
ABOUT THE PARALLEL VERSATILE IMPLEMENTATION OF FINITE

ELEMENT TEARING AND INTERCONNECT METHODS

Alejandro Cosimoa,b, Alberto Cardonaa and Daniel Rixenb

aCIMEC-Centro de Investigación de Métodos Computacionales (UNL/Conicet), ruta 168 s/n, Predio

Conicet “Dr A. Cassano”, 3000 Santa Fe, Argentina

bInstitute of Applied Mechanics , Technische Universität München, Boltzmannstr. 15, 85748 Garching

bei München, Germany

Keywords: FETI, Parallel Implementation, PETSc, Object-Oriented Design

Abstract. The FETI (Finite Element Tearing and Interconnect) method is a well-established domain

decomposition technique for solving large systems of equations which usually result from the discreti-

sation of partial differential equations. Nowadays, many different versions of FETI are available, each

one of them trying to exploit certain characteristics of the physical problem being solved. This broad

family of FETI solvers makes necessary to think in informatic solutions which take care not only of the

computational performance, but also of the flexibility of the code. Hard-coded solutions must be clearly

avoided in order to give support to existing and future FETI versions which have different requirements

concerning coarse spaces, preconditioners, direct and iterative solvers and projections. In this work, the

issues related to satisfying those requirements in the parallel implementation of FETI methods are stud-

ied. An object-oriented design is adopted for ensuring the flexibility needed for the future development of

additional FETI versions. A particular emphasis is placed in the implementation of these methods as ex-

tensions to the PETSc (Portable, Extensible Toolkit for Scientific Computation) library. A performance

test is conducted in order to show the capabilities of the developed library.

Mecánica Computacional Vol XXXIV, págs. 1235-1244 (artículo completo)
Sebastián Giusti, Martín Pucheta y Mario Storti (Eds.)

Córdoba, 8-11 Noviembre 2016

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

The FETI (Finite Element Tearing and Interconnect) method is a well-established domain

decomposition technique for solving large systems of equations which usually result from the

discretisation of partial differential equations. Among the various versions of the FETI method,

the one-level FETI (FETI-1) (Farhat and Roux, 1991; Rixen, 2002), the second-level FETI

(FETI-2) (Farhat et al., 2000) and the Dual-Primal FETI (FETI-DP) (Farhat et al., 2001) are the

main versions from which further improvements have been proposed. In this work, we restrict

our study to the family of the FETI-1 and FETI-2 methodologies which are characterised by

enforcing the continuity of the solution between subdomains using Lagrange multipliers.

When applying the FETI-1 method to static or steady problems, a generalised inverse must

be computed for floating subdomains. At a first glance, floating subdomains would seem to be

an unwanted complication. However, the rigid body modes associated to floating subdomains

conform a natural coarse problem which has the property of propagating the information glob-

ally, which makes the iterative solver for the interface problem to converge faster. But most

importantly, thanks to this feature, it can be ensured that the FETI-1 method is numerically

scalable (the number of iterations grows at most weakly with the number of degrees of freedom

(DOFs) per subdomain (Farhat et al., 1995)). The FETI-2 methods are based on augmenting

the FETI-1 method with an additional optional constraint that must be satisfied at each iteration

when solving the interface problem (Farhat et al., 2000). It is shown by Farhat et al. (1995) that

such additional constraint improves the scalability of elastodynamics problems.

Numerical scalability is needed in order to ensure parallel scalability. Another aspect of the

parallel scalability is the correct implementation of these methods. Therefore, the aim of this

work is to study the computational implementation of FETI methods in parallel environments.

More specifically, distributed memory architectures will be considered. The broad family of

FETI solvers makes necessary to think in informatic solutions which take care not only of the

computational performance, but also of the flexibility of the code. Hard-coded solutions must

be clearly avoided in order to give support to existing and future FETI versions, which have dif-

ferent requirements concerning coarse spaces, preconditioners, direct and iterative solvers and

projections. An object-oriented design is adopted for ensuring the flexibility and extensibility

needed for the future development of additional FETI versions. In this work, it is proposed to

implement the different FETI methods as extensions to the PETSc library (Balay et al., 2015),

thus inheriting many of the powerful features that this library for scientific computing has.

