) coupled with the multi-body dynamics (MBD) and the computational mesh dynamics
(CMD) in between. The next sections present each model problem making some emphasis in
the continuum mechanics definition, the specific numerical solution for each subproblem, how
to get a strong coupling feature with some flexibility for future software development and finally
how to identify the main parameters that characterize the physical problem.
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2.1 The moving reference frame

An essential feature of the problem under consideration is the interaction among the set of
rigid bodies present in the system and the fluid flowing around them. This interaction takes
place at the interface among the fluid and each rigid body or assembly of rigid bodies (multi-
body). Because the fluid domain and the solid domains move arbitrarily it may be necessary to
define a moving reference frame in which the conservation laws are formulated. This strategy is
established through the arbitrary Lagrangian Eulerian(ALE) (Hughes et al., 1981; Belytschko
et al., 1982; Donea et al., 1982) . Following (Dettmer and Peric, 2006) figure 1 shows the
mapping and configurations commonly found in ALE formulation. Theinitial and thecurrent
configurations of the fluid body are represented byB0 andB respectively. Similarly, for the
reference domain the initial and the current configurations are defined asΩ0 andΩ. The material
and spatial coordinate arex0 ∈ B0 andx ∈ B respectively. The motion of the fluid body and
the reference domain guarantees the existence of the following mapping:

x = φ(x0, t)

x̂ = λ(x̂0, t)
(1)

Eachx = x̂ ∈ (B ∩ Ω) is associated with a material pointx0 and a reference point̂x0 as
illustrated in figure1.

Figure 1: Mapping and coordinates in ALE formulation

Next, thematerial time derivative ofu is obtained. The following relations among the dif-
ferent coordinate systems are valid:

x̂0 = ψ(x0, t) = λ−1(φ(x0, t), t)

x = φ(x0, t) = λ(x̂0, t) = λ(ψ(x0, t), t) = x̂
(2)

Differentiation with respect to time for a specific constant material pointx0 renders:

∂φ(x0, t)

∂t
=
∂λ(x̂0, t)

∂t
+
∂λ(x̂0, t)

∂x̂0

∂ψ(x0, t))

∂t
(3)
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Defining

u =
∂φ(x0, t)

∂t

v̂ =
∂λ(x̂0, t)

∂t

(4)

So,
∂λ(x̂0, t)

∂x̂0

∂ψ(x0, t), t)

∂t
= u− v̂ (5)

Expressingu in terms of the reference coordinate system,

u = û(x̂0, t) = ũ(x̂, t) (6)

therefore, the time derivative is achieved as:

Du

Dt
=
∂û(x̂0, t)

∂x̂0

∂ψ(x0, t))

∂t
+
∂û(x̂0, t)

∂t

=
∂ũ(x̂, t)

∂x̂

∂λ(x̂0, t)

∂x̂0

∂ψ(x0, t))

∂t
+
∂û(x̂0, t)

∂t

(7)

Finally
Du

Dt
= ∇x̂u(u− v̂) + u· (8)

While the operator∇x̂(·) denotes the derivative with respect to the current referential coor-
dinatesx̂, u· correspond to the change of the material particle velocity, noted by an observer
travelling with the referential coordinatêx0. (8) is sometimes called thefundamental arbitrary
Lagrangian-Eulerian equation. The quantityu− v̂ is commonly called theconvective velocity.

2.2 Conservation equations

Viscous flow is well represented by Navier-Stokes equations. The incompressible version of
this model includes the mass and momentum balances that can be written in the following form.
Let Ω ∈ RNsp and(0, t+) be the spatial and temporal fluid domains respectively, whereNsp is
the number of space dimensions, and letΓ be the boundary ofΩ, both of them to be defined
later. Therefore,

∇x̂ · u = 0 in Ω× (0, t+)

ρ(u· + (u− v) · ∇x̂ − f)−∇x̂ · σ = 0 in Ω× (0, t+),
(9)

with ρ andu being the density and the velocity of the fluid, andσ the stress tensor, given by

σ = −pI + 2µ∗ε(u)

ε(u) =
1

2
(∇x̂u + (∇x̂u)t)

(10)

wherep is the pressure andµ∗ is the effective dynamic viscosity defined as the sum of the
dynamic (molecular) viscosity and the algebraic eddy viscosity coming from the turbulence
model.I represents the identity tensor andε the strain rate tensor.
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Figure 2: Partition of the domain for the fluid and multi-body and their interfaces

2.3 Initial and boundary conditions

In the last equation9 the domain and its boundary were introduced in order to specify the
support of the mathematical model. For fluid-structure interaction problems there are some
details that need to be presented before introducing the boundary conditions. According to
figure2 it may be noted that:

Ω = ΩF ∪ ΩS

ΩS = ∪jΩSj

Γ = ΓF ∪ ΓFS

ΓFS = ∪jΓFSj

ΓF = Γg
F ∪ Γh

F

ΓSjF = ΓFSj

(11)

with ΩF the fluid domain,ΩSj
thej − th rigid body or set of rigid body (multi-body) where

the rigid body dynamic problem is defined,ΓF is the boundary wet by the fluid not lying at any
rigid body interface, split in the Dirichlet and Neumann parts, andΓFSj

, is the boundary of the
j − th rigid body wet by the fluid.
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Therefore, the boundary conditions are:

u− g = 0 ∀(x̂, t) ∈ Γg
F × I

σ · n̂− h = 0 ∀(x̂, t) ∈ Γh
F × I

u− d· = 0 ∀(x̂, t) ∈ ΓFS × I

(u− v̂) · n̂ = 0 ∀(x̂, t) ∈ ΓFS × I

(12)

whereg,h, n̂ denote the prescribed velocity, the traction vectors and the current outward
normal unit vector of the boundary respectively.

The last two conditions third condition in12 represent the no-slip condition at the fluid-
rigid body interfaceΓFS. The fourth equation guarantees that the reference frame accurately
represents the current configuration of the rigid body.

The forcesF and the momentsM are computed by the following expressions:

F = −
∫

ΓFS

σ · n̂dΓ

M = −
∫

ΓFS

∆x× σ · n̂dΓ
(13)

where∆x means the current relative position of a point lying on the surface of the rigid body
with respect to its gravity centerG.

Finally the following initial conditions are included:u = u0, u· = u·
0 andx̂ = x̂0 ∀x̂ ∈ Ω

at t = 0.

2.4 Rigid body dynamics

Figure 3: Rigid body dynamics problem
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In order to simplify the presentation a set of rigid bodies in a two dimensional situation
is considered. Extensions to the three-dimensional case is standard in specific bibliography.
Multi-body case is left for future work. Each rigid body has a set of three equations associated
with the 3dof’sfor 2D, two for each components of the linear momentum conservation(di)
and the reminder accounts for the conservation of angular momentum(θ). Linear and angular
inertia, damping and stiffness characterize the rigid body motion assuming for simplicity that
the behavior is linear and uncoupled.

mk
i d

··k
i + cki d

·k
i + kk

i d
k
i = F k

i

Ik
θ θ

··k + ckθθ
·k + kk

θθ
k = Mk

(14)

wherei means the coordinate directionx, y andk is an index along the whole set of rigid
bodies. The displacementsdk

i are the components of thek rigid body translation whereasθk

describes thek rigid body orientation. In this paper the rotational dynamics is not included,
therefore we drop this equation in the further discussion.

A typical description of the rigid body dynamic problem may be viewed in figure3. The
initial position of a typical rigid body is defined through the center of massG0, located relative
to an inertial reference frame(X,Y ) by position vectorr0, and the body fixed reference frame
(X0, Y0). A typical point at its surface is namedP0 By the fluid forces and moments the rigid
body moves to the current position defined byG, with the new position vectorr = r0 + δr and
its new orientation given by(X ′, Y ′) rotated from the original orientation an angleθ. The point
P0 moves to its current locationP with the new normaln.

The motion of the rigid body surface can be related to the degrees of freedom of its center
of massG. The motion of the rigid body surface is the input for the mesh dynamics stage of
the computation. It also influences the fluid solver through the temporal term(GCLlaw) and
through the convective velocity(u − v̂). Therefore it is necessary to know how each discrete
node belonging to the wet interface between the fluid and the rigid body moves. This movement
arises naturally from the hypothesis of rigid body, as a combination of a translation with the
center of mass and a rotation around it:

dk
FS = d̃FS(dk, θk,∆xk

0) (15)

where∆x0 describes the initial position of each discrete node lying at the surface of the rigid
body with respect to its center of mass.

It should be remarked that it is necessary to identify the center of mass of each rigid body
and also each rigid body surface mesh and its mapping with the corresponding fluid surface
mesh. In this work both surfaces at the interface are identical so it is not necessary to do
any interpolation. Therefore each rigid body is defined with its center of mass and a surface
mesh. To generalize the treatment two meshes are adopted, the fluid mesh that may be arbitrary
(triangles or quadrangles) and the rigid body mesh that is generated by each panel at the surface
joined to the center of mass. This mesh is ficticious because it is only used to define relative
positions among each surface node and the center of massG. A detail of the two meshes and
the interface is shown in figure4

2.5 The mesh dynamics

In general the computational mesh dynamics (CMD) problem is solved via a global opti-
mization strategy (Lopez et al., 2006) that shows a significant enhanced robustness relative to
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Figure 4: Meshes and discrete interfaces

the standard pseudo-elastic formulation for the mesh deformation (Tezduyar et al., 1992a; John-
son and Tezduyar, 1994). In this kind of problems this feature is very welcomed because the
rigid body motion may be large enough to produce tangled (invalid) meshes. However, for some
simple problems (like the vertical oscillating cylinder) an ad-hoc algorithm may be used with
good results.

