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Abstract:  The equivalent linear method is widely used in Geotechnical Earthquake Engineering to 
calculate the accelerations at the surface of soil deposits subject to earthquakes of moderate 
intensity. The method approximately takes into account the nonlinear behavior of soils by using 
equivalent shear moduli and damping ratios that are function of effective shear strains. A series of 
linear analysis are performed each time using equivalent soil properties until their values at two 
consecutive steps are approximately equal. The effective strain is defined by reducing the peak 
strain retrieved from the time response. The reduction factor, usually 0.65, accounts for the fact 
that the peak strain only occurs at a single instant of time. This paper investigates the application of 
this technique to calculate the seismic response of reinforced concrete buildings with moderate 
nonlinear behavior. The method is tested using a 3-D finite element model of a building created in 
the program ANSYS. Nonlinear constitute relations in the form of stress vs. strain are used to 
calculate the full nonlinear response and also to define the equivalent modulus of elasticity and 
damping ratio by means of the Masing’s rule. It was found that a key parameter affecting the 
accuracy of the results is the reduction factor. Considering a number of seismic records with 
different frequency contents an optimal reduction factor was defined that is a function of six 
parameters related to the intensity of the earthquake. The accuracy of the results obtained with the 
equivalent linear method depends on the response of interest sought (displacement, shear, moment, 
acceleration) but it proved to be quite acceptable for all the cases considered. The floor response 
spectra for the building with nonlinear behavior were also obtained and they compare very  
well with those computed with the exact nonlinear analysis.
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1. INTR ODUCTION 
 

A most important problem in Soil Dynamics and Geotechnical Earthquake Engineering is 
the so called “site response analysis” in which the acceleration at the free surface of a 
stratified soil deposit is computed using as data the earthquake induced motion at the bedrock 
or at a rock outcrop. Soil materials undergo nonlinear deformations even when subjected to 
earthquakes of moderate intensity and thus it is important to account for their nonlinear 
behavior, even in an approximate way. Although the response of the soil deposit can be 
calculated via a rigorous nonlinear step-by-step dynamic analysis, this is not the approach 
followed in practical applications, except in research work or for special projects. Most 
commonly the “equivalent linear method” originally proposed by Seed and Idriss (1970) and 
later implemented in the well-known program SHAKE (Schnabel, 1972) is used to calculate 
the seismic response of the soil deposit. Basically the method consists in performing a series 
of linear analysis of the deposit by changing at each iteration step the material properties (the 
shear modulus G and the damping ratio ξ of each layer) so that they are consistent with the so-
called “degradation curves”. These are graphs that depict the variation (i.e., the degradation) 
of G and ξ with the shear strain for each soil material. 

The present paper presents a summary of an investigation that examined the feasibility of 
applying the equivalent linear method to calculate the approximate seismic response of 
reinforced concrete (RC) buildings with moment resistant frames. A baseline model of an RC 
three-story building was created in the finite element program ANSYS version 16 (ANSYS, 
Inc., 2016). The 3-D model is used to apply the equivalent linear method and to perform full 
nonlinear analyses to validate the proposed approach. Another objective of this study is to 
apply the equivalent linear method to calculate the floor response spectra (or in-structure 
response spectra) for a structure with inelastic behavior. The floor response spectrum is used 
to analyze non-structural components and equipment in a building but it is usually defined for 
structures with linear behavior.  

It is known that the equivalent linear method has some limitations but nevertheless, as it 
was previously mentioned, it is extensively accepted in practical applications. One of the 
limitations of the method is that the nonlinear behavior of the soils must be moderate: it does 
not provide good results for soils undergoing strongly nonlinear deformations. It is reasonable 
to conclude that the same limitation will also apply to the intended application of this work, 
namely for building structures.  

One of the reasons for using the equivalent linear method to calculate the seismic response 
of soil deposits is that the damping is accounted for by means of the complex modulus 
damping model. This damping model permits to assign different damping ratios to each of the 
soil layers of the deposit. In addition, it permits to model more accurately the real energy 
dissipation characteristics of soil materials. However, the complex modulus model requires an 
analysis in the frequency domain which is based on the Principle of Superposition and thus it 
cannot be applied to nonlinear systems. By iteratively replacing the nonlinear behaving soil 
deposit by a linear model with equivalent properties, one can apply a frequency domain 
analysis at each iteration step. 

Because the original method was intended for soil dynamics applications where shear 
deformations govern the behavior, it needs to be adapted for frames undergoing bending 
deformations. Another difference is that the series of linear analyses required by the method 
will not be done in the frequency domain but rather in the time domain. In addition, the 
damping model used will be that available in the program ANSYS, namely the Rayleigh 
damping formulation.  
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2. THE TEST STRUCTURE  
 

To evaluate the feasibility of applying the equivalent linear method to calculate the seismic 
response of a structure, a three-story building was designed following the provisions of the 
IBC 2015 code (International Code Council, 2014). A special moment resistant frame was 
used as a lateral force resistant system. The geometry of a typical frame of the building is 
displayed in Figure 1.  

 

 
 

Figure 1: Geometry of a typical moment resistant frame. 
 
A very detailed three-dimensional finite element model of the building was created in the 

computer program ANSYS version 16. The mesh consisted of 20-inches finite elements with 
hexahedral shape. Several tests were conducted to select a mesh that produced accurate results 
with an acceptable computational time. It was found that the element SOLID65 from the 
ANSYS library was the most appropriate for the present application due to its ability to 
predict the behavior of reinforced concrete in the nonlinear range. 

To account for the nonlinear behavior of beams and columns, most structural analysis 
programs use moment-curvature or moment-rotation curves. However, this approach cannot 
be applied here because, as it was just mentioned, the structural elements were modeled with 
3D finite elements. Therefore, similar curves but in terms of normal stresses and strains are 
required. For the combined concrete-reinforcing steel sections of the beams and columns, the 
nonlinear σ-ε constitutive relationships were obtained with the computer program SE::MC 
(Structure Express, 2015). Figure 2 displays the stress-strain curve calculated by this program 
for the beams. As shown in Figure 2, after the equivalent composite material reaches the yield 
state, it starts to lose capacity. This seriously complicated the nonlinear analysis with ANSYS 
and hence the stress capacity after yielding was assumed constant. This assumption does not 
introduce significant errors because in this study the nonlinear excursions will be limited; 
otherwise, the equivalent linear method cannot be applied for elements with strong nonlinear 
behavior. Similar constitutive relationships (not shown here) were derived for the columns 
cross sections and an analogous simplifying assumption regarding the post-yielding behavior 
was adopted. 
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Figure 2: Stress-strain constitutive relationships for the beams. 
 