The work is organised as follows. In Section 2, the basic concepts of the FETI method

are presented. In the following Section, the design of a flexible computational framework for

implementing FETI methods is introduced. Different aspects of the assembling and solution of

the FETI-1 coarse problem in parallel environments are discussed in Section 4. In Section 5, a

performance test is conducted in order to show the capabilities of the developed library. Finally,

in the last Section the conclusions of this work are given.

2 BASIC CONCEPTS OF THE FETI METHOD

The basic concepts of the FETI method are here introduced. A more exhaustive presentation

of these topics can be found in the state-of-the-art (Farhat et al., 1998; Rixen and Farhat, 1999;

Rixen et al., 1999; Spillane and Rixen, 2013). It is assumed that the matrix of the system to

be solved is Symmetric Positive Definite (SPD), which is provided, for instance, by a Finite

Element Code. Then, we deal with the following problem:

Au = f, (1)

A. COSIMO, A. CARDONA, D. RIXEN1236

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

where A is the system matrix, u is the unknown and f is the right hand side. In the FETI-

1 method this problem is solved by decomposing the domain into Ns subdomains and using

Lagrange multipliers λ for imposing the continuity of the solution, which writes

A(s)u(s) = f (s) − B(s)Tλ, s = 1 . . . Ns (2)

Ns
∑

s=1

B(s)u(s) = 0, (3)

where B(s) is a signed Boolean matrix such that B(s)u(s) is the signed restriction of u(s) to the

interface of subdomain s. Then, A(s), u(s) and f (s) are the restrictions to subdomain s of A, u
and f , respectively. Assuming Nf floating subdomains, the interface problem is given by

[

F −G
GT 0

] [

λ
α

]

=

[

d
e

]

(4)

where

F =
Ns
∑

s=1

B(s)A(s)+B(s)T , G = [B(1)R(1) . . . B(Nf)R(Nf)]T , α = [α(1)T . . . α(Ns)
T

]T

d =
Ns
∑

s=1

B(s)A(s)+f (s), e = [f (1)TR(1) . . . f (Nf)
T

R(Nf)]T

with R(s) as the rigid body modes of subdomain s and A(s)+ as the generalised inverse of A(s),

which is computed using a direct solver. The restriction of the displacement field to subdomain

s, u(s), is computed as

u(s) = A(s)+(f (s) − B(s)Tλ) +R(s)α(s). (5)

The unknowns λ and α are obtained by solving the interface problem iteratively using the

Conjugate Gradient (CG) method. However, due to the restriction GTλ = e, the CG method

can not be directly applied to compute λ. In order to circumvent this problem, see (Farhat et al.,

1994b), a projection P is introduced:

P = I −QG(GTQG)−1GT , (6)

where Q is a SPD matrix. Then, λ is expressed as λ = λ0 + Pλ̄ where λ0 = QG(GTQG)−1e,

and the interface problem becomes

P TFPλ̄ = P T (d− Fλ0), (7)

α = (GTQG)−1GTQ(Fλ− d). (8)

With the interface problem written like that, the CG method can be applied in order to compute

λ̄. However, in practice the Preconditioned CG must be used and the first equation of the

problem writes

PF̄−1P TFPλ̄ = PF̄−1P T (d− Fλ0), (9)

where F̄−1 is the preconditioner.

Mecánica Computacional Vol XXXIV, págs. 1235-1244 (2016) 1237

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Two preconditioners can be mentioned (Farhat et al., 1994b). The mathematically optimal

Dirichlet preconditioner F̄D−1

, which ensures numerical scalability, and the Lumped precondi-

tioner F̄L−1

, which is a cheaper approximation of the previous one but it is not optimal. These

preconditioners are given by

F̄D−1

=
Ns
∑

s=1

W (s)B(s)

[

0 0

0 S
(s)
bb

]

B(s)TW (s), and F̄L−1

=
Ns
∑

s=1

W (s)B(s)

[

0 0

0 A
(s)
bb

]

B(s)TW (s),

where subindices i and b denote internal and interface DOFs, respectively, S
(s)
bb = A

(s)
bb −

A
(s)T

ib A
(s)−1

ii A
(s)
ib is the Schur complement of subdomain s, and W (s) is a diagonal scaling matrix.

