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Abstract. Computational models of heart mechanics have a large potential for application in medical

research, and may give improved understanding of heart physiology and of important clinical problems

such as heart failure. From the mathematical point of view, the passive mechanical behaviour of the

heart can be described using the finite deformation theory from the field of solid mechanics. The tis-

sue is typically modeled as an anisotropic, non-linear, hyperelastic and either incompressible or nearly

incompressible material. Incompressibility is often enforced using a penalty function, which is known

to dramatically change the conditioning of the stiffness matrix. For high penalty parameters, the con-

dition number increases and the performance of iterative solvers will decrease. In this work we apply

the Augmented Lagrangian approach with a mixed three field finite element formulation to incorporate

quasi-incompressibility. This approach allows smaller penalty parameters, which is expected to result

in linear systems with better numerical properties. Another advantage of the approach is that it offers

complete control of the volumetric change during a simulation, which is not possible using the standard

penalty formulation. The performance of the different approaches are examined using a set of problems

from a cardiac mechanics benchmark.
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1 INTRODUCTION

Computational modeling of cardiac electromechanical activity is a subject of substantial

medical and scientific interest, which may contribute to increased understanding of several

phenomena associated with heart physiology and pathology. Furthermore, there is increas-

ing interest in applying computational models to study and optimize new therapies for cardiac

disease, and for development of new drugs (Trayanova and Winslow, 2011). However, accurate

modeling of heart physiology is a challenging problem, since it is a complex multiscale and

multiphysics problem, which necessitates close interaction between numerous mathematical

models.

Computational models focusing only on mechanical aspects of heart function have also led

to considerable insight. One area of particular interest is the complex phenomena of heart

failure, which is a mechanical dysfunction where the heart progressively loses its pumping abil-

ity (Mann and Bristow, 2005). However, although pure mechanical models, and in particular

passive mechanics models, are considerably simpler than the coupled electro-mechanics prob-

lem, they still represent a substantial computational challenge. The tissue behavior is typically

modeled as hyper-elastic, and is strongly non-linear, orthotropic and nearly incompressible.

These are all factors known to be challenging for numerical solution of the equations.

Several independent simulation codes have been developed for cardiac mechanics, and a

benchmark recently described in Land et al. (2015) represents a first attempt at comparing and

verifying these solvers. The benchmark tests relevant aspects including pressure loading and

anisotropic and spatially varying material properties. Within this context, only a few studies

have focused on increasing the efficiency and robustness of cardiac mechanics simulations. For

instance, Land et al. (2012) uses strategies to reduce the total number of full Newton iterations,

such as strain prediction, modified Newton methods and matrix-free solvers. Hadjicharalam-

bous et al. (2014) presents the weakly penalized form of the problem, while Sundnes et al.

(2014) focuses on efficient linearization of coupled active and passive mechanics problems.

As noted above, heart tissue is normally modeled as incompressible or nearly incompress-

ible, which is known to cause numerical difficulties such as locking and an ill-conditioned stiff-

ness matrix. The finite element literature includes a large number of alternative methods for han-

dling nearly incompressible systems, one being the Augmented Lagrangian method (Glowinski

and Le Tallec, 1989; Simo and Taylor, 1991; Weiss et al., 1996). To our knowledge this strat-

egy has never been applied in cardiac mechanics, and may potentially improve computational

performance by reducing the condition number of the stiffness matrix and thereby improving

the convergence of iterative solvers. In the present work we evaluate the performance of the

Augmented Lagragian approach, and compare it to alternative formulations of nearly incom-

pressible problems. The methods are compared by applying them to the test cases proposed

in Land et al. (2015).

2 MATHEMATICAL MODEL

The model that describes cardiac tissue deformation is based on continuum mechanics theory

for finite deformations (Javier Bonet, 2008). The boundary value problem is defined as follows:

given the body forces B and the boundary conditions ū and T̄, find the displacement field u such

that:






Div(FS) + B = 0, in Ω0,
u = ū, on ∂ΩD

0 ,
FSN = T̄, on ∂ΩN

0 .
(1)
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Here, S is the second Piola-Kirchhoff tensor, F = I+Grad(u) is the deformation gradient tensor,

ū are the precribed displacements and T̄ is the first Piola-Kirchhoff traction vector prescribed

on the boundary ∂ΩN
0 , which has normal vector N.