3 DIMENSIONLESS PARAMETERS

In order to identify the oscillatory response of the cylinder it is very attractive to rewrite the
rigid body equations of motion,14, using dimensionless variables. In this way it is clearly de-
fined how the parameters should be chosen in order to get similarity among the experiments. In
order to gain some theoretical insight about the influence of these dimensionless parameters on
the behavior of the oscillator, some simple model for the fluid (likewake oscillator models) may
be included. Starting with14 considering for simplicity that only one rigid body is involved,
and defining the following space and time reference scales:

Xi =
di

D

τ =
t

tref
=
tU∞
D

(16)

with little algebra it is possible to arrive to the following equation:

X ··
i + 4πFnζX

·
i + (2πFn)2Xi =

2Cx
i

πm∗
(17)

whereX ·
i = dXi

dτ
, X ··

i = d2Xi

dτ2 are the dimensionless time derivative for each dimensionless
spatial coordinate andCx

i is the dimensionless force coefficient, commonly nameddragandlift
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Figure 5: Time accuracy for staggered schemes. Influence of predictor.

coefficients. The dimensionless parameters that may be observed from17are:

• mass ratiom∗ = 4m
πρ∞D2L

• frequency ratioFn = fnD
U∞

• damping ratioζ = c
2
√

κ m

• Reynolds numberRe = ρU∞D
µ

The first three influence noticeably the behavior of the oscillating cylinder altering not only
the Reynolds number where the lock-in phenomenon is achieved, also modifying the range of
Reynolds numbers and the maximum oscillation amplitude during the lock-in. There are some
other definitions for the reduced damping factor, one of them uses the sum of the fluid added
mass to the rigid body mass instead of using only this last one.
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4 STABILIZED FINITE ELEMENT FORMULATION FOR FLUID FLOW

In this work the solution of incompressible Navier-Stokes equations with the SUPG-PSPG
method proposed by Tezduyaret al. (Tezduyar et al., 1992b) is implemented. SUPG (‘Stream-
line Upwind/Petrov Galerkin’) is used to stabilize the advection dominated terms and PSPG
(‘Pressure Stabilizing/Petrov Galerkin’) is necessary to circumvent the checkerboard modes
induced by the incompressibility constraint.

In this effort the solution of incompressible Navier-Stokes equations with an equal order
pressure and velocity spatial discretization is used. As it is well known, in general this method-
ology does not satisfy the Babuska-Brezzi condition and it is necessary to stabilize the for-
mulation through the addition of two operators. Advection at high Reynolds numbers is sta-
bilized with the well knownSUPG(‘Streamline Upwind/Petrov Galerkin’ operator, while the
PSPG(‘Pressure Stabilizing/Petrov Galerkin’) operator stabilizes the incompressibility condi-
tion, which is responsible of the checkerboard pressure modes.

The computational fluid domainΩ = ΩF is divided inNel finite elementsΩe, e = 1, . . . ,
Nel, and letE be the set of these elements, andH1h the finite dimensional space defined by

H1h =
{
φh|φh ∈ C0(Ω), φh|Ωe ∈ P 1,∀Ωe ∈ E

}
, (18)

with P 1 representing polynomials of first order. The functional spaces for the interpolation and
weight functions are defined as

Sh
u = { uh|uh ∈ (H1h)Nsp,uh=·gh onΓg }

V h
u = { wh|wh ∈ (H1h)Nsp,wh=·0 onΓg }
Sh

p = { q|q ∈ H1h }.
(19)

The SUPG-PSPG scheme is written as follows:Find uh ∈ Sh
u and ph ∈ Sh

p such that∫
Ω

wh · ρ
(∂uh

∂t
+ uh · ∇uh

)
+

∫
Ω

ε(wh) : σhdΩ+

+
nel∑
e=1

∫
Ω

δh ·
[
ρ(
∂uh

∂t
+ uh · ∇uh)−∇ · σh

]
︸ ︷︷ ︸

(SUPG term)

+

+
nel∑
e=1

∫
Ω

εh ·
[
ρ(
∂uh

∂t
+ uh · ∇uh)−∇ · σh

]
︸ ︷︷ ︸

(PSPG term)

+

+

∫
Ω

qh∇ · uhdΩ =

∫
Γh

wh · hhdΓ ∀wh ∈ V h
u , ∀qh ∈ V h

p

(20)

where the stabilization parameters in equation (20) are defined as

δh = τSUPG(uh · ∇)wh

εh = τPSPG
1

ρ
∇qh

τPSPG = τSUPG =
helem

2||uh||
z(Reu).