3. SEISMIC EVENTS SELECTION  
 

The selection of an acceleration time history to carry out linear or nonlinear dynamic 
analysis is an important issue. Usually a suite of accelerograms that represent the seismic 
hazard conditions at a site (the magnitude of the expected event, distance to the causative 
fault, faulting mechanism and local site geology) are selected. Because the objective of the 
present study is to assess if an approximate method can provide reasonably accurate results 
compared with a full nonlinear dynamic analysis, the selection of the accelerograms was not 
based on the aforementioned parameters. The intensity of the accelerograms was not an issue 
because they will be scaled so they generate a controlled nonlinear response. Therefore, it was 
decided to select records with different frequency content: for this purpose they are divided 
into “broad band” and “short band” records depending on whether they have a Fourier 
spectrum that is spread out through the frequency range or the dominant components are 
clustered in a narrow frequency band. The Pacific Earthquake Engineering Research Center 
(PEER) ground motion database which has a very large set of ground motions recorded 
worldwide of shallow crustal earthquakes was used to choose and pick the accelerograms 
(PEER, 2016). A total of eight recorded acceleration time series were retrieved.  

Out of the eight seismic records, two were selected for a preliminary viability assessment 
of the application of the equivalent linear method to RC structures. The first accelerogram is 
representative of a broad band event: the El Centro earthquake of May 19, 1940 (officially 
known as the 1940 Imperial Valley earthquake). The acceleration time history with an original 
PGA of 0.313g and its (seudo) acceleration response spectrum for 5% damping are displayed 
in Figure 3. The vertical lines in the response spectrum indicate the first two natural periods of 
the building in the direction of the ground excitation. 

 

 
 

Figure 3: Accelerogram and response spectrum of the broad band event. 
 

E.G. CRUZ, L.E. SUAREZ112

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



The short band ground motion record selected for a detailed preliminary study of the 
equivalent linear method corresponds to the 1986 San Salvador earthquake. The acceleration 
time history is shown in Figure 4 along with its 5% damping (seudo) acceleration response 
spectrum. 

 

 
 

Figure 4: Accelerogram and response spectrum of the short band event. 
 
4. THE EQUIVALENT LINEAR METHOD  

 

The first step in the implementation of the equivalent linear method is to select a nonlinear 
stress-strain relationship. The relationship can be in the form: 

 ( )f   (1) 
 

 which defines the so called “Ramberg-Osgood models” (Suárez, 2008) or in the more 
common form: 

 ( )f   (2) 
 

This expression defines the “Davidenkov models”. In many cases both models are 
interchangeable, i.e. one can solve for one variable in terms of the other. There are, however, 
models which can only be defined in one of the two ways. In this thesis, the more common 
Davidenkov models will be adopted.  

Although there are several well-known models for Soil Dynamics applications, such as the 
hyperbolic, the exponential, the Ramberg-Osgood model, etc., they were defined to represent 
the behavior of soil materials. Therefore, in this work the stress-strain relationship for 
reinforced concrete will be defined using a curve - fitting process, as it will be explained in 
the following section.  

The relationships (1) or (2) define the so called “backbone curve” in the stress vs strain 
plane. This curve describes the stress generated in an element when it is monotonically 
deformed in the same direction (positive or negative) and it can be thought as the constitutive 
equation for a non-linear elastic element. Figure 5 displays a typical backbone curve. 
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Figure 5: A typical backbone curve. 
 

When the load reverses direction, i.e. when the element is subjected to a cyclic loading, the 
downloading path does not follow the same path as the backbone curve and a hysteresis loop 
is formed as the process continues. Figure 6 displays a typical hysteresis loop. To develop the 
equivalent linear method we need an explicit expression that defines the upper and lower 
branches of the hysteresis loop. In Soil Dynamics this is done be means of the so-called 
“Masing rule” (Suárez, 2008) explained in the following section. 

 

 
 

Figure 6: Hysteresis loop and the associated backbone curve. 
 

4.1 Masing’s Rule Formulation 
 

To define the complete hysteresis loop by means of the Masing rule, the following 
variables will be used: 

 σ  = stress at a given point  
 σa  = maximum value of the stress (at the point of cycle reverse) 
 ε  = strain at a given point 
 εa  = maximum value of strain (at the point of cycle reverse) 
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Figure 7: Generation of the hysteresis cycle according to the Masing rule. 
 
We will begin defining the upper branch of the hysteresis loop. First the curve will be 

defined in terms of two auxiliary variables   and̂ , as shown in Figure 7. The relation 
between the two set of variables is: 

 
ˆ
ˆ

a

a

  
  
 

 
  (3) 

 

The amplitude of the upper branch in the  - ̂  plane is obtained by amplifying the original 
backbone curve by a factor of 2. To “stretch” the curve, i.e. to augment its range, the original 
argument of the function f (ε) is divided by a factor of 2. 

 
ˆˆ 2
2

f
    
 

 (4) 

 

In order to obtain the equation in terms of the original variables, one simply needs to 
replace them from equation (3): 

 2
2

a
af

     
 

 (5) 

 

Proceeding in a similar fashion, it is straightforward to show that the lower branch of the 
hysteresis loop is defined by the following equation: 

 2
2

a
af

     
 

 (6) 

 

The equations that define the backbone curve and the hysteresis cycle are not used directly 
in the equivalent linear method. Rather they are the basis to determine two essential 
parameters: an equivalent modulus of elasticity and an equivalent damping ratio. 