Assuming that the material is hyperelastic, the stress can be derived from a strain energy

function:

Sp = 2
∂Ψ

∂C
, (2)

where C = FTF is the right Cauchy-Green tensor. The form of the strain energy Ψ depends

on the material considered. We will consider two different material laws, one is the classical

Neo-Hookean material, with

Ψ =
µ

2
(I1 − 3)− µ(ln J) +

λ

2
(ln J)2, (3)

where µ and λ are material constants. The other material we used is a typical cardiac constitutive

model which is transversely isotropic and was proposed by Guccione et al. (1995). Its strain

energy function is given by

Ψ =
c

2
(eQ − 1), (4)

and

Q = bfE
2
11 + bt(E

2
22 + E2

33 + E2
23 + E2

32) + bfs(E
2
12 + E2

21 + E2
13 + E2

31) (5)

where Eij are components of the Green-Lagrange strain tensor E in a local orthonormal coordi-

nate system with cardiac fibers aligned in the e1-direction, and where C, bf , bt, bfs are material

parameters. The Guccione et al. (1995) constitutive law was implemented and validated in our

code using a procedure described by Urquiza et al. (2010).

3 METHODS

The models presented above are to be solved using the finite element method. In this section

we present the formulation for nearly incompressible problems, the mixed three-field formu-

lation used in this work, and finally the Augmented Lagrangian approach used to improve the

iterative solver performance.

3.1 Nearly incompressible formulation

To apply the finite element method we need to establish the variational form of the prob-

lem. We adopt a quasi-incompressible formulation, where the deformation gradient and its

respective deformation measures are separated into isochoric and volumetric parts. We define

F̄ = J−1/3
F, C̄ = F̄TF̄ = J−2/3

C, where F̄ is associated with the isochoric deformation

which satisfies det F̄ = 1 and C̄ which is the isochoric part of the right Cauchy-Green defor-

mation tensor.

The strain energy function in its decoupled form is given by

Ψ(C) = Ψiso(C̄) + Ψvol(J), with Ψvol(J) =
κ

2
(J(u)− 1)2, (6)

where the volumetric term Ψvol(J) depends on the parameter κ > 0, also known as bulk modu-

lus. The total potential energy is given by Πp(u) = Πint
p (u) + Πext(u), where the contributions

Mecánica Computacional Vol XXXIV, págs. 1101-1114 (2016) 1103

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



from the internal and external potential part of the energy are defined, respectively, as

Πint
p (u) =

∫

Ω0

[Ψvol(J) +Ψiso(C̄)]dV, (7)

Πext(u) = −

∫

Ω0

B · udV −

∫

∂ΩN

0

T̄ · udS, (8)

where B denotes the external applied body forces and T̄ the external applied traction. Note

that this formulation corresponds to the standard penalty formulation of the problem where the

material is treated as nearly incompressible and a large value of the penalty parameter κ prevents

significant volumetric changes.

3.2 Mixed three-field formulation

Usually in order to avoid the problem known as the locking of the finite element solution,

alternative finite element procedures are employed such as mixed formulation or stabilization

techniques. In the present work we used a mixed three-field finite element formulation which

was proposed by Simo, Taylor and Pister (STP) (Simo et al., 1985; Simo and Taylor, 1991)

which has been used successfully in biomechanics (Gasser et al., 2006).

This formulation considers the displacement field u, the pressure p and the dilatation J̃ as

independent variables. Here the element-wise scalar variable J̃ is such that J = J̃ will be

satisfied on each finite element in a mean sense. Thus, the following energy functional of the

variational formulation is introduced

ΠSTP (u, p, J̃) =

∫

Ω0

[

Ψiso(C) + Ψvol(J̃) + p(J(u)− J̃)
]

dV +Πext(u), (9)

where the J = J̃ constraint is imposed through p, Ψvol is the same as previously defined and

Πext(u) is the the external contribution, as defined in equation (8). Here we choose a Q1 −
Q0 − Q0 mixed finite element discretization for u, p and J̃ , that is, piecewise linear elements

for displacement and constant piecewise elements for the scalar fields p and J̃ . One attractive

point of this formulation is that static condensation of p and J̃ can be performed at the element

level, which leads to a reduced problem in terms of the displacement field only.

3.3 Augmented Lagrangian

Although the mixed three field FE formulation is robust and efficient, it still requires a high

value for the κ parameter to prevent significant volumetric changes. This increases the ill-

conditioning of the stiffness matrix and may result in poor performance of iterative solvers. Here

the Augmented Lagrangian (ALG) approach was used for the treatment of quasi-incompressibility

constraint within a finite elasticity setting. This approach was first introduced within finite elas-

ticity context by Glowinski and Le Tallec (1982, 1984), and since then have been used success-

fully by others (Simo and Taylor, 1991), including in a work by Weiss et al. (1996) where a

biomechanics problem was solved using the STP mixed three-field finite element formulation.