(21)
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Note that the SUPG and the PSPG terms are defined on different functional spaces. These
stabilizations terms act, at the linear system level by adding nonzero values on the diagonal
entries associated with the pressure equations. The Reynolds numberReu based on the element
parameters is

Reu =
||uh||helem

2ν
, (22)

the element sizehelem is computed as (Tezduyar and Park, 1986),

helem = 2
( nn∑

a=1

|s · ∇Na|
)−1

(23)

beingNa the shape function associated with the nodea, nn the number of nodes in the element,
ands a unit vector on the streamline direction. The functionz(Re), appearing in21, is defined
as

z(Re) =

{
Re/3 0 ≤ Re < 3

1 3 ≤ Re
(24)

5 TIME INTEGRATION

Applying the stabilized finite element spatial interpolation a semidiscrete set of ordinary
differential equations in time arise. Though, temporal discrization is needed in order to solve
the problem. Here, a trapezoidal rule is used for both, the fluid and the rigid body equation
using the parameters in such a way to obtain second order accurate in time.

For the fluid the final fully discretized systems is written as:

M
du

dt
+ A(u)u = Frb−f (t,d)

M
un+1 − un

∆t
+ A(un+α)un+α = Frb−f (tn+α,dn+α)

(25)

with α = 1
2

for second order accuracy in time.Frb−f is the generalized forcing term exerted
by the rigid body over the fluid, in this case associated with the rigid body surface displace-
ments.25 is a simplification of the real equations because the mass matrixM and the system
matrix A are both dependent of the rigid body displacements and velocities through the ALE
formulation.

The rigid body equation of motion are written as a system of two first order equations:

mid
··
i + cid

·
i + kidi = F f−rb

i

(
1 0
0 mi

)
d

dt

(
di

d·i

)
+

(
0 −1
ki ci

) (
di

d·i

)
=

(
0

F f−rb
i

) (26)

Ff−rb are the fluid forces obtained by the force integration of the pressure and the viscous
traction on the surface of the rigid body surface. Here, only one rigid body is considered.
Generalizations to many of them is straightforward. Writing as a compact system:

Mrb
dy

dt
+ Arby = Ff−rb(t,u)

Mrb
yn+1 − yn

∆t
+ Arby

n+α = Ff−rb(tn+α,un+α)

(27)
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with y =

(
di

d·i

)
.

Both two way coupled systems are in general solved in a staggered way. In order to keep the
second order accuracy in time of the global system a special rigid body displacement predictor
is included. This predictor looks like:

d(n+1)P = d(n) + α0∆tḋ
n + α1∆t(ḋ

n − ḋn−1) (28)

Figure 5 shows a simple numerical experiment where the role of the rigid body motion
predictor is shown. The figure shows two bound straigh lines for first and second order accucary
in time. The dots shown the following cases:

• monolithic (blue star) - 2nd order

• staggered with no predictor (black circle) - 1st order

• staggered with predictorα0 = 1 α1 = 0 (cyan star) - 1st order

• staggered with predictorα0 = 1 α1 = 1
2

(red circle) - 2nd order

6 STRONGLY COUPLED PARTITIONED STAGED ALGORITHM

In this section the temporal algorithm that performs the coupling between the rigid body and
the fluid codes is described. If the most outer loop (see the algorithm below), i.e. the ‘stage
loop’ converges a‘strongly coupled’algorithm is obtained. The basic staggered algorithm
considered in this work proceeds as follows: (i) transfer the motion of the wet boundary of the
rigid body to the fluid problem, (ii) update the position of the fluid boundary and the bulk fluid
mesh accordingly, (iii) advance the fluid system and compute new pressures and the viscous
stress field, (iv) convert the new fluid pressure and viscous stress field into a structural load,
and (v) advance the rigid body system under the flow loads. Such a staggered procedure, which
can be treated as a weakly coupled solution algorithm, can also be equipped with an outer loop
in order to assure the convergence of the interaction process. The algorithm can be stated as
follow:

1: Initialize variables:
2: for n = 0 to nstep do { Main time step loop }
3: tn = n∆t,
4: { CFD CODE: }
5: Xn = CMD(dn) { run CMD code }
6: d(n+1)P = d(n+1,0) = predictor(dn,dn−1) { compute predictor }
7: for i = 0 to nstage do { stage loop }
8: { CFD CODE: }
9: Xn+1,i+1 = CMD(dn+1,i)