Because the idea behind the method is to specify an equivalent linear system, the physical 
parameters that define this system are needed. For a homogeneous, isotropic and elastic 
material only two parameters are needed to uniquely define its constitutive equation. 
Commonly they are the pairs formed by the modulus of elasticity (or Young’s modulus) E and 
the Poisson’s ratio μ, or E and the shear modulus G, or another pair combination of these 
three.  It can be is assumed that the Poisson’s ratio is constant regardless of whether the 
structural system behaves in an elastic or inelastic fashion.  Thus, the only parameter that 
needs to be defined is E or G. In Soil Dynamics the parameter selected is the shear modulus G 
of the soil because the shear deformation dominates the behavior of the material. For our 
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purposes, it is more relevant to use the modulus of elasticity and, when it is needed, the shear 
modulus can be calculated using the well-known relationship: 

 
2(1 )

E
G





 (7) 

 

When the material is subjected to dynamic loads it is important to account for the energy 
dissipation, especially in the case of long duration excitations such as earthquakes. In this 
case, the typical constitutive relationship (Hooke’s law) is usually replaced by the Kelvin-
Voigt model. To define this model, in which the damping stresses are proportional to the time 
derivative of the strains, an additional parameter is required. In the Theory of Viscoelasticity 
the loss factor η is used to define the model, but in engineering applications, the damping ratio 
ξ is more commonly used.  

In conclusion, we need to determine two material parameters: an equivalent modulus of 
elasticity and an equivalent damping ratio. The equivalent modulus of elasticity is the secant 
modulus Esec. This modulus is the slope from the point of origin to the maximum point on the 
backbone curve, as shown in Figure 8. 

 
The secant modulus of elasticity is defined as: 

 sec

( )a a

a a

f
E

 
 

   (8) 

 

 
 

Figure 8: Low strain elastic modulus and secant modulus. 
 

The next parameter that needs to be defined is the equivalent damping ratio. The area 
enclosed by the hysteresis loop is a measure of the energy dissipated per cycle of motion. This 
area is identified as ΔW and is the dotted area in Figure 9. To make this quantity independent 
of the maximum deformation, the area is normalized by the corresponding elastic energy 
stored up to the maximum deformation. This is the area identified by the vertical lines in 
Figure 9 and is denoted as W.  To complete the definition of ξ, the ratio between the two areas 
is normalized by 4π: 

 
1

 
4 

W

W





  (9) 
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Figure 9: Definition of the equivalent damping ratio. 
 
The area associated to the elastic energy stored W is simply the area of the triangle in 

Figure 9 and the energy of the hysteris loop ΔW is 8 times the area of the segment o-e-a in the 
same figure. It is straightforward to demonstrate that they can be calculated as follows: 

 

 
1 1

( )
2 2a a a aW f      (10) 

 
0

8 ( ) 4 ( )
a

a aW f d f


       (11)  
 

Substituting ΔW and W in equation (9) the equivalent damping ratio becomes: 

 0
2 ( )2

1
( )

a

a a

f d

f


 


  

 
    
 

  (12) 

 
4.2 Equivalent linear parameters for the beam elements 

 

The first step required to apply the equivalent linear method to the building is to define the 
backbone curves. Due to the fact that the section properties are different for the columns and 
the beams, two curves ( )f   are needed. Moreover, because we need an analytical 
expression to define the secant modulus and to calculate the damping ratio, a polynomial 
equation was fitted to the actual stress-strain curve. The resulting polynomial equation is: 

 

   12 4 10 3 8 21.43894 10 5.05688 10 6.31157 10 3416520.0f                (13) 
 

Equation (13) can only be used to define the positive side of the curve; another equation is 
needed for the negative quadrant. To complete the definition of the backbone curve for 
negative values of the stresses and strain, the sign of the terms with even powers of ε needs to 
be switched. Therefore, the new equation is: 

 

   12 4 10 3 8 21.43894 10 5.05688 10 6.31157 10 3416520.0f            (14) 
 

Now that the information required to define the full backbone curve is available, the 
complete hysteresis loop can be drawn by combining equations (13) and (14) with those that 
define the upper and lower branches of the cycle, equations (5) and (6). The result is presented 
in Figure 10. Note that this was done only for illustrative purposes because neither the 
backbone curve nor the hysteresis loop are directly needed to implement the equivalent linear 
method. 
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Figure 10: Backbone curve and hysteresis cycle for the beam elements. 
 
The secant modulus Esec is defined using equations (8) and (13): 
 

 2 8210311.43894 10 5.05688 10 6.31157 10 3416520.0secE            (15) 
 

To simplify the notation, from now on the maximum strain will be denoted as ε instead of 
εa.  Figure 11 displays the secant modulus for the beam elements. 

 

 
 

Figure 11: Degradation curve for the secant modulus of beams. 
 

In a similar way, a closed form expression for the equivalent damping ratio can be obtained 
by substituting equation (11) in (10). The following equation was obtained with the symbolic 
manipulation computer software Mathematica version 10 (Wolfram Research, 2014). 

 

 3

2 8 3 10 4 11 5

2 8 10 124 5

2 3416520 10 10 10
1

341

4.20

6520 6.312 10 5.057 1

8 2.528 5

0 1.439 10

.776   
    
      

        
 (16) 

Figure 12 displays the degradation curve for the damping ratio, applicable to all the beam 
elements of the building model.  

 

E.G. CRUZ, L.E. SUAREZ118

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
 

Figure 12: Degradation curve for the damping ratio of beams. 
 

4.3 Equivalent linear parameters for the column elements  
 

Because the nonlinear stress-strain relationship is different for the columns than for the 
beam elements, the process in the previous section must be repeated. Following the case of the 
beam elements, a fourth order polynomial was used. The resulting equation is: 

 

11 4 10 3 8 2( ) 3.6886 10 2.41744 10 4.40088 10 3124310.0f              (17) 
 

Equation (17) can only be used to define the backbone curve for the positive quadrant. To 
define it in the negative quadrant, the sign of the coefficients of the two even powers of ε is 
swapped: 

 

11 4 10 3 8 2( ) 3.6886 10 2.41744 10 4.40088 10 3124310.0f            (18) 
 

The backbone curve along with the hysteresis cycle for the column elements can be defined 
using equations (17), (18), (5) and (6). Both curves are displayed in Figure 13.  

 

 
 

Figure 13: Backbone curve and hysteresis cycle for the column elements. 
 
The next step is to obtain closed form expressions for the secant modulus and the damping 

ratio. First, the modulus of elasticity is obtained with equations (8) and (17): 
 11 103 2 8

sec 3.6886 10 2.41744 10 4.40088 10 3124310.0E            (19) 
 

Figure 14 displays the secant modulus for the column elements. 
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Figure 14: Degradation curve for the secant modulus of columns. 
 