Examples of scaling techniques are the multiplicity scaling and the K-scaling or super-lumped

scaling (Rixen and Farhat, 1999).

In the expression of the projection P , Eq. (6), matrix Q is generally taken as the identity in

order to avoid extra-computations. However, other expressions for Q are possible, for instance,

Q can be taken as the Dirichlet or Lumped preconditioner (Bhardwaj et al., 2000). It is important

to note that the application of the projection P involves solving for vector ξ the global problem

GTQGξ = η, which is known as coarse problem.

A FETI methodology for solving time dependent problems is presented by Farhat et al.

(1994a). Due to the fact that in this case the system matrix A is a linear combination of the

mass and stiffness matrices, no projection or coarse problem is involved when extending FETI-

1 to such problems. As pointed out by Farhat et al. (1995), by losing the coarse problem the

property of numerical scalability is also lost. In order to recover this property, they proposed

to build a coarse problem by introducing an optional constraint that must be satisfied at each

iteration k of the iterative solver. This leads to a projection of the form

PC = I − C(CTFC)−1CTF, (10)

whose application involves solving the coarse problem CTFCξ = η. In the work of Farhat

et al. (1998), it is argued that a good choice for C are the rigid body modes associated to

each subdomain when considering only the static response of the structure, i.e., by taking C as

C = G. However, other alternatives for C are possible. For instance, by following the same

reasoning presented by Spillane and Rixen (2013) and as investigated by Leistner et al. (2016),

C may be built from the computation of the GENEO (Schwarz-Generalised Eigenvalues in the

Overlaps) modes of each of the subdomains.

It should be observed that introducing an optional constraint leads to a second-level algo-

rithm, better known as FETI-2 (Farhat et al., 2000). For dynamics problems, the matrix A is

a linear combination of the mass and stiffness matrices, and the interface problem reduces to

Fλ = d. Therefore, for this kind of problem which does not involve any natural coarse prob-

lem, the main differences with the FETI-1 algorithm are that the projection P is now given by

the projection PC and that λ0 takes the expression λ0 = C(CTFC)−1CTd.

3 DESIGN OF A FLEXIBLE COMPUTATIONAL FRAMEWORK FOR FETI

In Section 2, the basic concepts behind the FETI-1 and FETI-2 methodologies were intro-

duced with the main purpose of identifying a minimum set of requirements that a computational

framework implementing these methods must satisfy. In order to ensure the flexibility and ex-

tensibility required by such computational framework, an object-oriented design is adopted.

Many of the basic requirements of the current project are already satisfied by the PETSc library

A. COSIMO, A. CARDONA, D. RIXEN1238

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

(Balay et al., 2015). Therefore, it is proposed to implement the FETI computational framework

as extensions to PETSc. PETSc is a High Performance library for scientific computing which

is written in C using an object-oriented approach.

Time Steppers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP-PC)

Object Oriented

Matrices, Vectors, Indices

FETI Solvers

KSPFETI

Figure 1: Graphical representation of the PETSc structure and the location of the FETI exten-

sions within this structure. In our library, FETI methods are implemented as linear equations

solvers. From a general point of view, every version of FETI inherit from the base class FETI.

The KSP solver type KSPFETI is incorporated in order to interface the implemented FETI

solvers to the existing PETSc structure and algorithms.

From the concepts presented in Section 2, the following requirements are inferred:

1. Direct solvers are needed for solving the coarse and local problems, and for computing

the Schur complements, when required.

2. Iterative solvers are needed for solving the interface problem.

3. Three different types of projections can be identified from the implementation point of

view. From the expression for P , Eq. (6), two cases can be distinguished. One with Q
as the identity and the other in which Q has another expression. The third case is given

by the projection PC , Eq. (10). Generally, the adopted projection will determine how to

compute λ0, therefore this must be also taken into account in the design.

