Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXXIV, págs. 729-740 (artículo completo) Sebastián Giusti, Martín Pucheta y Mario Storti (Eds.) Córdoba, 8-11 Noviembre 2016

VIBRACIÓN TRANSVERSAL DE MICROVIGAS "PUENTE" CON MASAS POR LA TEORÍA DE TENSIÓN DE CUPLA

Federico Romero^{a,b}, Diana V. Bambill^{a,b} y Sergio Vera^c

^aDepartamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina

^bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

^cIFISUR-CONICET y Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina, <u>https://www.uns.edu.ar</u>

federico.romero@uns.edu.ar, dbambill@criba.edu.ar, svera@uns.edu.ar

Palabras clave: microviga, vibración transversal, Euler-Bernoulli, teoría modificada de tensión de cupla, MCST, micro masa.

Resumen. El trabajo presenta el caso de vibración transversal de microvigas tipo "puente" (bridge) cuando existe la presencia de micro partículas adosadas en diferentes posiciones sobre ella. Las micro partículas producen alteraciones en las frecuencias naturales con respecto a las que tendría la misma microviga sin masas. Se considera que la viga está compuesta de material funcionalmente graduado. El problema se plantea en base la Teoría Modificada de Tensión de Cupla (MCST), una teoría de elasticidad no clásica, que permite incorporar el efecto de la micro escala de la viga y las masas en el cálculo de las frecuencias naturales. La teoría considera una sola constante adicional para hallar el tensor de tensión de cupla. El método de Ritz es utilizado para plantear la solución aproximada y obtener los coeficientes de vibración transversal de vigas Euler-Bernoulli. Los resultados se comparan en el límite con casos de macro escala que corresponden a la teoría de elasticidad clásica y cuando es posible con resultados en microvigas publicados de otros autores.

1 INTRODUCCIÓN

Hoy en día debido a los avances tecnológicos en la fabricación de microcomponentes y al desarrollo de técnicas que permiten fabricar piezas de escalas microscópicas, se ha popularizado el uso de elementos MEMS, que son las siglas en inglés de *micro electro-mechanicals systems*. Estos mecanismos tienen la capacidad de sensar y actuar, un impulso eléctrico puede ser transformado en un movimiento, o viceversa, respondiendo con un movimiento a un impulso eléctrico.

Las nuevas tecnologías permiten generar un material que mezcla las propiedades de dos materiales constituyentes sin la existencia de zonas donde se concentran tensiones, uniéndolos de manera continua y gradual (conocidos por la sigla FGM), son los materiales funcionalmente graduados. Estos materiales están siendo estudiados y analizados en escala macro ya que tienen muchas ventajas a nivel estructural, es de gran interés conocer su comportamiento dinámico además de su comportamiento estático, siendo abundante la bibliografía que puede ser consultada. Diferente a lo que ocurre con los elementos de escala micro, donde es poco el conocimiento que se tiene sobre su comportamiento. Los dispositivos MEMS en su mayoría son fabricados en base a polisilicio y silicio, por el método constructivo quedan combinadas propiedades mixtas de estos materiales en el material combinado.

Akgöz and Civalek (2012), estudiaron, basada en la teoría modificada de tensión de cupla (conocida como MCST por sus siglas en inglés); las vibraciones libres de una microviga Euler-Bernoulli cuyo material tiene una composición funcionalmente graduada y sección variable. Rokni et al. (2015), realizaron investigaciones sobre microvigas Euler-Bernoulli funcionalmente graduadas de material epoxi, con nano tubos de carbono, para variaciones de la composición de los mismos de forma gradual en la dirección axial.

La teoría clásica no puede explicar el comportamiento de las micro estructuras porque no tiene en cuenta los efectos de la microescala en la energía necesaria para deformar un elemento, es por esto que desde principio de siglo se está buscando describir el efecto de la escala. Son varios los autores que han tratado este tema. En 1909 el concepto de la no localidad fue desarrollado por Cosserat and Cosserat (1909). Y recién en los años 60, Mindlin et al. (1968) introduce el concepto de micro estructura. El modelo de micro estructura desarrollado es complejo y de difícil aplicación debido a que involucra conocer los cinco parámetros de longitud de escala del material. Yang et al. (2002) simplifican el modelo, cuando desarrollaron la teoría modificada de tensión de cupla (MCST). En ella sólo se considera una única constante de longitud de escala del material. Durante los últimos quince años se han publicado numerosos estudios que estudian las vibraciones libres de microvigas utilizando MCST (Park et al, 2006, Asghari et al, 2010; Nateghi et al. , 2012; Ma et al., 2008; Wang et al. , 2013; Ghayesh et al. , 2013; Şimşek et al. , 2013; Sahmani et al. , 2013; Rezazadeh et al. , 2012; Kong et al. , 2009; Bambill et al. , 2016).