In the Augmented Lagrangian approach for quasi-incompressibility another Lagrange mul-

tiplier µ is added on each finite element to enforce the element-wise constraint det F = 1. This

multiplier is computed in an iterative fashion by

µk+1 = µk + ξ(detF− 1), (10)
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where ξ is a chosen constant. This iterative procedure is usually known as Uzawa algorithm.

When combined with the STP mixed formulation, we only enforce the det F = 1 constraint in a

mean sense, considering the constraint on the variable J̃ introduced by the mixed formulation,

instead of using J = det F. With this approach we can control the volumetric changes within

an element to any desired accuracy, which allows a reduction in the penalty parameter κ from

the volumetric term Ψvol of the strain energy, which in turn alleviates the ill-conditioning of the

stiffness matrix.

The functional of the Augmented Lagrangian method is

ΠALG(u, p, J̃ , µ) =

∫

Ω0

[

Ψiso(C) + Ψvol(J̃) + p(J − J̃)
]

dV +Πext +

∫

Ω0

µ(J̃ − 1) dV, (11)

which is discretized using piecewise linear elements for displacements and piecewise constants

for the other variables. Here, J̃ and p are statically condensed and the Lagrange multiplier µ is

computed using the Uzawa iteration via equation (10).

This way we can enforce incompressibility without using a high global value for κ, since the

multiplier is locally computed on each element to enforce J̃ = 1. Only those elements violating

a specified criterion will have its multiplier µ increased to satisfy the criterion, as shown in

Algorithm 1.

Algorithm 1: Augmented Lagragian algorithm

1 Set Lagrange multiplier µ0 = 0
2 while full load not reached yet do

3 Apply load increment

4 k = 0
5 do

6 Use Newton iteration to solve the nonlinear problem (1)

7 foreach finite element e that do not satisfy |J̃ − 1| < tol do

8 Update Lagrange multiplier as µe
k+1 = µe

k + ξ(J̃ − 1)
9 end

10 k = k + 1

11 while there exists elements e such that |J̃ − 1| > tol

12 end

We applied two different numerical methods to solve the linear systems resulting from the

discretization. A reference solution was obtained with a direct solver from the MUMPS pack-

age Amestoy et al. (2000), while the performance of the formulations within the context of

iterative methods was tested using the GMRES solver with BoomerAMG, an Algebraic Multi-

grid (AMG) preconditioner (Henson and Yang, 2002).

4 COMPUTATIONAL EXPERIMENTS

In order to assess the performance of the Augmented Lagrangian approach for cardiac me-

chanics, we present computer simulations results for two differents problems. The first one is

a well known problem in computational mechanics, which is Cook’s membrane, whereas the

second problem is from the cardiac mechanics benchmark proposed by Land et al. (2015).
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4.1 Cook’s membrane

This problem is commonly used to evaluate the convergence properties of finite element

methods when the material is considered incompressible or quasi-incompressible (de Souza Neto

et al., 2005). The geometry and dimensions of the problem are presented in Figure 1. The nodes

on the left face had its displacements restricted and a vertical load F = 6.25 was applied on the

right face. The Neo-Hookean model was used to describe the material response, with the fol-

lowing parameters: thickness is h = 1mm, material coefficients µ = 80.1938 and κ = 400942.

Note that we used a high value used for the penalty parameter, like in de Souza Neto et al.

(2005), in order to restrict significant volumetric changes.

Figure 1: Cook’s membrane problem.

The vertical displacement at point A was observed for successively refined meshes to evalu-

ate the finite element convergence. We compared the performance of the STP formulation and

ALG approach. When using high values for the penalty parameter, in the STP formulation, the

performance of Krylov iterative solvers usually decay.

Figure 2 presents three different scenarios using these solvers, where the direct method was

used as a reference. We note that both formulations converge. Note that the ALG solution

is only slightly different from the STP solution in some points. The maximum difference

between ALG and STP solutions is about 0.37%, which is in accordance with results found

by de Souza Neto et al. (2005) for another FE formulation.

Our focus was on the comparison of the numerical performance of the iterative solver when

a different FE formulation was used, that is, with and without the ALG approach. Simulations

using different values of penalty parameter for the ALG formulation were carried out, where

the value κ = 400942 was used as a reference.

