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Abstract. Wave-current processes are often observed in many different physical problems such as the

flow in estuaries, beaches, etc. In these cases the pure current flow is modified due to the presence of

waves. The propagation of waves can increase or decrease the streamwise current intensity depending

on the direction of waves as it has been observed in laboratory experiments. The purpose of this work

is to analyze the nonlinear effects of wave amplitude and wave period on turbulence characteristics of

combined flow by means of Direct Numerical Simulation of the 3-D Navier-Stokes Equation. The effect

of a wide range of frequencies and amplitude of the driving pressure gradient is reported and discussed.
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1 INTRODUCTION

Waves are usually superimposed on currents in coastal regions. This interaction which

mostly is non-linear, takes place mainly in estuaries and beaches and plays an important role in

the local hydrodynamics and sediment transport processes. Therefore wave-current interaction

has been the subject of many studies in the last decades. Among the studies based in laboratory

measurements can be mentioned Kemp and Simons (1981), Lodahl et al. (1998), Umeyama

(2009) and Musumeci et al. (2006) which observed that when waves and current interact the

mean velocity profile and the turbulent properties of the current are significantly changed. The

mean velocities near a smooth bed are increased by the presence of waves, while in rough bed

they are reduced. Moreover, the results suggest that wave current interaction effects are not

restricted to the near bed region, since they may propagate in the entire water column.

Numerical simulation studies as Scotti and Piomelli (2001) and Olabarrieta et al. (2010) have

analysed combined flows and their models were able to reproduce the experimental observations

carried out by the aforementioned investigators. There exist a wide range of flow conditions to

be studied and, in spite of the fact that many researches have began to lighten the wave-current

interaction, still litle is known about the complex mechanics that takes place in the cross angle

case.

The present study is focused on the numerical simulation by DNS of an oscillatory motion

orthogonal to a current. The main advantage of using DNS is that the whole range of spatial

and temporal scales of the turbulence are simulated. Consequently all the spatial scales of the

turbulence are resolved, from the smallest dissipative scales (Kolmogorov microscales) up to

the channel height (associated with the motions containing most of the kinetic energy).

As a first step in the study of orthogonal combined flow the main objective of the present

investigation is to study the case when the current velocity and the oscillating maximum velocity

are of the same order of magnitude. The paper is organized as follows: in section 2 we present

the problem formulation with the numerical model description and implementation. In section

3 we specify the studied cases parameters meanwhile in section 4 we expose the main results

obtained by DNS. Finally in section 5 we summarize our conlusions after analysing the results.

2 PROBLEM FORMULATION

This work considers the flow in a horizontal channel driven by a mean pressure gradient in

a direction tangential to the wall. The coordinate system is represented by the coordinates x, y,

and z associated to unit vectors i, j, and k in the streamwise, spanwise, and vertical directions,

respectively. The velocity field is represented by u = ui+vj+wk. The mean pressure gradient

is given by

∂p

∂x
= −Gu

ρ
(1)

∂p

∂y
= −Gω

ρ
[cos(ωt)] (2)

where ρ is the fluid density, ω is the oscillating frequency, Gu is the uniform pressure gradi-

ent, and Gω is the amplitude of the oscillating pressure gradient.

The dimensionless form of the Navier–Stokes equations are obtained using the shear velocity

u∗ =
√

GuH/ρ as velocity scale, the channel height L = H as length scale, T =
√

ρH/Gu as

time scale and P = GuH as pressure scale . With these scales the dimensionless form of the
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governing equations become

Dũ

Dt̃
= −∇̃p̃+

1

Re∗

∇̃2ũ+ αcos(ω̃t̃)j+ i (3)

where α = Gω

Gu
, Re∗ =

H
√

GuH
ρ

ν
and ω̃ = ω

√

ρH
Gu

,

The Navier Stokes equations were solved using a de-aliased pseudospectral code (Canuto

et al., 1988). Fourier expansions were employed for the flow variables in the horizontal direc-

tions (x and y are the streamwise and spanwise directions, respectively). In the inhomogeneous

vertical direction (z) a Chebyshev expansion was used with Gauss-Lobatto quadrature points.

An operator splitting method was used to solve the momentum equation along with the in-

compressibility condition (see Brown et al. (2001)). First, an advection-diffusion equation was

solved to compute an intermediate velocity field. After this intermediate velocity field was com-

puted, a Poisson equation was solved to compute the pressure field. Finally, a pressure correc-

tion step was performed to obtain the final incompressible velocity field. A low-storage mixed

third order Runge-Kutta and Crank-Nicolson scheme was used for the temporal discretization of

the advection-diffusion terms. More details of the implementation of this numerical scheme can

be found by Cortese and Balachandar (1995). Validation of the code can be found by Cantero

et al. (2007a), Cantero et al. (2007b) and Pedocchi et al. (2010).