4. Support for the construction of different coarse spaces must be implemented.

5. Support for scaling operations must be given.

6. Preconditioners for the interface problem are needed. More specifically, at least support

for the Dirichlet and Lumped preconditioners must be given.

7. In the case of conforming subdomains, the user performs the domain decomposition of the

problem and provides the local to global mapping of the numbering of the subdomains’

DOFs. With this information, the library must be able to automatically build the data

structures needed by the implementation, such as, for example, the Lagrange multipliers

connecting the subdomains.

An implementation of the FETI-DP method as a preconditioner is available in PETSc, which

is based on the BDDC PETSc preconditioner. It must be mentioned that part of the code of the

FETI-DP preconditioner of PETSc was re-used in the implementation of the design that will be

presented in what follows. For instance, the last point mentioned in the list of requirements is

based on the implementation of the FETI-DP PETSc preconditioner.

Mecánica Computacional Vol XXXIV, págs. 1235-1244 (2016) 1239

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

In Fig. 1, it can be observed how it is proposed to extend the PETSc structure in order to

give support to FETI solvers. From a high level point of view, all FETI solvers inherit from the

base class FETI which is interfaced to the PETSc structure as a Krylov Subspace Solver (KSP)

solver, named KSPFETI. In this way, the developed FETI solvers can be used from higher

level components of PETSc which are already available, such as Scalable Non-Linear Solvers

(SNES) and Time Steppers (TS). From the adopted structure, it should be observed that direct

and iterative solvers are available to the FETI object as needed. That is why the FETI object is

placed on top of the PETSc KSP and Preconditioner (PC) objects.

FETI

Scaling

FETIPJ

FETISTAT

PC

PCFETI_Lumped

MAT_FETI

Subdomain

PCFETI_Dirichlet

uses

Semantic introduced for

denoting the composition

of the matrix of the

interface problem FETI::F

with the FETI object. In

this way, preconditioners

can access FETI

operators defined in the

FETI object

FETICS

FETIDYN

FETITypes

CS_RBM

CS_GENEO

PJ_1_LEVEL

PJ_2_LEVEL

PJ_1_LEVEL_Q

SC_MULTIPLICITYSC_SLUMPED

Figure 2: Simplified class diagram of the design of the FETI computational framework.

In Fig. 2, a simplified class diagram of the design proposed for implementing a compu-

tational framework for developing FETI methods is shown. As it can be observed, the base

class FETI is composed by objects whose main purpose is to satisfy the requirements intro-

duced before. The class Subdomain has no great importance from the design point of view, it

is mainly intended to have as data members the local system matrix and right hand side, and

an index set with the local to global mapping of the numbering of the subdomains’ DOFs. The

different FETI scaling methodologies are modelled by the base class Scaling and its derived

classes. Support for FETI preconditioners, mainly the lumped and Dirichlet preconditioners,

are implemented as new PETSc preconditioners (PC). The class FETI Projection (FETIPJ) is

introduced to give support to the different types of projections needed by FETI. The base class

FETIPJ defines interfaces to operations dealing with the coarse problem, such as its assem-

bling and its resolution, and with the application of the projection to a vector. There are other

operations, such as computing the initial value λ0, whose expression is strictly linked to the

type of projection. That is why, the base class FETIPJ also defines interfaces for this kind of

operations. Specific implementations of these methods’ interfaces are found in class inherit-

ing from FETIPJ. Three types of projections are considered in the design, PJ_1_LEVEL_Q

which implements projection P , Eq. (6), PJ_1_LEVEL which implements the same projection

P taking Q as the identity, and PJ_2_LEVEL which implements the projection PC given by

Eq. (10). The FETI Coarse Space (FETICS) class is introduced in order to be able to handle

coarse spaces in a flexible manner. This is a base class which defines interfaces to operations

for building the coarse space. Currently, coarse spaces which are built from Rigid Body Modes

(CS_RBM) and from the GENEO modes (CS_GENEO) are considered. However, there is no

limitation regarding the coarse space type, and, therefore, new coarse spaces can be added to

A. COSIMO, A. CARDONA, D. RIXEN1240

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

the implementation.