The performance of the solution without and with ALG is presented in the Table 1 in terms

of Newton iterations and mean number of GMRES iterations to achieve convergence in each

load increment. Runtime measurements (see Table 2) indicate that, by using the ALG with a

reduced value for κ, the solver can be up to three times faster in this testcase.
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Figure 2: Cook problem convergence.

Table 1: Comparison of the solver performance with and without ALG approach.

Increment Newton Iterations GMRES Iterations

STP ALG STP ALG

1 19 17 20.0 15.6

2 17 16 18.9 13.1

3 17 17 19.6 12.1

4 18 17 18.9 11.3

5 19 17 19.1 12.0

6 15 17 18.0 11.4

7 17 13 17.5 12.4

8 18 13 18.0 12.9

9 15 12 17.4 12.7

10 15 12 17.0 12.5

11 14 13 17.4 12.9

12 15 12 17.3 12.9

13 14 12 16.9 12.9

14 13 12 17.2 12.6

15 13 13 17.2 12.3

16 14 12 16.9 12.7

17 15 14 16.7 12.3

18 13 12 16.5 12.3

19 16 12 16.1 12.1

20 15 11 15.9 12.1

The Table 2 shows the solver performance without ALG using κ = 400942 and with ALG

with κ reduced by a factor of 4 for different mesh refinements.

Note that the solution with ALG performed less iterations during the GMRES solution which
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resulted in a smaller total execution time. In this case the solution was about 3× faster than the

solution without ALG. This happened because the penalty parameter could be reduced with

ALG, which resulted in linear systems better conditioned and easier to solve for GMRES, with-

out loosing control over the desired degree of incompressibility to be satisfied in the elements.

Table 2: Runtime measurements, in seconds, of STP using κ = 400942 and ALG with κ reduced by a factor of 4.

Elements per side STP ALG

27 41.48 16.87

112 192.14 73.70

525 822.47 286.67

1219 2057.46 725.68

2754 5569.56 1715.28

11267 26837.78 8764.35

4.2 Cardiac mechanics benchmark problem

A benchmark problem was proposed by Land et al. (2015) for the validation of implementa-

tions of cardiac mechanics simulations. The domain consists of a deforming rectangular beam.

This problem tests pressure-type forces, the correct implementation of fiber direction and the

transversely isotropic constitutive law for cardiac tissue. The Guccione et al. (1995) model was

used with the following parameters: C = 2 kPa, bf = 8, bt = 2 and bfs = 4. The fiber direction

was considered constant along the long axis, i.e. (1, 0, 0). The left face (x = 0) was fixed in all

directions and a pressure of 0.004kPa was applied to the entire bottom face (z = 0).

The geometry was discretized using hexahedral elements, as shown in Figure 3. ALG sim-

ulations used a mesh with 120 × 12 × 12 elements, resulting in a total of 60840 degrees of

freedom. In simulations without ALG a mesh with 220× 22× 22 elements and 349140 degrees

of freedom was used.

Figure 3: Benchmark geometry discretization.

Figure 4 presents the z-deflection at point (10, 0.5, 1) for the codes tested in Land et al.

(2015) and for our code (Cardiax) using iterative method with ALG and direct solver without
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ALG. We computed the mean value of the displacements found by the benchmark codes and

found a value of 4.1615. The result obtained by our code using the direct method without ALG

differed 0.29% from the mean value, whereas the result obtained using the iterative solver with

ALG differed only 0.03% from the mean displacement.

102 103 104 105 106 107

Degrees of freedom

4.02

4.04

4.06

4.08

4.10

4.12

4.14

4.16

4.18

4.20

Z
-d

efl
ec

ti
o
n

at
en

d
o
f

b
ar

(m
m

)

Cardioid

CardioMechanics

CARP

ElecMech

Glasglow

Hopkins

LifeV

MOOSE

OpenCMISS

Simula-Fenics

PUC-FEAP

Cardiax-Direct

Cardiax-ALG

Figure 4: Z-deflection convergence in the benchmark problem.

Figure 5 shows the deformation of line (x, 0.5, 0.5) for each code. It is possible to note

that all codes presented close results, but a very small difference among them can be seen in

Figure 5(b).
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Figure 5: Left: deformation of a line (x, 0.5, 0.5) for each code; Right: details for the end of the bar.

Figure 6 shows the results of strain computed at some points for the codes that uses similar

formulations to Cardiax (low order FE, check details at Land et al. (2015)). The results found
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by Cardiax with and without ALG were close to the others presented codes, likewise in above

experiments.
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Figure 6: Strain along the line in direction of x−, y− and z−axes.