10: { Compute skin normals and velocities }
11: for k = 0 to nnwt do { Fluid Newton loop }
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12: un+1,i+1 = CFD(un,Xn+1,i+1,Xn)
13: end for
14: { Rigid body CODE: }
15: compute structural loads(un,un+1,i+1)
16: { Integrate rigid body: }
17: dn+1,i+1 = CMBD(dn,un,un+1,i+1)
18: end for
19: end for

where

un : is the fluid state(v, p) at timetn,
dn : is the rigid body state (displacements) at timetn,
ḋn : are rigid body velocities at timetn,
Xn : are fluid mesh node positions at timetn,
nstep : is the number of time steps in the simulation,
nstage : is the number of stages in the coupling scheme
nnwt : is the number of Newton loops in the nonlinear problem,

CMD : is intended for Computational Mesh Dynamics,
CMBD : for Computational Multibody Dynamics,

CFD : for Computational Fluid Dynamics.

6.1 Notes on the Fluid-Structure Interaction (FSI) algorithm

• Two codes (CFDandCMBD) are running simultaneously. For simplicity, the basic algo-
rithm can be thought as if there were no‘concurrence’between the codes, i.e. at a given
time only one of them is running. This can be controlled using‘semaphores’and this is
done using MPI‘synchronization messages’.

• The most external loop is over the time steps. Internal to it is the‘stage loop’. ‘Weak
coupling’ is achieved if only one stage is performed (i.e.nstage = 1). In each stage the
fluid is first advanced using the previously computed multibody statedn and the current
estimate valuedn+1,i.In this way, a new estimate for the fluid stateun+1,i+1 is computed.
Next the multibody is updated using the forces of the fluid from statesun andun+1,i+1. At
the first stage, the statedn+1,0 is predicted using a second or higher order approximation
(see equation (30)). Inside thestage loopthere is a Newton loop for the fluid code to
solve the non-linearities. The Computational Multibody Dynamics (CSD) is integrated.

• Once the coordinates of the rigid body surfaces are known, the coordinates of the fluid
mesh nodes are computed by a‘Computational Mesh Dynamics’code, which is symbol-
ized as

Xn = CMD(dn). (29)

Even though the CMD may be performed with a general strategy using both nodal re-
allocation or remeshing, in this paper only the former is adopted, keeping the topology
unchanged. Relocation of mesh nodes can be done using an elastic or pseudo-elastic
model (see Reference (Lopez et al., 2006)) through a separate PETSc-FEM parallel pro-
cess (code named MESH-MOVE). For the simple geometry of the example in this paper
a simple strategy is used based on a linear transformation of the rigid body displacement
field.
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• The general form of the predictor for the rigid body state was taken from Reference (Piperno
and Farhat, 2001) and can be written as

d(n+1)P = d(n) + α0∆tḋ
n + α1∆t(ḋ

n − ḋn−1) (30)

It is at least first order accurate when no predictor is employed and it may be improved
to second order using the above predictor with some values forα0 andα1 according to
the problem at hand. To understand how to specify these two parameters a simple two
dofssecond order in time coupled ordinary differential equations model may be analyzed
(Storti et al., 2006)

• At the beginning of each fluid stage there is a computation of skin normals and veloc-
ities. This is necessary due to the time dependent non-slip boundary condition for the
incompressible flow solver (see equation (12)).

7 NUMERICAL EXAMPLES

In this section some validation for this application is done through standard benchmarks.
The first example is the well known vortex-induced vibration around a cylinder at low Reynolds
number, example well detailed in (Dettmer and Peric, 2006; Nomura and Hughes, 1992; No-
mura, 1994) and references herein. The cylinder mounted on elastic supports is free to vibrate
only in the vertical direction and it is immersed in a uniform flow field. The tank size is large
enough to be regarded as infinite. Following the original data the dimensionless mass ratio is
assigned tom∗ = 153.3524, the structural damping coefficient is set toζ = 0.5857 and the
frequency ratio is set toFn = 0.1766.

Modifying the free stream velocity, starting fromRe = 90 where the vortex shedding reaches
a similar frequency to that obtained with a fixed cylinder, it is posible to cross across the lock-
in region (around Re=100) where the vortex shedding is entrained with the oscillation natural
frequency of the cylinder. Going further with greater values of Reynolds numbers (around 110),
the oscillation becomes again desynchronizated making feasible to identify the lock-in region
of this experiment. This narrow region depends on some dimensionless number. The following
figure shows the geometry of the problem with the boundary conditions specified.