Specific versions of the FETI method inherit from the base class FETI. In the diagram, the

classes FETISTAT and FETIDYN are shown, which implement the FETI method for static and

dynamic problems, respectively. Therefore, new FETI methods are modelled by extending the

behaviour of the base class FETI. However, the classes FETISTAT and FETIDYN are not so

complex from the design point of view, because they merely configure the considered FETI

method with the corresponding default projections and coarse spaces, which eventually can be

modified at run-time. For instance, when the user specifies the FETIDYN method, the projection

type is set to a second level projection (PJ_2_LEVEL) and the coarse space is set to rigid

body modes (CS_RBM). On the other hand, if the user specifies the FETISTAT method, the

projection type is set to a first level projection (PJ_1_LEVEL).

4 ASSEMBLING AND SOLUTION OF THE FETI-1 COARSE PROBLEM

It should be noted that the existence of a coarse problem is the key ingredient to guarantee

the numerical scalability of FETI methods. Therefore, an important aspect of the parallel im-

plementation of FETI methods is the assembling and solution of the involved coarse problem.

The strategy adopted in this paper for assembling and solving the coarse problem is based in the

work of Roux and Farhat (1998), where the coarse problem is solved redundantly with a direct

solver in each of the subdomains. In what follows the parallel implementation of the application

of the projection P to a vector λg is explained. It is supposed that P is given by Eq. (6) with

Q taken as the identity, and it is assumed that rigid body modes are used as basis for the coarse

space. The MPI standard (Message Passing Interface Forum, 2015) is used for implementing

the algorithms here introduced.

It must be noted that the coarse problem (GTG)ξ = η needs to be solved when applying

the projection P to a global vector λg, i.e. Pλg = λg − G(GTG)−1GTλg. As proposed by

Roux and Farhat (1998), this problem is redundantly solved in each subdomain using a direct

solver. Therefore, the assembling of the coarse problem is done collaboratively between every

processor in the system. The result is that, at the end, every processor will have a copy of the

matrix of the coarse problem. The central problem in the assembling process is how to assemble

the products G(s)TG(k), for floating subdomains s and k. In the proposed algorithm subdomain

s assembles the products G(s)TG(k) for every subdomain k. However, it should be noted that

the products G(s)TG(k) are different from zero only if subdomains s and k are neighbours. This

last observation drives to conclude that the coarse problem has a sparse structure. Then, from

the perspective of processor or subdomain s the steps to follow in order to assemble the coarse

problem are the following:

1. Compute local G(s).

2. Send G(s) to neighbours and receive from them theirs local G(k). Save a local copy of

every received G(k).

3. Multiply the G(k) received from your neighbour and the subdomains’ local G(s), by G(s)T .

4. Exchange between every processor in the system the computed and assembled rows which

are defined by the product G(s)TG(k).

Once the coarse problem has been assembled, it is factorised. Then, the application of pro-

jection P to the vector λg is obtained by following these steps:

Mecánica Computacional Vol XXXIV, págs. 1235-1244 (2016) 1241

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1. Compute β = GTλg. In each floating subdomain s the product between the local G(s)T

and λg is computed. Then, β is built in each subdomain by gathering the results of all

subdomains.

2. Compute γ = (GTG)−1β redundantly in each subdomain.

3. Compute ξ(s) = Gγ. This takes the form ξ(s) = G(s)γ(s) + G(k1)γ(k1) + · · · + G(ki)γ(ki),

where k1 · · · ki are neighbours of subdomain s.

4. Compute in each subdomain s, (Pλg)
(s) = λ

(s)
g − ξ(s).

5 APPLICATION EXAMPLE

In this section, the performance of the developed library is studied by solving the 2D Pois-

son equation using Finite Differences with f = −2 as source term, and the temperature field

imposed to T = −5 on the boundary defined by x = 0. The domain of analysis is decomposed

into square subdomains with a side length H = 1. Each of these subdomains have equal mesh

size h, which is equal to 1/610 as 610 divisions in x and y dimensions are specified for the dis-

cretisation of each subdomain. In this test, we analyse problems of increasing sizes by adding

subdomains simultaneously in x and y dimensions.