Next replacing f (ε) from equation (17) in (19) and solving the integral, etc. and with the 
help of the program Mathematica (Wolfram Research, 2014), the following expression is 
obtained for the equivalent damping ratio: 

 

 
2 8 3 9 4 10 5

2 8 103 4 11 5

2 3124310 2.934 10 12.088 10 14.754 10
1

3124310 4.401 10 2.417 10 3.689 10

   
    
      

        
 (20) 

 

The equivalent damping ratio for the columns is plotted in Figure 15. 
 

 
 

Figure 15: Degradation for the damping ratio of columns. 
 

5. EQUIVALENT LINEAR DYNAMIC ANALYSE S  
 

The building was subjected to two types of loading: static forces due to the structure’s self-
weight and a dynamic excitation due to the earthquake ground acceleration. The gravitational 
load was applied by slowing increasing its magnitude for five seconds and then keeping it 
constant. The earthquake acceleration was applied one second after the gravitational load 
reached its final magnitude, i.e. at six seconds. The extra second was aded to dampen out any 
remaining oscillation. 

 
5.1 Broad-band seismic record 

 

The first study is a comparison of the response obtained with a nonlinear and a linear 
analysis of the structure. The building model created in ANSYS was subjected to a typical 
broad band event, namely the 1940 Imperial Valley record. This record is typical of a ground 
motion with a broad band frequency content. The record was scaled by a factor of 3.5 so that 
induced a nonlinear response in the structure. Four response quantities were calculated, 
namely the relative displacement (with respect to the base) of a point at the roof, the shear 
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force and bending moment at a column at the base of the building and the absolute 
acceleration.  The maximum response quantities were retrieved from the time histories and are 
shown in Table 1. It is evident that the linear analysis over predicts the true response. 

 
Displacement (in) 

Non-linear result Linear result %Diff 
5.3374 5.9308 11.12% 

Shear force (kip) 
Non-linear result Linear result %Diff 

407.1 484.0 18.93% 
Bending moment (kip-in) 

Non-linear result Linear result %Diff 
42442 50700 19.53% 

Acceleration (in/s^2) 
Non-linear result Linear result %Diff 

1436.8 1899.7 32.22% 
 

Table 1: Non-linear and linear results due to the 3.5x scaled broad band record. 
 
Next, the response will be calculated with the equivalent linear method. The method needs 

an initial estimate of the secant modulus and equivalent damping ratio due to the nonlinear 
behavior. An initial value of the normal strain ε equal to 0.001 is used to calculate the secant 
modulus Esec and the equivalent damping ratio ξ. Equations (15) and (16) are used to compute 
them for the beam elements and equations (19) and (20) for the columns. These four 
quantities are used as input to the ANSYS program and the dynamic response to the Imperial 
Valley record is calculated. The values of Esec and ξ for the beams and columns need to be 
updated using the newly calculated response. Here the maximum absolute values from the 
normal strain time histories in a selected beam and column are used for this purpose. Table 2 
displays the intermediate and final results obtained during the iteration process.  

 
Equivalent linear beam results using maximum strains 

Iteration 
# 

Assumed value 
of ε 

Equivalent 
damping ξ 

Secant modulus E (psi) Computed 
value of ε 

Difference 
in % 

1 0.001 0.0617672 2834490 0.0054803 448.03% 
2 0.0054803 0.295136 1239520 0.0061969 13.08% 

3 0.0061969 0.330147 1104800 0.0062896 1.50% 
4 0.0062896 0.334345 1089230 0.0062759 0.22% 

Equivalent linear column results using maximum strains 
Iteration 

# 
Assumed value 

of ε 
Equivalent 
damping ξ 

Secant modulus E (psi) 
Computed 
value of ε 

Difference 
in % 

1 0.001 0.0516967 2708030 0.0030056 200.56% 
2 0.0030056 0.12697 2009950 0.0028699 4.51% 
3 0.0028699 0.121366 2051690 0.0027923 2.70% 
4 0.0027923 0.118194 2075910 0.0027648 0.98% 

 

Table 2: Results of iterations with maximum strains for the broad-band earthquake. 
 
Once the convergence criterion was reached, the maximum response was retrieved at the 

same points where it was calculated in the previous analysis. Table 3 displays the maximum 
relative displacement and absolute acceleration, and the maximum shear force and bending 
moment at the base. As it can be seen, in this case the equivalent linear method 
underestimates the true response (i.e., that obtained with a full nonlinear analysis). This means 
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that the equivalent linear method produces a too stiff equivalent structural system. Actually, 
by comparing Tables 1 and 3 it is evident that the simple linear analysis yielded better results 
than the equivalent linear method. The most likely reason is that the iteration process was 
implemented using the maximum normal strains from the time histories. For a nonstationary 
excitation like an earthquake acceleration, this peak strain only occurs at a single instant of 
time and thus it is not reasonable to use the maximum values of the strains in the iteration 
process. In the following examples, an effective (reduced) strain will be used.  

 
Displacement (in)  

Non-linear result Linear result %Diff 
5.3374 3.2412 39.27% 

Shear force (kip)   
Non-linear result Linear result %Diff 

407.1 241.43 40.70% 
Bending moment (kip-in) 

Non-linear result Linear result %Diff 
42442 25655 39.55% 

Acceleration (in/s^2) 
Non-linear result Linear result %Diff 

1436.8 877.22 38.95% 
 

Table 3: Final response with maximum strains for the broad-band earthquake. 
 
Before continuing with the application of the equivalent linear method, it is pertinent to 

discuss how the equivalent damping ratios obtained at each iteration steps are used in the 
ANSYS building model. First, it is noticed that at each iteration step two equivalent damping 
ratios are used, one for the beams and another for the column elements. However, ANSYS 
(and most structural analysis programs) cannot assign different damping properties to specific 
parts of a structure. Rather, the damping is usually introduced as modal damping ratios, i.e. 
each vibration mode is assigned a specific value. Moreover, in ANSYS there is an additional 
restriction: because the program uses the Rayleigh damping model, only two modes can be 
assigned a specific value. To implement the equivalent linear method in ANSYS, the mean 
value of the two equivalent damping ratios obtained at each iteration step from the 
degradation curves was calculated. This value was assigned to two modes of the building 
through the damping matrix of the Rayleigh model. The damping ratio (along with the natural 
frequencies) was used to calculate the parameters α and β that multiply to the mass and 
stiffness matrix.  