2 DESARROLLO

2.1 Materiales Funcionalmente Graduados (FGM)

Los materiales funcionalmente graduados, tienen la particularidad de combinar dos materiales de manera gradual. El material constituido (FGM) tiene propiedades particulares que resultan de la combinación de las propiedades de materiales originales. Las propiedades del material funcionalmente graduado, tales como la masa, la densidad, el módulo de Young, el módulo de corte, etc. varían de manera continua según una ley constitutiva.

En este trabajo se estudiarán materiales funcionalmente graduados en la dirección axil de la viga. Se asume que las propiedades del material cambian gradualmente en la dirección longitudinal de la viga (dirección de X), *L* es la longitud total de la microviga. (Ver Figura 1). Se adopta una ley de variación del material en función de la coordenada adimensional en la dirección de la longitud de la microviga, según la expresión:

$$P(x) = P_0 f_P(x) = P_a \left[1 + \binom{P_b}{P_a} - 1 \right] x^n];$$

$$con \ x = X/L; \ x \in [0, 1]; X \in [0, L].$$
(1)

En la expresión Ec. (1), la letra P representa una de las propiedades del material funcionalmente graduado. Se denomina con las letras $a \ y \ b$ a los materiales constituyentes. $P_0 = P_a$, es la propiedad del material a en el extremo derecho (x=0) y P_b es la del material b en el otro extremo de la viga (x=1). De esta forma en el extremo derecho el material es 100% a, y en el extremo izquierdo (x=1), el material es 100% b. En las secciones intermedias de la microviga el material está compuesto por la contribución del material $a \ y \ b$ en diferentes proporciones, y de acuerdo a la expresión indicada en la Ec. (1), donde n es un coeficiente exponencial.

2.2 Modelo de microviga

El modelo a analizar es el de una microviga *puente*, es una viga empotrada en ambos extremos y con una micro masa adosada en el punto medio. Se utilizaron la teoría modificada de tensión de cupla (MCST) y el método de Ritz.

La microviga tiene sección transversal rectangular A, con altura variable y ancho constante. La altura h de la sección se considera suficientemente pequeña frente a la longitud L como para representar una viga esbelta, (ver Figura 1), definida por la teoría de vigas de Euler-Bernoulli.

Figura 1; Microviga Puente AFG de sección variable

2.3 Teoría modificada de tensión de cupla (MCST)

La MCST es una teoría relativamente sencilla que nos permite analizar los efectos de la

microescala en las estructuras. La teoría clásica no puede apreciar el comportamiento de las micro estructuras, al no contemplar el incremento de energía necesaria para deformarlas cuando su tamaño disminuye. La MCST considera ese incremento energético, necesario en la deformación de un elemento cuando su tamaño es microcrométrico y a diferencia de la teoría clásica, contempla en su análisis las micro rotaciones que ocurren en los elementos de volumen contenidos en el diferencial de volumen seleccionado. Las micro rotaciones son independientes de la rotación clásica, y son dependientes de la escala. Se puede decir que si el elemento en estudio tiene escala macroscópica, las micro rotaciones existen pero su efecto es despreciable en el cálculo de la energía de deformación, pero esto no ocurre cuando se plantea lo mismo en microescala.

En el estudio de la microviga, la energía de deformación se expresa por la ecuación

$$U = \frac{1}{2} \int_{V} \left(\sigma_{ij} \varepsilon_{ij} + m_{ij} x_{ij} \right) dV$$
⁽²⁾

donde

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij} \tag{3}$$

Éste es el tensor de tensiones, donde λ y μ son las constantes de Lamé, y δ_{ij} es el delta de Kronecker.

$$\lambda = \frac{Ev}{\left[\left(1+v\right)\left(1-2v\right)\right]} \tag{4}$$

$$\mu = \frac{E}{2(1+\nu)} \tag{5}$$

v representa el coeficiente de Poisson y E es el módulo de Young del material.