The dimensions of the computational domain are Lx=2πH , Ly=2/3πH , and Lz=2H . The

grid resolution used is Nx = 128 × Ny = 128 × Nz = 192 and the nonlinear terms were

computed in a grid 3Nx/2 × 3Ny/2 ×Nz in order to prevent aliasing errors. The top wall and

the bottom wall represent a smooth no-slip boundary to the flow.

Periodic boundary conditions have been implemented in the two horizontal directions (im-

plying homogeneous flow in the streamwise and spanwise directions).This can be done since

the computation domain has been chosen to include the largest eddies in the flow and therefore

the domain is large enough to prevent correlative fluctuations.
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Figure 1: F3 horizontal spectra. The phase ph=90 corresponds to the maximum oscillating velocity, meanwhile ph=180 corresponds to the

maximum pressure gradient

Fig. 1 shows the one dimensional spectra corresponding to the most demanding case of

study. This figure shows the phases of maximum spanwise velocity (at phase 90◦) and maximum

pressure gradient (at phase 180◦) corresponding to the horizontal directions. The energy spectra

show that the grid resolution is adequate, since the energy asociated with the high wavenumber

is at least two times lower than the energy density corresponding to low wave numbers for the
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cases of the most demanding flow phases (Kim et al., 1986). Finally it can be observed that

there is non energy pile-up at high wavenumbers.

In unsteady flows special averaging operators need to be defined in order to study the flow

paterns. First a quantity can be averaged over planes of homogeneity (x and y planes) and time,

U(z) =
1

NL

L
∑

l=1

N
∑

n=1

1

RM

R
∑

r=1

M
∑

m=1

u(r∆x,m∆y, z, l(n− 1)) (4)

where N is the number of cycles to average, L is the number of phases by cycle, R = Lx/∆x
is the number of points in the x direction and M = Ly/∆y is the number of points in the y
direction. Beside the plane and time averaging, phase averaging is meaningful to study periodic

systems as the present one. Hence we have phase averaged quantities defined as follow;

u(z, t) =
1

N

N
∑

n=1

1

RM

R
∑

r=1

M
∑

m=1

u(r∆x,m∆y, z, t+ L(n− 1)) (5)

The three studied flow cases (see Table 1) where initialized from the DNS results of a current

channel flow. In order to reach a statistically steady state 10 cycles were simulated. In all the

cases the time evolution of the friction velocity and mean velocities were monitored until a

steady state was reached. After, 20 complete cycles were simulated in order to obtained the

convergence of first and second order statistics.

3 CASES OF STUDY

In order to study the orthogonal flow, we fixed the ratio Uu/Uω and explore the effect of dif-

ferent oscillating regimes on the current flow. The regime flow is described by three parameters:

1) the mean flow characterized by the Reynolds number Re∗, 2) the forcing frequency ω̃ and

3) the ratio between the uniform pressure gradient and the amplitude of the oscillating pressure

gradient α. In all of our numerical experiments we have kept Re∗ = u ∗H/ν=180 constant and

we have changed ω̃ and α in order to observe the wave effect on the current flow. In Table 1 the

flow simulated parameters are detailed.

Flow Re∗ α ω̃ Frequency

F1 180 500 25 High

F2 180 100 5 Intermediate

F3 180 10 0.5 Low

F4 180 - - -
Table 1: Parameters used for the simulations.

The thickness of the viscous oscillating layer in viscous units is

δ+ =

√

2ν

ω

u∗

ν
(6)

And the oscillating Reynolds number is defined as

Rω =
AU0

ν
(7)

where A is the maximum wave intrution and U0 is the maximum orbital velocity
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Flow u∗max δ+ Uu

Uω
Rω Φ

F1 0.97 3.7 1.05 3292 45

F2 1.01 8.6 0.97 15729 43

F3 1.11 29.9 0.75 179624 16
Table 2: Mean flow variables.

Table 2 shows the parameters that characterize the flow. In Table 2 Φ is the phase lead

of the maximum bed shear stress over the maximum free-stream velocity. In the case of F1,

which corresponds to a laminar oscillating regime, the height of the viscous layer remains in

the viscous layer (y+=5). In F2, which correspons to a disturbed laminar regime, the viscous

oscillating layer is confined in the range 5 < y+ < 30 and it has reaches the buffer layer of the

current flow. In the last case, F3, the height of the oscillating viscous layer is equal to 29.8 and

can be said that it almost reaches the logarithmic layer of the current flow (y+>30).