When the equivalent linear method is applied for site response analysis, i.e. to calculate the 
acceleration at the surface of a layered soil deposit, usually an effective shear strain γefec equal 
to 65% of the maximum absolute value γmax is used in the process. Therefore to asses if this 
approach is viable to compute the seismic response of the building, the previous iterative 
process was repeated using εefec = 0.65 εmax. The partial results obtained with the iteration 
process are presented in Table 4. Since this was only a trial, the convergence criterion was set 
equal to 2%.  
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Equivalent linear beam results using  65% of strains 

Iteration # 
Assumed 
value of ε 

Equivalent 
damping ξ 

Secant modulus E 
(psi) 

Computed 
value of ε 

Effective ε 
(0.65*max.) 

Difference 
in % 

1 0.001 0.0617672 2834490 0.0054803 0.003562195 256.22% 

2 0.0035622 0.190614 1744850 0.0053088 0.00345072 3.13% 

3 0.00345072 0.18451 1781600 0.005238 0.0034047 1.33% 

Equivalent linear column results using 65% of strains 

Iteration # 
Assumed 
value of ε 

Equivalent 
damping ξ 

Secant modulus E 
(psi)) 

Computed 
value of ε 

Effective ε 
(0.65*max.) 

Difference 
in % 

1 0.001 0.0516967 2708030 0.0030056 0.00195364 95.36% 

2 0.00195364 0.0854747 2354050 0.0025624 0.00166556 14.75% 

3 0.00166556 0.0748915 2456670 0.0025094 0.00163111 2.07% 
 

Table 4: Results of iterations with 65% strain reduction for the broad-band earthquake. 
 

Displacement (in) 
Non-linear result Linear result %Diff 

5.3374 3.7013 30.65% 
Shear Force (kip) 

Non-linear result Linear result %Diff 
407.1 262.93 35.41% 

Bending moment (kip-in) 
Non-linear result Linear result %Diff 

42442 27509 35.18% 
Acceleration (in/s2) 

Non-linear result Linear result %Diff 
1436.8 891.69 37.94% 

 

Table 5: Final response with 65% strain reduction for the broad-band earthquake. 
 
Once convergence was achieved with the 0.65εmax effective strain, the same four maximum 

response quantities previously used were obtained from the time histories. They are shown in 
Table 5. Although there is a slight improvement in the accuracy of the results compared to the 
previous case (i.e., using the maximum normal strains εmax), the values of the four response 
quantities calculated are not satisfactory. The equivalent linear method continues to 
underestimate the true response. It is then preliminarily concluded that the typical approach to 
define the effective strain in Soil Dynamics is not applicable for calculating the seismic 
response of buildings. 

Therefore, since there are no other guidelines to select a reduction factor, it was decided to 
vary this parameter beginning with 100% (i.e., no reduction) and decreasing it to zero. The 
building response was calculated by applying the equivalent linear method using each of the 
reduction factors to define the effective normal strain. The errors in the relative displacement, 
absolute acceleration, shear force and bending moments at the same selected points as before 
were calculated and are plotted in Figure 16. It is evident that there are optimal reduction 
factors but their values vary depending on the type of response. 
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Figure 16: Error in the response for different strain reduction factors (broad band record). 
 
The optimum values for each of the four response quantities are summarized in Table 6. 

The reduction factor varies from 6.8% for the displacement to 12.6% for the acceleration. 
Clearly, these values are much smaller than the 65% used in the Soil Dynamics applications. 

For practical applications, it is not convenient to select different reduction factors 
depending on the response sought. A single value would be preferred, even though the error 
may be slightly higher for some of the response quantities. In this study it is recommended to 
use a weighted average value calculated by given more weight to the shear force and bending 
which are essential quantities for structural design. The final recommended reduction factor is 
presented in Table 7. 

 
Error Strain % 

Displacement 6.796 

Shear 10.756 

Moment 10.432 

Acceleration 12.641 
 

Table 6: Optimum values of the reduction factor for the broad band earthquake. 
 

 
 

Table 7: Recommended reduction factor for the broad band earthquake. 
 
To evaluate the effectiveness of the proposed reduction factor for a broad-band ground 

motion, the building is again subjected to the acceleration record of the 1940 Imperial Valley 
earthquake. The details of the iteration process are presented in Table 8. This time, the 
tolerance to check the convergence was set equal to 1% in order to get more precise results. 

 
Equivalent linear beam results using 10.71% of strains 

Iteration # 
Assumed  
value of ε 

Equivalent  
damping ξ 

Secant  
modulus E (psi) 

Computed value  
of ε 

Effective ε  
(0.107*max.) 

Difference 
in % 

1 0.001 0.061767 2834490 0.0054803 0.000586984 41.30% 
2 0.000586984 0.043891 3063173 0.0062432 0.000668697 13.92% 
3 0.000668697 0.047358 3016649 0.0061259 0.000656133 1.88% 
4 0.000656133 0.046823 3023761 0.0061465 0.000658339 0.34% 
       
       

Earthquake Scale Factor Class Factor
Imperial x3.5 Broad 0.10711
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Equivalent linear column results using 10.71% of strains 

Iteration # 
Assumed  
value of ε 

Equivalent  
damping ξ 

Secant  
modulus E (psi) 

Computed value  
of ε 

Effective ε  
(0.107*max.) 

Difference 
in % 

1 0.001 0.051697 2708030 0.0030056 0.000321924 67.81% 
2 0.000321924 0.029806 2985128 0.0032868 0.000352043 9.36% 
3 0.000352043 0.030742 2972360 0.0032294 0.000345895 1.75% 
4 0.000345895 0.030551 2974963 0.003239 0.000346923 0.30% 

 

Table 8: Results of iterations with 10.71% strain reduction for the broad-band earthquake. 
 
Table 9 compares the exact response with that predicted by the equivalent linear method 

once convergence was achieved. It can be seen that the results for the internal forces and 
moments are excellent; the errors for the displacement and acceleration are higher but still 
quite reasonable. The difference in the errors between these two types of quantities is due to 
the fact that, as explained before, the shear force and moment were given priority over the 
deformations quantities to define the optimal reduction factor for the strains. 