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right) \tag{6}$$

son las componentes del tensor de deformación, donde las u_{ij} representan las componentes de desplazamiento del vector.

$$m_{ij} = 2l^2 \mu \chi_{ij} \tag{7}$$

es el tensor de tensiones del par desviador, y l es el parámetro de longitud de escala del material.

$$\chi_{ij} = \frac{1}{2} \left(\theta_{i,j} + \theta_{j,i} \right) \tag{8}$$

son las componentes del tensor simétrico de curvatura, y θ_{ij} son las componentes del tensor de rotación:

$$\theta_i = \frac{1}{2} e_{ijk} u_{k,j} \tag{9}$$

donde las e_{ijk} son las componentes del tensor de Levi Civita

En la teoría de vigas Euler-Bernoulli, el desplazamiento se expresa como:

$$u_{1} = u(x,t) = -z \frac{\partial w}{\partial x}$$

$$u_{2} = v(x,t) = 0$$

$$u_{3} = w(x,t)$$
(10)

donde *u* es el desplazamiento axial, y *w* es el desplazamiento transversal de eje neutro de la microviga en la dirección z, y $\frac{\partial w}{\partial x}$ es el ángulo de rotación del eje centroidal de la sección transversal de la microviga.

De la Ec. (6) y combinado con las ecuaciones de desplazamiento Ec. (10) se puede escribir el tensor de deformación como sigue:

$$\varepsilon_{ij} = \begin{bmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -zw'' & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(11)

donde

$$w'' = \frac{\partial^2 w}{\partial x^2}$$
(12)
$$\theta_i = [0, -w, 0]$$

Remplazando la ecuación anterior en la Ec (8) queda

$$\chi_{ij} = \begin{bmatrix} 0 & \chi_{12} & 0 \\ \chi_{21} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & w'' & 0 \\ w'' & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(13)

y el tensor del par desviador m_{ii} como

$$m_{ij} = \begin{bmatrix} 0 & m_{12} & 0 \\ m_{21} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = -l^2 \mu \begin{bmatrix} 0 & w'' & 0 \\ w'' & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(14)

Reemplazando el tensor de tensiones en el tensor de deformaciones

$$\begin{bmatrix} \sigma_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = (\lambda + 2\mu) \begin{bmatrix} -zw'' & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(15)

se tiene

$$\sigma_{11} = (\lambda + 2\mu)(-zw'') \tag{16}$$

$$\mathcal{E}_{11} = -zw'' \tag{17}$$

$$\chi_{12} = -\frac{1}{2}w'' \tag{18}$$

$$m_{12} = -E\,\mu w'' \tag{19}$$

En el caso de la microviga se asume que la deflexión en un instante cualquiera de tiempo *t* es de la forma:

$$w(X,t) = w^*(X) e^{i\omega t}$$
⁽²⁰⁾

donde w^* es una función continua que satisface las condiciones de borde esenciales de la microviga, e indica la deformación de la viga al ejecutar vibraciones libres, y ω es la frecuencia circular natural de vibración. La energía interna de deformación U queda representada por:

$$U = \frac{e^{i2\omega t}}{2} \int_{0}^{L} \left[\frac{EI(1-v)}{(1+v)(1-2v)} + \frac{EA}{2(1+v)} l^{2} \right] \left(w^{*\prime\prime} \right)^{2} dX$$
(21)

Y la energía cinética por la expresión:

$$T = \frac{1}{2} e^{i2\omega t} \omega^2 \left\{ \int_0^L \rho AL \left[w^*(X) \right]^2 dx + \sum_{i=1}^{N_m} m_i \left[w^*(X) \right]^2 + \sum_{i=1}^{N_m} \frac{m_i r_{gi}^2}{L^2} \left[\frac{dw^*}{dX} \right]_{X=X_{mi}} \right\}^2$$
(22)

X es la coordenada longitudinal [0,L], A es la sección transversal de la viga, I es el momento de inercia de la sección de la viga y ρ la de densidad por unidad de longitud del material, en tanto m_i y r_{gi} corresponden a la masa y al radio de giro de la masa adosada *i*, respectivamente. La coordenada X_{mi} indica la posición de la masa adosada m_i , pues la expresión Ec. (22) contempla la existencia de N_m masas.