The numerical scalability and the parallel efficiency are the parameters to be measured in

this study. The FETI method for static or steady problems is adopted, which is identified in the

developed library by the FETI object class FETISTAT. Rigid body modes are used to build the

coarse space, and the Projected Conjugate Gradient without full-reorthogonalisation is adopted

as iterative solver for solving the interface problem, where Eq. (6) with Q as the identity is

used as the projection operator. The generalised inverse of the local matrices and the rigid body

modes are computed with the MUMPS library (Amestoy et al., 2000). Redundant Lagrange

multipliers and the Dirichlet preconditioner with multiplicity scaling are used. The criterion for

checking the convergence is based on the projected residual wk = P T rk. It is considered that

at iteration k the solver converged if ||wk|| > ǫ||w0||, where ǫ = 10−8 in this example. The

involved tests are run in the cluster Seshat (Cluster SESHAT, 2016).

In Fig. 3a, the numerical scalability for the current example can be observed. As expected

by theoretical studies, the number of iterations of the iterative solver for the interface problem

increases only weakly with the number of subdomains. In Fig. 3c, the running times for the

complete simulation of the different cases are shown. It should be noted that these times include

the times for assembling the system matrix and the solving time of FETI. From the results, it can

be considered that the number of iterations stabilises for a number of subdomains per dimension

greater or equal to 5. This is why, the time taken for the problem where 5 subdomains per

dimension are used is adopted as reference time for computing the parallel efficiency of the

implementation. In Fig. 3b, the obtained results are shown. As it can be appreciated, for the

largest problem the efficiency is close to 0.93, factor which contributes to the reliability of the

implementation.

6 CONCLUSIONS

This work begins by introducing the basics notions of the FETI method with the purpose of

understanding which are the requirements that a flexible computational framework must satisfy.

From that introduction, it is made evident that an object-oriented approach is necessary to en-

sure the flexibility and extensibility needed by such a computational framework. It is therefore

A. COSIMO, A. CARDONA, D. RIXEN1242

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

2
(4)

3
(9)

4
(16)

5
(25)

6
(36)

7
(49)

8
(64)

9
(81)

Number of subdomains in each dimension
(Number of processors)

0

5

10

15

20

25

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

(a) Numerical scalability.

2
(4)

3
(9)

4
(16)

5
(25)

6
(36)

7
(49)

8
(64)

9
(81)

Number of subdomains in each dimension
(Number of processors)

7

8

9

10

11

12

13

14

15

T
im

e
[s

]

(b) Running times.

5
(25)

6
(36)

7
(49)

8
(64)

9
(81)

Number of subdomains in each dimension
(Number of processors)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.9

E
ff

ic
ie

n
cy

Reference 25 procs.

(c) Parallel efficiency.

Figure 3: Results obtained with the FETI method for the 2D Poisson equation for problems of

increasing sizes.

proposed to implement FETI methods as extensions to the PETSc library, thus inheriting many

of the powerful features that this library for scientific computing has. A design for the library

is proposed, where the main components of the FETI method, such as the projections, coarse

spaces and preconditioners, are modelled by classes which ensure the re-usability and flexibility

of the code. An application example is solved in order to test the correctness of the implemen-

tation. It is shown that the implemented method is numerically and parallel scalable, with an

efficiency close to 0.93 for the largest problem considered in this test. Future work will be fo-

cused on improving the design that is proposed in this paper. Other versions of FETI need to be

analysed in order to identify new requirements, and new features must be implemented, such

as using the primal residual for checking the convergence of the solver used for the interface

problem.

REFERENCES

Amestoy P., Duff I., and L’Excellent J.Y. Multifrontal parallel distributed symmetric and un-

symmetric solvers. Computer Methods in Applied Mechanics and Engineering, 184(2-4):501

– 520, 2000.