Table 3 shows Newton iterations and mean number of GMRES iterations to achieve conver-

gence in each load increment. Note that ALG approach presented a better performance, since

it required less Newton iterations in some load increments and less GMRES iterations in all

increments.
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Table 3: Comparison of the solver performance with and without ALG approach using a mesh of 220 × 22 × 22
hexahedral elements.

Increment Newton Iterations GMRES Iterations

STP ALG STP ALG

1 5 4 28 14.2

2 4 4 21.2 15.5

3 4 4 23 14

4 4 4 24.8 17

5 4 4 19 16.8

6 5 4 33.8 13.5

7 5 4 34.8 16

8 4 4 32 15.5

9 5 5 46.4 15.2

10 4 4 26.8 14.2

11 4 5 21.2 15.2

12 4 5 27 15.2

13 5 5 37.8 19.2

14 4 6 29 16.8

15 5 5 37.4 18.2

16 4 5 26.5 16

17 5 5 24 18.6

18 4 4 29.2 17.5

19 5 6 29.6 16.7

20 5 6 31.6 21.8

The Cardiax code presented satisfactory results for this benchmark problem, which shows

that ALG approach can be used to solve cardiac mechanics problem, improving the performance

of the simulations.

4.3 Discussion

The presented results show that the ALG approach can improve the performance of iterative

solvers (here we only assessed the performance of GMRES with AMG preconditioner). This

strategy reduces the value of the penalty parameter κ, which decreases the ill-conditioning of

the stiffness matrix thereby improving the convergence of iterative methods. Furthermore, with

the ALG approach one is able to control the incompressibility a priori, i.e., we can choose a

tolerance (see Algorithm 1) for element-wise volume change that the ALG solution procedure

has to satisfy. In the standard penalty formulation this is not possbile a priori. We have to

choose a value for κ and we will only know the volumetric changes after a post-processing of

the solution.

For the cardiac benchmark problem studied here, a small value for the volumetric changes

in the elements was obtained with κ = 100 without ALG (see Table 4). However, in order to

illustrate the control over volumetric changes with ALG, we carried out simulations varying κ in

both STP and ALG formulations. The ALG simulations were performed considering a tolerance

of 10−2. As expected, all the ALG results satisfied this criterion. For the STP formulation, we

note, however, that as we reduced κ a more significant volumetric change can be observed,

specially for κ < 40. This also shows that the simulation with ALG using κ/4 can achieve the
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level of volume change as the standard STP formulation with the original value of the penalty

parameter.

Table 4: Maximum element-wise volume change.

κ STP ALG

10 0.0225757 0.00984744

20 0.0146401 0.0096956

30 0.0111155 0.00981326

40 0.00907006 0.0090695

50 0.00771548 0.00771658

60 0.00674607 0.00674564

70 0.0060127 0.00601191

80 0.00543654 0.00543523

90 0.00496796 0.00496889

100 0.00458284 0.00458245

With a reduction by a factor of 4 in κ we could achieve good results in the cardiac benchmark

problem and, at the same time, obtain good performance within the iterative solver. The data

from Table 4 shows that we can further reduce it, keeping the desired level of incompressibility

and achieve good results.

To summarize, we remark that, depending on the problem characteristics (geometry, load-

ings, material model) and on the desired accuracy, further reduction of the penalty parameter

can yield an even better performance during the preconditioned iterative solution.

5 CONCLUSIONS

This work applied the Augmented Lagrangian to a mixed three field variational formulation

to solve cardiac mechanics problems. We presented results for two different problems to first

validate the ALG approach for cardiac mechanics using a benchmark problem with reference

solution and then to study its numerical performance. The Cardiax code presented satisfactory

results for the benchmark experiments, which shows that ALG approach can be used to solve

cardiac mechanics problem.

Our preliminary results also showed that the ALG formulation had satisfactory convergence

results in the benchmark problems and achieved a better numerical performance in all cases.

It was shown that this approach can improve the numerical properties of the problem, conse-

quently improving the simulations perfomance when iterative solvers are used. More impor-

tantly, this approach obtained an improved performance without significantly affecting volu-

metric changes by defining an a priori tolerance to be satisfied.

Future research includes assessing the performance of the ALG for two others problems in

cardiac benchmark that use a more detailed geometry of the left ventricle and results in a more

complex deformation pattern. We also plan to study the effect of different preconditioners when

combined with the ALG formulation.
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