2.4 Método de Ritz

El método de Ritz, implica utilizar una función aproximante de la deformación de la viga que debe satisfacer las condiciones de borde esenciales. Se adopta una expresión de la forma:

$$W(x) = W'_{L} \cong W_{a}(x) = \sum_{j=1}^{N} C_{j} \varphi_{j}$$

$$\tag{23}$$

 $W_a(x)$ es la deflexión aproximada de la microviga, donde las C_j son constantes arbitrarias, y las φ_j son N funciones admisibles que cumplen con las condiciones de borde esenciales de la microestructura. En este trabajo, al analizar vigas *puente*, es adecuado utilizar polinomios como funciones admisibles de la forma:

$$\left\{\varphi_{j}\right\}_{j=1}^{N} = \left\{\left(x-1\right)^{2} \left(x^{j+1}\right)\right\}_{j=1}^{N}$$
(24)

La Ec. (24) satisfice las condiciones de borde de una microviga biempotrada:

 $\varphi_i(0) = \varphi'_i(0) = \varphi'_i(1) = \varphi_i(1) = 0$

El funcional de energía total, dado por la energía cinética máxima y la energía de deformación máxima de una microviga con una única micromasa *m* adosada en el centro de la luz, en x=1/2, se tiene:

$$J = U_{Max} - T_{Max} \tag{25}$$

Para una microviga de sección variable, material funcionalmente graduado y una única masa *m* adosada en la posición x_m , la energía de deformación y la energía cinética son:

$$U = \frac{1}{2L^3} \int_0^1 \left[\frac{E(x)I(x)(1-v)}{(1+v)(1-2v)} + \frac{E(x)A(x)}{2(1+v)} l^2 \right] \left(W_a''(x) \right)^2 dx$$
(26)

$$T_{Max} = \frac{1}{2}\omega^{2} \left\{ \int_{0}^{1} \rho(x)A(x)L[W_{a}(x)]^{2} dx + m[W_{a}(x)]^{2} + \frac{r_{g}^{2}}{L^{2}} \left[\frac{dW_{a}(x)}{dx} \right]_{x=x_{m}}^{2} \right\}$$
(27)

con

$$E(x) = E_0 f_E(x) \tag{28}$$

$$I(x) = I_0 f_I(x) \tag{29}$$

$$\rho(x) = \rho_0 f_\rho(x) \tag{30}$$

$$A(x) = A_0 f_A(x) = b(x) h(x)$$
(31)

$$b(x) = b_0 f_b(x) \tag{32}$$

$$h(x) = h_0 f_h(x) \tag{33}$$

donde de arriba hacia abajo se definen: el módulo de elasticidad o módulo de Young, el momento de inercia de la sección transversal, la densidad, el área de la sección transversal, el ancho y la altura de la sección respetivamente. Todas las propiedades y características geométricas son función de la coordenada axil.

Finalmente, considerando una única masa y sin considerar el efecto de su inercia rotatoria, reemplazando las Ecs. (28-33) en las Ecs. (26-27), el funcional de energía Ec. (25) resulta:

$$J(W_{a}) = \frac{1}{2} \frac{E_{0}I_{0}}{L^{3}} \left[\int_{0}^{1} \left[f_{E}(x)f_{I}(x) + \frac{f_{E}(x)A(x)}{I_{0}2}l^{2} \right] \left(W_{a}''(x) \right)^{2} \right] - \frac{1}{2} \Omega^{2} \left[\int_{0}^{1} f_{\rho}(x)f_{A}(x) \left[W_{a}(x) \right]^{2} dx + M \left[W_{a}(x_{m}) \right]^{2} \right]$$
(34)

El coeficiente de frecuencia adimensional se expresa: $\Omega = \omega L^2 \sqrt{\frac{\rho_0 A_0}{E_0 I_0}}$; $M = \frac{m}{\rho_0 A_0 L}$ es la relación entre la masa puntual adosada y la masa de la microviga. ρ_0 es la densidad, A_0 es el área de la sección y E_0 es el módulo de Young en la sección ubicada en x = 0.