4 RESULTS AND DISCUSSION

4.1 Mean velocities

Figure 2 shows profiles of the mean dimensionless streamwise velocity (U/U∗) as function

of the dimensionless distances from the wall zu∗/ν. Here the mean shear velocity U∗ corre-

sponds to the average of the shear velocities by phase. It is observed that when a current is

superimposed to an orthogonal oscillation the velocity profile of the current undergoes transfor-

mations due to the orthogonal oscillatory flow. Depending on the frequency of the oscillation

the friction factor can give a rise or decrease. In the particular cases of F1 and F2 the mean

streamwise velocity is increased independently of the phase cycle. On the other hand in F3, the

entire column water is affected by the oscillation. Moreover the motion in the current direction

has both a steady component and an oscillatory one, as a consequence of the wave added to the

current. This wave effect on the current was also observed in experimental measurement carried

out by Musumeci et al. (2006).

In order to study the effect of the orthogonal oscillating flow on the current flow the Von

Karman (k) and B constants from the logarithmic law, were calculated from DNS results of the

mean streamwise velocity by minimum square method. In Table 3 are detailed the logaritmic

law parameters obtained.

U

U∗
=

1

k
ln

(zu∗max

ν

)

+B (8)

The Von Karman constant relates the U(z) profiles along z in a wall bounded shear flow

to the shear stress at the bed surface, therefore it is related to the friction factor. Meanwhile

the parameter B shifts upwards or downwards the curve according to the modulation of the

free stream velocity. The Von Karman constants obtained for the studied flows remain below

the corresponding value for a channel flow. A Von Karman constant reduction was reported in

flows with bed load transport, in which k can be reduced to almost 0.29 (Nicora and Goring,

2000). This reduction in k probably indicates that the F1 and F2 may belong to a wide class

of drag reducing flows. This suggestion finds support in the decreased friction factor, which

is going to be further discussed in section 4.4. The exact mechanisms for drag reduction are

still unclear, but many researchers attribute it to modifications of bursting events or largescale

coherent structures. In many cases it has been observed that k reduces when spanwise spacing

between structures increases whereas streamwise spacing does not change (Nicora and Goring,
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Figure 2: Streamwise mean velocity (U/U∗). The solid line (–) corresponds to F1, the dashed line (- -) to F2, the dotted dashed line (- ·) to F3

and the cross mark line (+) correponds to the log. Law and wall Law.

2000).

Flow k B U∗

F1 0.33 7.6 0.973

F2 0.30 3.3 1.001

F3 0.40 3.6 0.995
Table 3: Logarithmic law parameters.

Vertical profiles of spanwise velocity (v/u∗max) at different phases are shown in Figure 3.

During the accelation stage, the velocity increases rapidly in the three cases throughout the

boundary layer and the maximum velocity moves upwards. This maximum velocity is pre-

sented as an overshoot for F1 but as the oscillating frequency decreases, F2 and F3, it tends to

disappear. Stronger coupling between the inner and the outer layers occurs as the oscillating

frequency is reduced. This behavior goes on during the deceleration stage with the adverse pres-

sure gradient that reduces progressively the velocity. Therefore the boundary layer grows even

after eventually the reverse near-wall flow commences and the entire flow turns back forming

in the opposite direction a new boundary layer. A phase with zero wall shear stress occurs at

134◦, 136◦ and 157◦ for F1, F2 and F3 respectively.

In Figure 4 are shown the free streamwise (u/u∗) and spanwise (v/u∗) velocities by phase.

A sinusoidal behavior of the free streamwise velocity is observed only in F3, probably due to

the fact that the oscillating thickness layer reached the core of the channel. Beside it can be

noticed that the two free streamwise velocity maximum are in phase with the two free spanwise

velocity maximum and the streamwise velocity minimum is coincident with the zero spanwise

velocity. In subfigure (b) it can be noted that in F3 the free spanwise velocity does not behave

as a perfect sine, since it is slightly far along. Meanwhile in F1 and F2 present a sine form.