Mecánica Computacional Vol XXXIV, págs. 1235-1244 (2016) 1243

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Balay S., Abhyankar S., Adams M.F., Brown J., Brune P., Buschelman K., Dalcin L., Eijkhout

V., Gropp W.D., Kaushik D., Knepley M.G., McInnes L.C., Rupp K., Smith B.F., Zampini

S., and Zhang H. PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.

Bhardwaj M., Day D., Farhat C., Lesoinne M., Pierson K., and Rixen D. Application of the

FETI method to ASCI problems: Scalability results on a thousand-processor and discussion

of highly heterogeneous problems. 47(1-3):513–536, 2000.

Cluster SESHAT. http://www.cimec.org.ar/c3/seshat/equipos.php, 2016.

Farhat C., Chen P.S., and Mandel J. A scalable Lagrange multiplier based domain decomposi-

tion method for time-dependent problems. International Journal for Numerical Methods in

Engineering, 38(22):3831–3853, 1995.

Farhat C., Chen P.S., Risler F., and Roux F.X. A unified framework for accelerating the conver-

gence of iterative substructuring methods with Lagrange multipliers. International Journal

for Numerical Methods in Engineering, 42(2):257–288, 1998.

Farhat C., Crivelli L., and Roux F.X. A transient FETI methodology for large-scale parallel

implicit computations in structural mechanics. International Journal for Numerical Methods

in Engineering, 37(11):1945–1975, 1994a.

Farhat C., Lesoinne M., Le Tallec P., Pierson K., and Rixen D. FETI-DP: A dual-primal unified

FETI method part I: A faster alternative to the two-level FETI method. International Journal

for Numerical Methods in Engineering, 50(7):1523–1544, 2001.

Farhat C., Mandel J., and Roux F.X. Optimal convergence properties of the FETI domain

decomposition method. Computer Methods in Applied Mechanics and Engineering, 115(3-

4):365–385, 1994b.

Farhat C., Pierson K., and Lesoinne M. The second generation FETI methods and their ap-

plication to the parallel solution of large-scale linear and geometrically non-linear structural

analysis problems. Computer Methods in Applied Mechanics and Engineering, 184:333–374,

2000.

Farhat C. and Roux F.X. A method of finite element tearing and interconnecting and its

parallel solution algorithm. International Journal for Numerical Methods in Engineering,

32(6):1205–1227, 1991.

Leistner M., Cosimo A., and Rixen D. Performance and scalability of FETI methods for het-

erogeneous dynamic problems with different coarse-grids. 2016. Oral presentation at the VII

European Congress on Computational Methods in Applied Sciences and Engineering.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 3.1.

Technical Report, Knoxville, TN, USA, 2015.

Rixen D. Extended preconditioners for the FETI method applied to constrained problems.

International Journal for Numerical Methods in Engineering, 54(1):1–26, 2002.

Rixen D.J. and Farhat C. A simple and efficient extension of a class of substructure based

preconditioners to heterogeneous structural mechanics problems. International Journal for

Numerical Methods in Engineering, 44(4):489–516, 1999.

Rixen D.J., Farhat C., Tezaur R., and Mandel J. Theoretical comparison of the FETI and

algebraically partitioned FETI methods, and performance comparisons with a direct sparse

solver. International Journal for Numerical Methods in Engineering, 46(4):501–533, 1999.

Roux F.X. and Farhat C. Parallel implementation of direct solution strategies for the coarse grid

solvers in 2-level FETI method. Contemporary Mathematics, 218:158–173, 1998.

Spillane N. and Rixen D. Automatic spectral coarse spaces for robust Finite Element Tearing

and Interconnecting and Balanced Domain Decomposition algorithms. International Journal

for Numerical Methods in Engineering, 95(11):953–990, 2013.

A. COSIMO, A. CARDONA, D. RIXEN1244

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.cimec.org.ar/c3/seshat/equipos.php

	INTRODUCTION
	BASIC CONCEPTS OF THE FETI METHOD
	DESIGN OF A FLEXIBLE COMPUTATIONAL FRAMEWORK FOR FETI
	ASSEMBLING AND SOLUTION OF THE FETI-1 COARSE PROBLEM
	APPLICATION EXAMPLE
	CONCLUSIONS