En el método de Ritz el funcional debe ser minimizado con respecto a las constantes

arbitrarias C_i , de manera que resulta:

$$\frac{\partial J[W_a(x)]}{\partial C_j} = 0, j = 1, 2, \dots, N$$
(35)

Por lo que se obtiene un sistema de N ecuaciones lineales de la forma

$$Q\{C_j\} = 0 \tag{36}$$

El determinante de la matriz anterior permite obtener

$$\mathbf{Q} = \mathbf{K} - \Omega^2 \mathbf{O} \tag{37}$$

Siendo K la matriz de rigidez y O la matriz de masa, cuyos elementos son indicados a continuación:

$$k_{ij} = \int_{0}^{1} \left[\frac{f_E(x) f_I(x) (1-v)}{(1+v)(1-2v)} + f_E(x) f_A(x) f_I(x)^2 \left(\frac{l}{h_0}\right)^2 \frac{6}{(1+v)} \right] \varphi_i \varphi_j dx$$
(38)

$$o_{ij} = \int_{0}^{1} f_{\rho}(x) f_{A}(x) \varphi_{i} \varphi_{j} dx + M \varphi_{i}(x_{m}) \varphi_{j}(x_{m})$$
(39)

Los autovalores del problema son determinados al plantear la ecuación:

$$\left|\mathbf{K}\mathbf{O}^{-1} - \Omega^{2}\mathbf{D}\right| = \left|\mathbf{B} - \gamma\mathbf{D}\right| = 0 \tag{40}$$

los autovalores del sistema surgen de resolver la Ec. (40). γ son los autovalores de la matriz **B**, y **D** es la matriz de identidad.

Resolviendo el problema de autovalores, se obtienen los coeficientes adimensionales de frecuencia natural de la microviga biempotrada con una masa adosada que ejecuta vibraciones libres.

3 RESULTADOS NUMÉRICOS

En la bibliografía técnico-científica disponible, no se han hallado resultados numéricos de frecuencias naturales de microvigas *puente* con variaciones de la sección transversal y del material.

La Tabla 1 presenta una comparación de valores de coeficientes de frecuencia para un caso particular. En ella se presentan los primeros cinco coeficientes de frecuencia natural obtenidos en este trabajo para una viga para material homogéneo, con sección constante $h_1/h_0 = 1$, doblemente empotrada y de dimensiones macroscópicas y se los compara con resultados publicados Blevins (1979), Ghannadpour et al. (2013) y Bambill et al. (2016). Se observa que los valores encontrados en la literatura citada, tienen muy buena concordancia con los obtenidos con el procedimiento propuesto en este trabajo, (M = 0).

736

	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
Método Actual $(l / h \rightarrow 0)$	22,3733	61,6728	120,9030	199,8590	298,5560
Bambill et al. (2016)	22,3731	61,6715	120,9020	199,8590	298,5620
Ghannadpour et al. (2013)	22,3733	-	-	-	-
Blevins (1979)	22,3733	61,7061	120,9030	199,8590	298,5560

Tabla 1: Coeficientes de frecuencia natural de una macroviga homogénea de sección constante biempotrada

Se puede observar que utilizando diez términos en la aproximación (Ec. (23); N=10) la solución aproximada los resultados obtenidos concuerdan en casi todas las frecuencias hasta la cuarta cifra decimal.

En la Tabla 2 se muestran los coeficientes de frecuencias naturales de microvigas *puente* con variación de la altura y ancho constante, siguiendo la ley de variación (Figura 1):

$$h(x) = 2\left(1 - \frac{h_1}{h_0}\right) \left(\left|\frac{1}{2} - x\right|\right) + \frac{h_1}{h_0}; \ b(x) = b_0$$
(41)

La relación l/h_0 indica la relación entre el parámetro de longitud de escala del material y la altura de la sección de la microviga, a medida que la relación disminuye, disminuye también la influencia del efecto de las microdimensiones de la estructura y la teoría tiende a la teoría clásica.

<i>l /h</i> 0	М	h_1/h_0									
		0,4			0,6			0,8			
		$\mathbf{\Omega}_1$	Ω_2	Ω_3	$\mathbf{\Omega}_1$	Ω_2	Ω_3	$\mathbf{\Omega}_1$	Ω_2	Ω_3	
2	0,5	71,950	216,090	502,443	69,362	210,073	477,589	67,154	204,888	457,540	
	1	55,007	167,234	485,693	53,893	164,928	459,912	52,936	163,041	439,265	
1	0,5	37,290	110,748	259,694	36,244	108,891	248,981	35,510	107,889	241,594	
	1	28,484	85,447	251,112	28,484	85,447	251,112	27,979	85,701	231,962	
0,5	0,5	20,922	60,036	144,624	20,874	61,280	142,511	21,158	63,594	143,442	
	1	15,942	45,912	139,966	16,174	47,613	137,333	16,652	50,289	137,750	
0,25	0,5	9,529	22,194	64,326	11,450	30,790	76,822	13,189	38,558	88,690	
	1	7,165	16,345	62,543	8,808	23,340	74,163	10,351	30,158	85,211	