4.2 Stress tensor

Vertical distributions of the the u′w′/u2
∗max mean shear stress component of the simulated

cases are shown in Figure 5. In the laminar regime of Rω, F1, the u′w′/u2
∗max mean shear

stress component presents a reduction of its magnitude. This indicate that the turbulence in the

streamwise direction is not completely developed. On the contrary in the disturbed laminar and

intermitent turbulent cases F2 and F3 respectively, the mean shear stress oscillates around the

V.G. GIL MONTERO, M. CANTERO, F. PEDOCCHI3508
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Figure 3: Spanwise mean velocity by phase (V/u∗max). The phases increase by 23◦ from left (22◦) to right (180◦)
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Figure 4: Mean free streamwise (a) and spanwise (b) dimensionless velocity by pase at z+=180. The solid line (–) corresponds to F1, the

dashed line (- -) to F2 and the dotted dashed line (- ·) to F3.
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Figure 5: Phase averaged Reynolds Shear Stress (u′w′/u2
∗max). Profiles are T/16 apart and are offset by 1 units in the horizontal direction

starting from phase 22◦. The circles indicate the respectively locations of the first zero crossing of the shear stress v′w′ component, which is

closed to the spanwise velocity maximum.

Mecánica Computacional Vol XXXIII, págs. 3503-3514 (2014) 3509

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

−v′w′/u2
∗max

zu
∗
m
a
x
/ν

 

 

F1
F2
F3

Figure 6: Phase averaged Reynolds Shear Stress (v′w′/u2
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closer to the spanwise velocity maximum.

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

−v′u′/u2
∗max

zu
∗
m
a
x
/ν

 

 

F1
F2
F3

Figure 7: Phase averaged Reynolds Shear Stress (u′v′/u2
∗max). Profiles are T/16 apart and are offset by 5 units in the horizontal direction

starting from phase 22◦. The circles indicate the respectively locations of the first zero crossing of the shear stress v′w′ component, which is

closer to the spanwise velocity maximum.
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pure current case values. In the colineal combined flow experiments developed by Lodahl et al.

(1998) it was noticed the same behavior.

Figure 6 are plotted vertical profiles of the Reynolds shear stress v′w′/u2
∗max at various

phases during half of the cycle. In the low frequency regime the maximum takes places at

phase 90◦ but meanwhile the oscillating frequency is enlarged, for example for case F3 this is

delayed until the phase 157◦ and its magnitude becomes smaller, but in all the cases it occurs

close to the wall. In the outer layer, v′w′/u2
∗max decreases more rapidly with the oscillating

frequency. During the decelaration stage there is an increasing amount of v′w′/u2
∗max away

from the wall owing to large scale turbulent structures that have a larger development when the

oscillating flow approach to a stationary state.

The location of the first zero shear stress tensor value of v′w′/u2
∗max component is defined as

the boundary layer thickness, which it is assumed to be coincident with the location where the

maximum velocity takes place. This definition was first adopted by Sumer, Jensen and Fredsøe.

As was observed by Pedocchi et al. (2010) in a pure oscillating transitional turbulent flow, the

location of the zero Reynolds shear stress v′w′/u2
∗max never exatly coincides with the location

of the oscillating maximum velocity. Nevertheless this assumption is in good agreement with

the steady boundary layer definition. It is observed that the maximum boundary layer is the

upper limit of the oscillating effect on the flow. Above it, prevails the current alone flow prop-

erties. Therefore only in F3 the oscillating effects are felt in the entire column water, due to the

boundary layer reaches the core of the simulated channel.

Figure 7 shows vertical profiles of the Reynolds shear stress u′v′/u2
∗max by phase. It is

remarkable the coupling between the zero value of u′v′/u2
∗max with those of v′w′/u2

∗max.

4.3 Shear velocity

Figure 8 shows the streamwise and spanwise shear stress velocities by phase. The solid

line corresponds to the spanwise shear velocity meanwhile the dashed line corresponds to the

streamwise velocity. It can be pointed out how the mean shear stresses velocity profiles deform

as Rω rises. In the case of F3, subfigure (c), it can be observed a second maximum in the

stage of the flow deceleration. This was also noted by Jensen (1988) but at a higher oscillating

Reynolds number (Rω=2.9x105).

The streamwise shear velocity behavior is also interesting. As far as the oscillating layer

thickness reaches the core of the channel, a sinusoidal behavior appears and grows with the

Reynolds. This indicates that there is a strong coupling between the pure current channel flow

and the oscillating flow.

4.4 Friction factor and phase lag

The friction factor and the phase lag are important tools to predict whether the flow regime

will be laminar, transitional or turbulent. Since the hydrodynamics state of the studied flows is

the result of a current superimposed with an orthogonal wave, therefore a current friction factor

(Fc) and a wave friction factor (Fω) can be defined according to the flow direction,

Fc =
Tx

ρU2
(9)

Fω =
2τym

ρv2m
(10)
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Figure 8: Streamwise (u∗) and spanwise (v∗) shear stress velocity by phase. The continue line (–) corresponds to v∗ and the dashed line (- -)

to u∗. The subfigure (a), (b) and (c) correspond to F1, F2 and F3 respectively.

where Tx is mean streamwise bed shear stress, U is the mean streamwise velocity, τym is

the maximum spanwise bed shear stress and vm is the maximum spanwise velocity. Table 4

presents the corresponding friction factors for the studied flows.