 
Displacement (in) 

Non-linear result Linear result %Diff 
5.3374 4.9858 6.59% 

Shear Force (kip) 
Non-linear result Linear result %Diff 

407.1 408.96 0.46% 
Bending moment (kip-in) 

Non-linear result Linear result %Diff 
42442 42377 0.15% 

Acceleration (in/s2) 
Non-linear result Linear result %Diff 

1436.8 1508.7 5.00% 
 

Table 9: Final response with 10.71% strain reduction for the broad-band earthquake. 
 

5.2 Short-band seismic record 
 

The previous study is repeated but using an earthquake ground motion with a typical short 
band frequency content, namely the 1986 San Salvador record registered at the CIG station. 
The first task is to calculate the linear response of the building and compare it with the results 
of a full nonlinear analysis. In order to force a nonlinear behavior, the earthquake record is 
scaled by a factor of 2. This factor was found by a trial and error process. 

The differences in the maximum values of four response quantities calculated with 
nonlinear and linear analysis are shown in Table 10. As in the previous cases, the responses 
selected for comparison are the relative displacement and absolute acceleration at the top of 
the building and the shear force and bending moment at a column at the base of the structure. 
It can be seen that, similarly to the case of the broad band event, the linear analysis 
overestimates the four response quantities compared.  

 
Displacement (in) 

Non-linear result Linear result %Diff 
5.2808 5.7681 9.23% 

Shear Force (kip) 
Non-linear result Linear result %Diff 

411.43 4.95E+02 20.28% 
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Bending moment (kip-in) 
Non-linear result Linear result %Diff 

42531 5.16E+04 21.40% 
Acceleration (in/s2) 

Non-linear result Linear result %Diff 
1676.6 2202.2 31.35% 

 

Table 10: Non-linear and linear results due to the 2.0x scaled short band record. 
 
Observing the error obtained it is evident that in order to get a better approximation of the 

non-linear values another reduction factor must be implemented. As it was the case for the 
broad band record, using as effective strain either the full value or 0.65εmax did not produce 
acceptable results. Therefore, a more appropriate reduction factor will have to be obtained by 
varying its value, calculating the responses and comparing them with the exact results. The 
reduction factor was varied from 0% to 100%: the zero value corresponds to a linear analysis 
and the 100% value is the case when εmax is used. The errors in percent for the four different 
response quantities as a function of the reduction factor are presented in Figure 17. It is 
evident from the figure that there is no single optimum reduction factor that is applicable to 
the four responses. 

 

 
 

Figure 17: Error in the response for different strain reduction factors (short band record). 
 
The optimum values for each response quantity are summarized in Table 11. The range of 

optimal values goes from 6.5% for the relative displacement to 14.6% for the absolute 
acceleration. 

Error Strain % 
Displacement 6.494 

Shear 12.674 
Moment 13.002 

Acceleration 14.601 
 

Table 11: Optimum values of the reduction factor for the short band earthquake. 
 
However, as it was mentioned before, for practical applications a single reduction factor 

that can be used for all the responses is desired. In order to obtain this parameter, a weighted 
mean was calculated where the shear force and bending moment parameters contribute more 
than the deformation quantities. The final factor recommended is shown in Table 12. 

 

 
 

 Table 12: Recommended reduction factor for the short band earthquake. 

Earthquake Scale Factor Class Factor
Salvador x2 Short 0.12785
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Using this factor to calculate the effective strain, the response of the building to the 1986 
San Salvador earthquake was calculated again with the equivalent linear method. The normal 
strains, secant moduli and damping ratios at each iteration steps are provided in Table 13. 
Because these are final calculations, the convergence tolerance criterion was set equal to 1% 
in order to get more precise results.  

 
Equivalent linear beam results using 12.78% of strains 

Iteration 
 # 

Assumed  
value of ε 

Equivalent  
damping ξ 

Secant  
modulus E (psi) 

Computed value  
of ε 

Effective ε  
(0.1278*max.) 

Difference 
in % 

1 0.00100 0.061767 2834490 0.0058474 0.000747561 25.24% 
2 0.000748 0.050736 2972351 0.0063028 0.000805781 7.79% 
3 0.000806 0.053251 2940026 0.0062604 0.000800361 0.67% 

Equivalent linear column results using 12.78% of strains 
Iteration 

 # 
Assumed  
value of ε 

Equivalent  
damping ξ 

Secant  
modulus E (psi) 

Computed value  
of ε 

Effective ε  
(0.1278*max.) 

Difference 
in % 

1 0.00100 0.051697 2708030 0.0031288 0.000400001 60.00% 
2 0.00040 0.032240 2952119 0.0033253 0.000425123 6.28% 
3 0.000425 0.033028 2941559 0.0032936 0.00042107 0.95% 

 

Table 13: Results of iterations with 12.78% strain reduction for the short-band earthquake 
 

The final maximum relative displacement, absolute acceleration, shear force and bending 
moment obtained with the equivalent linear method and εefec = 0.128 εmax are shown in Table 
14 along with the exact responses and the relative errors. It is evident that the results are 
excellent for the internal forces and although the differences are higher for the deformation 
quantities, their accuracy is still very reasonable. 

 
Displacement (in)  

Non-linear result Linear result % Diff 
5.2808 4.9037 7.14% 

Shear Force (kip)  
Non-linear result Linear result % Diff 

411.43 410.61 0.20% 
Bending moment (kip-in) 

Non-linear result Linear result % Diff 
42531 42653 0.29% 

Acceleration (in/s2) 
Non-linear result Linear result % Diff 

1676.6 1729.1 3.13% 
 

Table 14: Final response with 12.78% strain reduction for the short band earthquake 
 

6. SEISMIC INTENSITY PARAMETERS 
 

There are many factors that affect the seismic response of a building, such as the intensity 
of the earthquake record, its duration and its frequency content. Each of these factors can be 
described by a parameter or index. A summary of these parameters is presented in a thesis by 
Miranda (2016) where their geographical distribution for the Island of Puerto Rico due to 
three low intensity seismic motions was presented. A few of these parameters that account for 
the main factors that affect the seismic demand imposed on buildings by an earthquake were 
selected; they are described in the next section. These indices will be computed for a number 
of historic ground motions with different characteristics and a reduction factor will be defined 
as a linear combination of them. The coefficients of the linear combination will be selected by 
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a minimizing the difference between the exact nonlinear response and the approximate 
response calculated with the equivalent linear method. 