Tabla 2: Coeficiente de frecuencia natural de microvigas *puente* homogéneas, con variación lineal de la altura, y una masa adosada en el punto medio, v=0,30

Los ejemplos numéricos que se presentan a continuación corresponden a vigas *puente* construidas con materiales funcionalmente graduados según la Ec. (1). En particular el coeficiente de Poisson se adopta constante igual a 0,30. En los extremos, la viga es de un solo material constituyente, $a \circ b$ y en las secciones intermedias el material es una combinación de los dos materiales constituyentes a y b según la ley dada en la Ec. (1), con n=1. Se adopta ancho de la microviga constante: $b(x) = b_0$ y altura variable según la ley Ec. (41).

 ρ_1 y E_1 son las propiedades del material en x = 1.

$ ho_1$	E_1		$l=2h_0$			$l=h_0$			
$\overline{ ho_0}$	$\overline{E_0}$	М	Ω_1	Ω_2	Ω_3	Ω_1	Ω_2	Ω_3	
0,4	0,4	- 0,5	69,445	214,697	495,415	36,576	113,111	262,688	
	0,6		69,624	215,245	496,256	36,920	114,157	264,314	
	0,8		69,803	215,791	497,091	37,258	115,188	265,905	
	1		69,980	216,336	497,922	37,590	116,206	267,462	
	0,4	- 1	54,002	167,429	469,927	28,439	88,191	249,580	
	0,6		54,143	167,862	470,628	28,708	89,014	250,927	
	0,8		54,282	168,293	471,325	28,972	89,827	252,249	
	1		54,421	168,722	472,018	29,232	90,630	253,548	
0,6	0,4	0,5	67,786	209,143	477,303	35,698	110,166	252,462	
	0,6		67,962	209,682	478,252	36,036	111,194	254,337	
	0,8		68,137	210,218	479,192	36,367	112,208	256,148	
	1		68,311	210,753	480,124	36,694	113,207	257,902	
	0,4	- 1	53,215	165,011	455,149	28,023	86,911	241,254	
	0,6		53,354	165,439	455,928	28,289	87,725	242,800	
	0,8		53,492	165,865	456,701	28,550	88,529	244,290	
	1		53,629	166,290	457,467	28,807	89,324	245,731	

Tabla 3: Coeficiente de frecuencias naturales de microvigas AFG, con una masa adosada en el punto medio, $v=0,30, h_1/h_0=1.$

$ ho_1$	E_1		$l=0,5h_0$			$l=0,25 h_0$			
$\overline{ ho_0}$	$\overline{E_0}$	М	Ω_1	Ω_2	Ω_3	Ω_1	Ω_2	Ω_3	
0,4	0,4	0,5	21,5699	66,7909	157,4030	15,6649	48,6609	116,1350	
	0,6		22,1677	68,5844	160,3620	16,5184	51,1688	120,9000	
	0,8		22,7367	70,3077	163,0870	17,2923	53,4894	124,7400	
	1		23,2808	71,9692	165,6460	18,0063	55,6641	128,1170	
	0,4	- 1	16,7684	52,0647	150,2470	12,1772	37,9430	111,6340	
	0,6		17,2348	53,4672	152,6570	12,8412	39,8869	115,5250	
	0,8		17,6792	54,8203	154,9010	13,4448	41,7015	118,6530	
	1		18,1046	56,1294	157,0280	14,0029	43,4129	121,4520	
0,6	0,4	0,5	21,0459	65,0194	150,0100	15,2771	47,3287	108,9330	
	0,6		21,6331	66,7853	153,6160	16,1161	49,8056	114,9740	
	0,8		22,1916	68,4798	156,8170	16,8761	52,0907	119,6560	
	1		22,7255	70,1120	159,7250	17,5769	54,2276	123,5380	
	0,4	- 1	16,5201	51,2959	144,0450	11,9935	37,3658	104,7030	
	0,6		16,9813	52,6856	147,1350	12,6505	39,2956	110,4790	
	0,8		17,4206	54,0252	149,7950	13,2474	41,0935	114,5050	
	1		17,8411	55,3204	152,1870	13,7991	42,7872	117,7080	

Tabla 4: Coeficiente de frecuencias naturales de microvigas AFG, con una masa adosada en el punto medio, $v=0,30; h_1/h_0=1.$

4 CONCLUSIONES

En este trabajo se analizó la variación del material y se observa que la utilización de materiales funcionalmente graduados puede aportar positivamente la modificación de las frecuencias naturales de un microsistema. La utilización de estos materiales así como la elección de la forma geométrica de la viga pueden adaptarse a requerimientos de diseño.