Figure 6: Description of test

The mesh used for this example is shown in figure7. It has3808 quadrilateral elements with
3940 nodes and, for illustrative purposes, it is plotted at a fictitious time step in order to magnify
the deformation of the mesh. In general the maximum oscillation amplitude may be of the same
order of the cylinder diameter. In Figure6 the domain is split into two zones: an ALE zone
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where the nodes of the mesh may be moved according to the rigid body surface motion and a
region partitioned in a fix mesh. In this figureLy is the half width of the domain andLALE

y

is the half width of the ALE region. The ALE region moves in such a way to impose for the
nodes at the interface between the rigid cylinder and the fluid the same velocity and for those at
a specified distance from the cylinder a null velocity.
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Figure 7: Mesh in a strongly deformed position

The characteristic behavior of this system is the lock-in phenomenon, there is an interval of
free stream velocities for which the vortex sheddingfv agrees with the natural frequencyfn of
the cylinder-spring-damper system. IfU∞ lies within this interval then the cylinder performs
stable oscillations, with amplitudes as large as the cylinder diameter. Otherwise the oscillations
are negligible. The existence of this lock-in region is an evidence of the two-ways coupling
between the fluid and the mechanical systems. The fluid flow excites the oscillations of the
cylinder, whereas the motion of the cylinder causes the lock-in effect altering the vortex shed-
ing frequencyfv to be equal to the natural frequencyfn. This effect may be observed in the
following figure8. Detailed investigation of vortex-induced oscillations may be found in (Kha-
lak and Williamson, 1999). The following list of dimensionless parameters fully specifies the
problem.
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• mass ratiom∗ = 153.3524

• frequency ratioFn = 0.1766

• damping ratioζ = 0.5857

• Reynolds numberRe ∈ (90, 150)

They were chosen according to the reference (Dettmer and Peric, 2006).
In Figures8 and9 it may be noted that the present results are in good agreement with the

numerical results obtained with the medium size mesh run byDettmer and Peric(2006) and
may be roughly similar with those presented by Nomura (Nomura and Hughes, 1992; Nomura,
1994). However the experimental results reported in (Dettmer and Peric, 2006) have some
differences with the experimental ones, those reported in (Nomura and Hughes, 1992; Nomura,
1994). Here the former were included for some rough comparison.

Finer grid results, not included here for brevity reasons, agree very well with the finer grid
results in (Dettmer and Peric, 2006), specially for the end of lock-in region when increas-
ing Reynolds number. It is noted that while for coarser meshes the lock-in region is beyond
Reynolds numberRe > 110, finer grid results show that forRe = 110 the lock-in dissapears.

The next figures show how the cylinder oscillation develops in time for different Reynolds
number. Also the phase between the oscillation and the vortex shedding is presented for the
velocities involved. The vertical scales was modified in order to do both time evolutions com-
parable. Red curves are used for the vertical displacements and blue ones for forces.

It may be noted that for Reynolds numbers lower than the beginning of the lock-in fluid
forces and cylinder oscillation are in phase with a very small oscillation amplitude. This pattern
and the phase of the oscillation changes when the Reynolds lies in the lock-in region. Finally,
when the synchronization is lost, the fluid forces and the cylinder oscillation remain with a
phase difference ofδφ = 180◦. This behavior was experimentally observed. This figures are
taken after a periodic response was achieved.

Next figure shows how the lock-in pattern is reached since the beginning of the simulation,
where the cylinder was left free to move and the fluid flow had reached its periodic behavior
according to the Reynolds numbers involved.

8 CONCLUSIONS

Preliminary results for fluid-structure interaction with a rigid body cylinder was presented.
Comparing with other equivalent numerical solutions, the lock-in phenomenon had been cap-
tured quite well. More work needs to be done to understand why the experimental observations
show a wider lock-in region with Reynolds number. A sensitivity with structural parameters
may be done to visualize how the experimental input data may influence the output results.
For future it may be interesting to solve the in-line motion of the cylinder and investigate the
hysteresis behavior with increasing and decreasing Reynolds number and its correlation with
vortex-shedding modes and their jumps.

Mecánica Computacional Vol XXV, pp. 851-885 (2006) 867

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



9 ACKNOWLEDGEMENTS

This work has received financial support from Consejo Nacional de Investigaciones Cientı́ficas
y Técnicas (CONICET, Argentina, grants PIP-5271/2005), Universidad Nacional del Litoral
(Argentina, grants CAI+D 2005-10-64) and ANPCyT (Argentina, grants PICT 12-14573/2003
(LAMBDA) , PME 209/2003 and PID 398/2003 (DIVA)). Extensive use of freely distributed
software such asGNU/LinuxOS, MPICH, PETSc, Metis, Octave, OpenDX and many others is
done in this work.