 
6.1 The Peak Ground Acceleration 

 

There are several factors associated with an earthquake record that has a distinct influence 
on the response of a structure. When these factors are measured by a quantifiable parameter 
they are usually referred to as “earthquake intensity indices”. The most common parameter 
used to measure the intensity of an earthquake ground motion is the “Peak Ground 
Acceleration” (PGA). The PGA of a given seismic event is simply the maximum absolute 
value of the acceleration obtained from an accelerogram. For historical reasons and due to its 
simplicity the PGA was (and still is) widely used as an intensity index. 

It is intuitive to assume that an earthquake with a higher PGA will cause a higher level of 
damage than another one with a smaller PGA. However, it is well known (e.g., Park et al., 
1985) that reinforced concrete structures are generally damaged not only high stress 
excursions but also by a combination of repeated stress reversals. Since the PGA occurs at a 
specific instant of time, it may not be a proper measure of damage potential except for low-
rise, short period buildings. Nevertheless, as it was mentioned the PGA is the most popular 
and extensively used intensity index and thus it is selected as the first parameter to be later 
applied to define the optimal reduction factor. 
 
6.2 The Peak Ground Velocity 

 

The “Peak Ground Velocity” (PGV) is another parameter commonly used to characterize 
the amplitude of a strong earthquake. The PGV is defined in a similar way as the PGA, but 
with the absolute value of the velocity. Usually, the velocity records show substantially less 
high frequencies than the acceleration. This is because the velocity is obtained by integration 
of the acceleration and this effectively results in a filtering of high frequencies. Due to the fact 
that the velocity is less sensitive to the high frequencies of strong motions, the PGV can better 
characterize the amplitude of strong motions at the intermediate frequencies. Moreover, 
several studies have found that the PGV correlates well with observed structural damage, 
especially in those structures with intermediate natural periods (Akkar and Bommer, 2007). 

 
6.3 The Characteristic Intensity 

 

The concept of “Characteristic Intensity” (Ic) emerged from the study of the seismic 
damage to reinforced concrete structures by Park et al. (1985). The rate of structural damage 
was defined as a linear combination of the damage caused by excessive deformation and the 
contribution of repeated load cycles. Their experiments consisted of analyzing two columns as 
a linear elastic structure with one degree of freedom, with one column being more ductile than 
other. With this, Park et al. determined the rate of damage for both columns, which they found 
to be proportional to the quantity defined in equation (21). The authors concluded that this 
would be viable representation of the destructive potential of a seismic event. 

 �� = �௥�௦ଵ.5 ��଴.5                                                            (21) 
 

 where Arms is the quadratic mean of the seismic acceleration and tf is the total duration of the 
seismic event. 
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6.4 The Arias Intensity 
 

The “Arias Intensity” (AI) is a quantitative measure of the intensity of an earthquake that is 
based on instrumentation, and it can be regarded as the measurement of the total seismic 
energy absorbed by the soil. It correlates well with several commonly used demand measures 
of structural performance, liquefaction, and seismic slope stability. It is defined as: 

 
2

0
( )

2
f

g

t
tAI x dt

g

                                                             (22) 

 

 where ( )g tx is the earthquake time history of acceleration, tf is the total duration of the seismic 

event and g is the acceleration of gravity. It can be shown (using the Parseval's theorem) that 
the AI has a close relationship with the area under the squared amplitude of the Fourier 
spectrum calculated from the time history of acceleration. 

 
6.5 The Cumulative Absolute Velocity 

 

The “Cumulative Absolute Velocity” (CAV) is another parameter proposed as an index to 
quantify the potential earthquake damage to structures. One of its interesting characteristics is 
that it is proportional to load cycles causing low-cycle fatigue type damage (Katona, 
2011). The CAV is defined as the area under the curve of the absolute value of the 
accelerogram. In mathematical terms, it is the integral of the absolute value of the acceleration 
time history over the duration of the earthquake. It is defined by equation (23) (EPRI, 1991): 

 

 
0

( )
f

g

t
tCAV x dt                                                    (23) 

 

 where ( )g tx is the time history of the acceleration and tf  is the total duration of the seismic 

event. 
 

6.6 Effective Design Acceleration  
 

The idea of “Effective Design Acceleration” (EDA) was proposed by Benjamin and 
Associates, Inc. (Benjamin, 1988). They argued that the high frequency components of 
ground motions do not have a significant effect on the seismic responses of structures. 
However, their influence on the peak ground acceleration is important and therefore, they 
proposed a scaling parameter using the peak acceleration value. The approach consisted of 
only filtering out the peak accelerations that are above 8 - 9 Hz and using the remaining 
values as the EDA.  

 
7. PROPOSED OPTIMAL REDUCTION FACTOR  

 

 It is proposed to define the optimal reduction factor RD as a linear combination of the 
six seismic demand indices described in the previous section, i.e. as: 

 

 1 2 3 4 5 6 7RD PGA PGV Ic AI CAV EDA              (24) 
 

A linear regression was implemented to find the seven coefficients αi in equation (24). Five 
of the earthquake records were used to calculate the seismic response of the building: the 1940 
Imperial Valley, the 1994 Northridge Sylmar, the 1966 Parkfield, the 1999 Hector Mine and 
the 1989 Loma Prieta ground motions. Next, the six seismic parameters for the each of the 
five earthquakes were calculated. The five weighted average errors along with the six indices 
for each of the seismic records were input into the program Microsoft Excel. Using the 
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internal tools of this program a linear regression was performed from which the constants that 
multiply each seismic parameter in the linear combination were obtained.  

 
The final formula to calculate the optimal reduction factor RD is provided in equation (25) 

for the fps system and in equation (26) for the SI system.  
 
Using units of feet and seconds: 
 

 
0.0395092 0.00209 0.0001658 0.0234755 0.0048305 

0.0159971 0.0332201 

RD AI CAV EDA Ic

PGA PGV

     
 

 (25) 

 

Using units of meters and seconds: 
 

 
0.0395092 0.006857 0.000544 0.077019 0.0287059 

0.0524837 0.10899 

AI CAV EDA IRD c

PGA PGV

     
 

 (26) 

 
8. VALIDATION OF THE RESULTS  

 

In order to validate the proposed reduction factor, it was used to apply the equivalent linear 
method to calculate the response of the RC building model to eight seismic records. The 
objective was to determine the error in the nonlinear seismic response calculated with the 
approximate method for different earthquakes. The earthquake database used consisted of four 
broad-band and four short-band events that were selected to represent diverse seismic 
loadings that can be expected in a real case scenario. The seismic records were scaled up so 
that they cause a nonlinear behavior of the building. However, it is recalled that the equivalent 
linear method usually is not applicable to structures undergoing a highly nonlinear response 
and thus the scaling has its limits.  