In the oscillating laminar regime, the laminar wave friction factor (Fωl) depending on the

Reynolds number is defined as,

Fωl =
2√
Rω

(11)

Flow Fc Fω Fωl

F1 0.0026 0.0326 0.0348

F2 0.0035 0.0147 0.0159

F3 0.0054 0.0072 0.0047

F4 0.0046 - -
Table 4: Friction factor coefficients associatted to the simulated flows.

In the case of the current friction factor it can be observed from Table 4 that the two first re-

ported flows present a smaller friction factor than the alone current case (F4), but the third flow

presents a bigger current friction factor. Therefore meanwhile the oscillating flow remains in the

laminar regime according to its oscillating Reynolds number, there is a reduction of the current

friction factor. On the other hand the wave friction factor of the two low oscillating Reynolds

flows remains almost without change in comparison with the pure oscillating flow case. Nev-

ertheless the highest oscillating Reynolds number simulated flow presents an increasing value

of the current friction factor and wave friction factor in comparison with the respectively pure

cases.

The phase lag in the spanwise direction between the free velocity and the shear stress velocity

is also a helpful parameter to characterize the flow regime. In the laminar regime the phase lag

is 45◦, but as the turbulence develops this lag tends to diminish. In Table 1 are shown the phase

lag in degrees. According to the reported data from DNS only the first flow is considered to be

laminar because its phase lag value is 45◦, meanwhile the others two fall in the transitional stage

according to the phased lead diagramm proposed by Jensen (1988). The DNS results suggest

that the transional turbulence stage of the combined flow comes early in comparison with the

pure oscillating case.
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Figure 9: Angle of the free velocity and shear velocity. The solid line (-) corresponds to free velocity direction meanwhile the dashed line (- -)

corresponds to the wave shear velocity direction. The subfigure (a), (b) and (c) correspond to F1, F2 and F3 respectively.

Also another phase lag can be defined, because of the lack of collinearity between the wave

and the current, as the difference between the shear stress direction and the free velocity direc-

tion. In Figure 9 can be noticed the phase lag between the oscillating free-stream velocity and

the shear-stress velocity. This phase lag agrees with the phase lag between the free velocity

and the shear stress velocity. An interesting fact is that the maximum change direction angle of

the freem velocity grows meanwhile the maximum friction velocity angle decreases when the

oscillating Reynolds number grows. This is expected since the turbulence has time to diffuse

vertically as the oscillating frequency decreases with higher oscillating Reynolds numbers.

5 CONCLUSIONS

The combined flow generated by the interaction at a right angle of a current with waves is

numerically investigated. The effect of the oscillatorry flow on the current is analysed by per-

forming simulations from the laminar oscillating regime up to the turbulent oscillating intermit-

tent regime. In order to study this interaction the current Reynolds number is fixed, meanwhile

α and ω are modified in such a way to keep approximately constant the relation uc/uω but

changing the flow regime.

When an oscillatory flow is superimposed on a turbulent current, the friction factor can

rise or decrease depending on the oscillating frequency. According to the studied cases, if the

dimensional oscillating frequency remains above 5, the friction factor is reduced in comparison

with the pure current case otherwise the contrary was reported.

The oscillating flow effect on the current depends on the thickness of the oscillating boundary

layer. It was observed that the oscillating boundary layer thickness grows and eventually van-

ishes depending on the cycle stage. Above the maximum oscillating boundary layer thickness

the oscillating characteristics are negligible, but if it reaches the core channel the oscillation

affects the entire column water and a strong coupling between the streamwise and spanwise

direction appears.

The obtained results also show that the Von Karman constant, which indicates the relation

between the U(z) profiles along z and the bed shear stress, for the mean streamwise velocity

addopts values smaller than 0.42, indicating that the orthogonal oscillating flow may belong to

a wide class of drag-reducing flows.

Regarding the effect of the current on the oscillating flow it can be concluded that the turbu-

lence is increased by the presence of the current in the orthogonal direction. This is observed
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since the phase lag and the wave friction factor of the simulated cases correspond to flow with

higher oscillating Reynolds number reported by numerical and experimental investigations.
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