REFERENCES

P. Bearman. Vortex shedding from oscillating bluff bodies.Annual Review of Fluid Mechanics,
16:195–222, 1984.

M. Behr. Stabilized space-time finite element formulations for free-surface flows.Communica-
tions in Numerical Methods in Engineering, 11:813–819, 2001.

T. Belytschko, D.R. Flanagan, and J.M. Kennedy. Finite element methods with user-controlled
meshes for fluid-structure interaction.Computer Methods in Applied Mechanics and Engi-
neering, 33:669–688, 1982.

R. Blevins.Flow-induced vibrations. Van Nostrand Reinhold, New York, 1990.
J. Cebral.Loose Coupling Algorithms for fluid structure interaction. PhD thesis, Institute for

Computational Sciences and Informatics, George Mason University, 1996.
W. Dettmer and D. Peric. A computational framework for fluid-rigid body interaction: Finite

element formulation and applications.Comput Methods Appl Mech Engrg, 195:1633–1666,
2006.

J. Donea, S. Giuliani, and J.P. Halleux. An arbitraty, lagrangian-eulerian finite element method
for transient dynamic fluid-structure interactions.Computer Methods in Applied Mechanics
and Engineering, 33:689–700, 1982.

E. Dowell, E. Crawley, H. Curtiss, D. Peters, R. Scanlan, and F. Sisto.A Modern Course in
Aeroelasticity. Kluwer Academic Publishers, Dordrecht, 1995.

M. Facchinetti, E Langre, and F. Biolley. Coupling of structure and wake oscillators in vortex-
induced vibrations.Journal of Fluid and Structures, 19:123–140, 2004.

R. Gabbai and H. Benaroya. An overview of modeling and experiments of vortex-induced
vibration of circular cylinders.Journal of Sound and Vibration, 282:575–616, 2005.

O. Griffin and Ramberg S. Some recent studies of vortex shedding with applications to marine
tubulars and risers.Journal of Sound and Vibration, 104:2–13, 1982.

I. Guler, M. Behr, and T. Tezduyar. Parallel finite element computation of free-surface flows.
Computational Mechanics, 23:117–123, 1999.

T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian-eulerian finite element element
formulation for incompressible viscous flows.Computer Methods in Applied Mechanics and
Engineering, 29:239–349, 1981.

K. Jansen, C. Whiting, and Hulbert G. A generalized-α method for integrating the filtered
navier-stokes equations with a stabilized finite element method.Comput Methods Appl Mech
Engrg, 190:305–319, 2000.

A.A. Johnson and T.E. Tezduyar. Mesh update strategies in parallel finite element computations
of flow problems with moving boundaries and interfaces.Computer Methods in Applied
Mechanics and Engineering, 119:73–94, 1994.

A. Khalak and C. Williamson. Motions, forces and mode transitions in vortex-induced vibra-
tions at low mass-damping.Journal of Fluids and Structures, 13:813–851, 1999.

G. FILIPPINI, N. NIGRO, M. STORTI, R. PAZ868

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



E. Lopez, N. Nigro, M. Storti, and J. Toth. A minimal element distortion strategy for computa-
tional mesh dynamics.Int J Num Meth Engng, 2006.

Q. Lu, C. To, and Jin Z. Weak and strong interactions in vortex-induced resonant vibrations of
cylindrical structures.Journal of Sound and Vibration, 190(5):791–820, 1996.

J. Meneghini and P. Bearman. Numerical simulation of high amplitude oscillatory flow about a
circular cylinder.Journal of Fluid and Structures, 9:435–455, 1995.

S. Mittal and V. Kumar. Flow-induced vibrations of a light circular cylinder at reynolds numbers
103 to 104. Journal of Sound and Vibration, 245(5):923–946, 2001.

S. Mittal and T. Tezduyar. A finite element study of incompressible flows past oscillating
cylinders and aerofoils.Int. J. for Num. Meth. in Fluids, 15:1073–1118, 1992.

E. Naudascher and Rockwell.Flow induced Vibrations: An Engineering Guide.Balkema,
Rotterdam, 1993.

T. Nomura. Ale finite element computations of fluid structure interaction problems.Comput
Methods Appl Mech Engrg, 112:291–308, 1994.

T. Nomura and T. Hughes. An arbitrary lagrangian-eulerian finite element method for interac-
tion of fluid and a rigid body.Comput Methods Appl Mech Engrg, 95:115–138, 1992.

G. Parkinson. Phenomena and modelling of flo-induced vibrations of bluff bodies.Progress in
Aerospace Sciences, 26:169–224, 1989.

R. Piperno and C. Farhat. Partitioned procedures for the transient solution of coupled aeroe-
lastic problems. Part II: energy transfer analysis and three-dimensional applications.Comput
Methods Appl Mech Engrg, 190:3147–3170, 2001.