The results obtained for each of the eight seismic records is presented in Table 15. The 
table displays the seismic record applied, the scaling factor, the earthquake type in terms of its 
frequency content, the reduction factor calculated with equation (25), the relative errors in the 
relative displacement of the top floor, the shear force and bending moment in a first floor 
column, the absolute acceleration of the top floor and the average error. 

As it can be seen, the maximum overall average error for all of the earthquake records is 
9.7% and smaller for the other seven cases (around 3%). 

 

Earthquake Scale Factor Class Factor 
Error 
Disp. 

Error 
Shear 

Error 
Mom. 

Error 
Acc. 

Average 
Error 

Salvador x2 Short 0.1278 7.1% 0.2% 0.3% 3.1% 2.7% 

Imperial x3.5 Broad 0.1071 6.6% 0.5% 0.2% 5.0% 3.1% 

Loma Prieta x2 Short 0.1804 12.8% 12.0% 12.3% 1.6% 9.7% 

Northridge x1 Short 0.1737 2.9% 0.1% 1.5% 1.0% 1.4% 

Borrego x80 Broad 0.0851 0.8% 4.0% 3.7% 3.4% 3.0% 

Hector Mine x18 Broad 0.0637 4.2% 0.0% 1.9% 5.8% 3.0% 

Managua x2 Broad 0.0461 5.8% 0.8% 0.5% 6.0% 3.3% 

Parkfield x6 Short 0.1222 1.2% 0.6% 0.4% 3.4% 1.4% 
 

Table 15: Accuracy of the response predicted by the equivalent linear method with the proposed reduction 
factor for a collection of seismic records. 

 
9. FLOOR RESPONSE SPECTRUM RESULTS 
 

E.G. CRUZ, L.E. SUAREZ130

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



The nonstructural elements housed in a building consist of architectural components and 
other elements that do not contribute to the strength of the structure, and mechanical and 
electrical equipment. Especially in the nuclear industry, these are called secondary systems.  
When the building is subjected to a seismic ground motion, the components rigidly attached to 
a slab will experience the same acceleration of the floor. Most seismic codes provide formulas 
to estimate the forces acting on the component which has acceptable accuracy for non-critical 
and rigid systems. When the equipment itself is flexible or is not rigidly attached, the concept 
of floor response spectra is applied to calculate the seismic forces. This tool is widely used for 
equipment located in nuclear power plants and other important industrial facilities. It is 
basically a seismic response spectrum calculated using the absolute acceleration of a floor but 
for linear elastic structures, it can also be computed with closed form equations (Suárez and 
Singh, 1989). 

 
9.1 Floor spectra for the broad-band earthquake 

 

The time histories of the absolute accelerations of the three floors were obtained for the 
exact nonlinear case and for the equivalent linear system. The building was subjected to the 
typical seismic record with a broad band frequency content, namely the 1940 Imperial Valley 
earthquake. The damping ratio to calculate the floor response spectra was selected as 5%. 
Figure 18 displays the floor response spectra for the three floors of the building obtained with 
the two approaches considered. The results show that for the second and third floor the 
equivalent linear model was able to predict almost the exact response for the full range of 
periods considered. In the case of the first floor, for periods close to 0.1 sec (the 5th linear 
natural period of the building) the equivalent linear method underestimated the peak in the 
spectrum, but for the rest of the periods, it can be considered that it yielded an excellent 
approximation. 

 

 
 

Figure 18: Broad-band event floor response spectra. 
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9.2 Floor spectra for the short-band earthquake 
 

The procedure was repeated but this time subjecting the building to a typical seismic event 
with a short band frequency content, namely the 1986 San Salvador earthquake recorded at 
the CIG station. The acceleration of each floor obtained with the non-linear model and the 
equivalent linear method were retrieved and used to calculate the response spectra. The results 
are displayed in Figure 19. Examining the three graphs one can conclude that the equivalent 
linear method slightly underestimated the results. The differences are more pronounced at the 
first natural period of the building. However, in general, the equivalent linear method 
delivered a good approximation to the results of the full non-linear analysis for the short band 
event. 

 
 

Figure 19: Short-band event floor response spectra 
 

10. SUMMARY OF FINDINGS AND CONCLUSIONS  
 

This paper presented the results of an investigation aimed at assessing whether the 
equivalent linear method, a method widely used in Soil Dynamics, can be applied to calculate 
the seismic response of reinforced concrete moment frames. To this end, a detailed 3D finite 
element model of a three-story reinforced concrete building was created in the program 
ANSYS. Constitutive relationships in the form of nonlinear σ-ε curves were obtained for the 
beams and columns sections that account for the concrete matrix and reinforcing steel bars. 
This information was input into the ANSYS program and the prototype model was subjected 
to the horizontal components of historic earthquakes. Two seismic records with different 
frequency content (broad band and short band) were selected for the first phase of the study. 
The structure was then analyzed with the equivalent linear properties using the elastic 
modulus and damping ratio obtained by applying the Masing rule.  

The comparison between the full and the approximate nonlinear analyses showed that the 
0.65 reduction factor commonly used in Soil Dynamics to define the effective strain from its 
peak value is not applicable. An optimal reduction factor that leads to an accurate estimation 
of the nonlinear response was found by trial and error for the broad and short band records. 
These results led us to generalize the reduction factor so that it can be applied to earthquakes 
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with different characteristics. It was proposed to define the optimal reduction factor based on 
a linear combination of six parameters that account for the intensity of the earthquake records. 
Using eight historic records with different characteristics and a nonlinear regression, it was 
possible to obtain a more general reduction factor. Its accuracy was verified by comparing the 
full nonlinear response with the approximate response. In addition, the exact and approximate 
floor response spectra, a tool to calculate the seismic response of nonstructural components in 
buildings, were calculated and it was shown that they are quite similar. 

It is acknowledged that a more comprehensive study is required to farther validate the 
application of the equivalent linear method to building structures. The methodology should be 
tested with more earthquake records and different moment resistant frames. However, the 
preliminary results presented in this work indicate that it is a promising approach and warrant 
the effort of carrying out further studies. 
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