La presencia de una micropartícula adosada, también afecta los coeficientes de frecuencia natural, se comprueba que ésta genera una disminución de las frecuencias naturales del microsistema.

Por otro lado se estudió la variación de la sección transversal de la viga, dejando constante el ancho y modificando su altura, comprobando que a medida que la relación entre las alturas es más pequeña las frecuencias naturales aumentan.

Por último se determinaron que los efectos de la microescala generan modificaciones en las frecuencias naturales del sistema siendo cada vez más elevadas a medida que la microviga es más pequeña.

Agradecimientos

Los autores de este trabajo desean agradecer al Departamento de Ingeniería y a la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur (UNS) así como al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y a la Comisión de Investigaciones Científicas (CIC) de la provincia de Buenos Aires bajo cuyo auspicio se desarrolló el presente trabajo.

REFERENCIAS

- Akgöz, B., Civalek, O., Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory, *Composite Structures*, 98:314–322, 2012.
- Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M., On the size-dependent behavior of functionally graded micro-beams, *Materials & Design*, 31:2324-2329, 2010.
- Bambill, D., Guerrero, G., Felix, D., Natural vibrations of micro beams with nonrigid supports, *Journal of Vibration and Control*, 1-14, 2016.
- Cosserat, E. and Cosserat, F., Theory of deformable bodies, *Paris: Scientific Library*, Hernan and Sons, 1909.
- Ghayesh, M. H., Farokhi, H., Amabili, M., Nonlinear dynamics of a microscale beam based on the modified couple stress theory, *Composites*: Part B, 50:318-324, 2013.
- Kong, S., Zhou, S., Nie, Z., Wang, K., Static and dynamic analysis of micro beams based on strain gradient elasticity theory, *Int. J. Eng. Sci.*, 46:487-498, 2009.
- Ma, H.M., Gao, X.L., Reddy, J.N., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, *Journal of the Mechanics and Physics of Solids*, 56:3379-3391, 2008.
- Mindlin, R.D., Eshel, N.N., On First Strain-gradient theories in linear Elasticity. *International Journal of Solids and Structures*, 4:109-124, 1968.
- Nateghi, A., Salamat-talab, M., Rezapour, J., Daneshian, B., Size dependent buckling analysis of functionally graded micro beams on modified couple stress theory, *Applied Mathematical Modelling*, 36:4971-4987, 2012.
- Park, S. K, Gao, X.L., Bernoulli-Euler beam model based on a modified couple stress theory. *Journal of Micromechanics and Microengineering*, 223:2355-2359, 2006.

- Rezazadeh, G., Vahdat, A.S., Tayefeh-Rezaei, S., Cetinkaya, C., Thermoelastic damping in micro-beam resonator using modified couple stress theory, *Acta Mechanica*, 223:1137-1152, 2012.
- Rokni, H., Milani, A., Seethaler, R., Size-dependent vibration behavior of functionally graded CNT-Reinforced polymer microcantilevers: *Modeling and optimization, European Journal of Mechanics A/Solids*, 49:26-34, 2015.
- Sahmani, S., Ansari, R., Gholami, R., Darvizeh, A., Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory, *Composites: Part B*, 51:44-53, 2013.
- Simsek, M., Reddy, J.N., Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, *Int. Journal of Engineering Science*, 64:37-53, 2013.
- Wang, Y.G., Lin, W.H., Liu, N., Nonlinear free vibration of a microscale beam based on modified couple stress theory, *Physica E. Low Dimensional Systems and nanostructures*, 47:80-85, 2013.
- Yang, F., Chong, A.C.M., Lang, D.C.C. and Tong, P., Couple stress based strain gradient theory for elasticity. *International Journal of Solids and Structures*, 39:2731-2743, 2002.