T. Sarpkaya. Vortex-induced oscillations.Journal of Applied Mechanics, 46:241–258, 1979.
F. Shakib.Finite element analysis of the compressible Euler and Navier-Stokes equations. PhD

thesis, Department of Mechanical Engineering, Stanford University, 1989.
S. Singh and S. Mittal. Vortex-induced oscillations at low reynolds numbers: Hysteresis and

vortex-shedding modes.Journal of Fluids and Structures, 20:1085–1104, 2005.
M. Storti, N. Nigro, and R. Paz. Stability and time integration of partitioned fluid-structure

interaction problems at supersonic mach numbers.Journal of Sound and Vibration, 0:1–1,
2006.

B. Sumer and J. Fredsoze.Hydrodynamics around cylindrical structures. World Scientific,
Singapore, 1997.

T. Tezduyar, M. Behr, S. Mittal, and A. Johnson. Computation of unsteady incompressible
flows with the stabilized finite element methods–space-time formulations, iterative strate-
gies and massively parallel implementations. InNew Methods in Transient Analysis, PVP-
VOL.246/AMS-Vol.143, pages 7–24. ASME, New York, 1992a.

T. Tezduyar, S. Mittal, S. Ray, and R. Shih. Incompressible flow computations with stabilized
bilinear and linear equal order interpolation velocity pressure elements.Computer Methods
in Applied Mechanics and Engineering, 95:221–242, 1992b.

T. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space-time techniques for finite element compu-
tation of flows with moving boundaries and interfaces. InIII Congreso Internacional sobre
Métodos Nuḿericos en Ingenierı́a y Ciencias Aplicadas, 2004.

T. E. Tezduyar. Stabilized finite element formulations for incompressible flow computations.
Advances in Applied Mechanics, 28:1–44, 1992.

T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations involving
moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I.
the concept and the preliminary numerical tests.Computer Methods in Applied Mechanics
and Engineering, 94:339–351, 1992c.

Mecánica Computacional Vol XXV, pp. 851-885 (2006) 869

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite element computa-
tions involving moving boundaries and interfaces - the deforming-spatial-domain/space-time
procedure: Ii. computation of free-surface flows, two-liquid flows, and flows with drifting
cylinders.Computer Methods in Applied Mechanics and Engineering, 94:353–371, 1992d.

T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space-time finite element techniques for
computation of fluid-structure interactions.Computer Methods in Applied Mechanics and
Engineering, 195:2002–2027, 2006.

T.E. Tezduyar and Y.J. Park. Discontinuity capturing finite element formulations for nonlin-
ear convection-diffusion-reaction equations.Computer Methods in Applied Mechanics and
Engineering, 59:307–325, 1986.

K. Vikestad, J. Vandiver, and C. Larsen. Added mass and oscillation frequency for a circular
cylinder subjected to vortex-induced vibrations and external disturbance.Journal of Fluid
and Structures, 14:1071–1088, 2000.

G. FILIPPINI, N. NIGRO, M. STORTI, R. PAZ870

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



80 90 100 110 120 130 140 150
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

 Re 

 f v/f n

 Frequency ratio vs Reynolds 

present work
Strouhal law
Peric−medium
Nomura−Hughes
exp

Figure 8: Frequency ratio versus Reynolds number - Comparisons between numerical and experimental results.
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Figure 9: Amplitude ratio versus Reynolds number - Comparisons between numerical and experimental results.
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Figure 10: Periodic time response of the cylinder oscillation amplitude.Re = 90
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Figure 11: Periodic time response of the phase between the cylinder oscillation and the vortex shedding.Re = 90
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Figure 12: Periodic time response of the cylinder oscillation amplitude.Re = 100
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Figure 13: Periodic time response of the phase between the cylinder oscillation and the vortex shedding.Re = 100
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Figure 14: Periodic time response of the cylinder oscillation amplitude.Re = 105
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Figure 15: Periodic time response of the phase between the cylinder oscillation and the vortex shedding.Re = 105
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Figure 16: Periodic time response of the cylinder oscillation amplitude.Re = 110
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Figure 17: Periodic time response of the phase between the cylinder oscillation and the vortex shedding.Re = 110
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Figure 18: Periodic time response of the cylinder oscillation amplitude.Re = 120
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Figure 19: Periodic time response of the phase between the cylinder oscillation and the vortex shedding.Re = 120
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Figure 20: Periodic time response of the cylinder oscillation amplitude.Re = 150
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Figure 21: Periodic time response of the phase between the cylinder oscillation and the vortex shedding.Re = 150
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Figure 22: Time response of the cylinder oscillation amplitude from the beginning for Reynolds number belonging
to the lock-in region .Re = 100
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