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Abstract. The need of ensuring the trajectory of a projectile so as to achieve a target has always been

a challenge for exterior ballistic engineers. One of the most suitable techniques consists in simulate the

projectile at different angles of attack with Computational Fluid Dynamic (CFD) software to obtain the

corresponding aerodynamic coefficients. This paper aims at showing the advantages of utilizing parallel

computing for obtaining the aerodynamic coefficients utilizing the CFD software Code Saturne. As a

first step, a benchmark and a mesh convergence analysis is carried out to validate employed methodol-

ogy. Then, several simulations are performed with a mesh convergence analysis in order to obtain the

aerodynamic coefficients. Also, a scalability analysis is performed in a Beowulf cluster to measure the

performance of the software.
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1 INTRODUCTION

The main purpose of the external ballistics is to predict the trajectory of a projectile so as to

achieve a target. Even though several factors are involved in the flight of the projectile, wind

load is dominant among all the loads exerted on the projectile, indeed the accuracy calculation of

it, is critical. Such aerodynamic data have traditionally been provided by wind tunnels testing or

flight testing; however, these techniques can be very expensive as well as limited. Computing

Fluid Dynamics (CFD) has arisen in the last decades providing a way to supplement wind

tunnels and flight test data due to its simplicity and low cost. Nevertheless, a huge complexity

and also a high computing resource are required due to the extension of CFD problems.

Fortunately, nowadays improved computer technology and the state-of-the-art numerical

procedures enable solutions to complex problems. A complex CFD problem needs to be tackled

and the most profitable way to tackle it is to use a divide and conquer strategy; where computers

unite their efforts to stand up to the challenge. This is the main idea of parallel computing which

is defined as a set of processors that are able to work cooperatively to solve a computation prob-

lem. This formal definition holds a lot of intricacies inside, such as the program has to have

instructions to guide it to run in parallel, as well as, issues related to data structure, processor

to processor communication, parallel efficiency, and assessment of run time improvement must

be taken under consideration.

2 BENCHMARK

Our scope on this paper was concerned about obtaining the aerodynamics coefficients of a

rotating projectile. Due to the complexity of this calculation, High Performance Computing

techniques had to be employed. Furthermore the benefits of utilizing parallel computing for

this calculation were assessed.

In order to further validate the algorithms developed to calculate the drag coefficients and the re-

spective forces and moments, a benchmark study was performed for four different flow regimes

that were compared to different simulations. Furthermore the efficiency of the cluster utilized

was assessed by performing an scalability analysis.

2.1 Computational Grid

Structural meshes were created using Salome 1 available grid generation software. The

meshes were constructed by creating a sphere of 1 [m] of diameter at the origin and then enclos-

ing it in a larger sized cube which length was 10 × 8 × 8 [m]. A small cube was then inserted

inside the sphere and then six hexagons were created by connecting the corner points of the

inner cube to the corner points of the outer cube. All redundant geometrical entities were then

deleted and only the sphere face retained, see Figure 1.

These six hexagons split the sphere in faces, and each edge generated on the surface of

the sphere was split in 50 elements, generating elements of 12.3 [mm] length that have an

equidistant distribution. Also the segments that connect the inner cube with the control volume,

were split in segments whose length changes in a geometric progression Lk = Lk − 1 · d. The

progression started with a segment length of 15 [mm] and further segments having an expansion

ratio of 1.08, Figure 1.

This methodology employed was in order to avoid the configuration of a boundary layer.

Several meshes were developed varying its configuration so as perform the simulations with

1GNU LGLP License
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Figure 1: Mesh on the sphere

different mesh sizes, which are detailed in the table below, Table 2.1:

Number of Number of elements on the Geometric Progression

Description elements segment of the sphere Initial Length Ratio

[elem] [elem] [mm]

Mesh 4 905,248 50 15 1.080

Mesh 5 3,505,480 60 7.5 1.025

Mesh 6 2,505,832 60 2.5 1.050

Mesh 7 1,524,768 55 2.5 1.075

Table 1: Description of different meshes employed in the sphere

2.2 Results of the Benchmark

The simulations were performed for a laminar flow at Re=300, turbulent flow with laminar

boundary layers at Re=10e4 and turbulent flow with turbulent boundary layer at =10e6. These

simulations were run utilizing CodeSaturne2 finite volume approach software package.

The results of the simulations performed were found to be in excellent agreement, what

means that the algorithms employed to calculate the coefficients, forces and moments were

perfectly validated.

2.2.1 Laminar flow at Reynolds 300

The simulations were performed for a laminar flow, whose inlet velocity was 0.0147 [m/seg]
and the time step was 2.5 [seg] for the mesh 4 and 1 [seg] for the mesh 5. In order to set the

conditions of this regimen and also the following, the Reynolds number was adapted by varying

its viscosity, due to the fact that if the velocity of the flow is varied, then the Courant number

will be affected.

Re =
v · φ

ν
(1)

2GNU GLP Licence
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C =
∆t · v

∆x
(2)

It was found that a considerable period of time was required to elapse before the motion

settle into a regular periodic pattern. Figure 2 show the plot of the drag coefficient as a function

of time between 3300 and 4100 [seg]. The mean drag coefficient (Cd) is 0.665 for the mesh

4, which was in agreement with Giacobello (2005) having a discrepancy of 1.05%. Moreover

Kim et al. (2001) has obtained 0.657, Johnson and Patel (1999) and Constantinescu and Squires

(2003) 0.656 and finally Jones and Clarke (2008) 0.661.

It should be note that Johnson and Patel (1999) and Jones and Clarke (2008) used a very

similar meshing scheme.

Figure 2: Periodic patter of the Drag Coefficient

Furthermore, the Strouhal number calculated from Figure 2 was 0.136, exactly the same

value that was obtained by Constantinescu and Squires (2003). While Giacobello (2005) calcu-

lated a value of 0.134 the same as Kim et al. (2001).

The periodicity of the flow Re=300 is due to the regular shedding of vorticity. As described

by Thompson and Le Gal (2004), the wake consist of a series of interconnected vortex loops

above Re=290, while Sakamoto and Haniu (1990) show that hairpin shaped vortices begin to

shed periodically at Re=300. Identifying the appropriate method to determine the vortex in

turbulent flow has always enthralled the research community. Jeong and Hussain (1995) has

performed a lot of tests for vortex identification and has concluded that the most appropriate is

the Q method, where Q is the positive second invariant of the deformation tensor. If a vortex

exist, indeed Q>0.

Q =
ΩijΩij + SijSij

2
(3)

Si,j =

∂ui

∂xj
+

∂uj

∂ui

2
(4)
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Ωi,j =

∂ui

∂xj
−

∂uj

∂ui

2
(5)

Figure 3: Isocontour velocity magnitude of the second invariant of the deformation tensor at Re=300

2.2.2 Turbulent flow Reynolds 10000

Due to the fact that the boundary layer is considerably thinner at this Reynolds regimes,

the turbulent flow with laminar boundary layer has an increased resolution grid, the mesh 6.

As the simulation is no longer a steady-state regime, a turbulence model has to be selected,

in this case it was selected the k − ǫ model. The physical properties were the same that the

previous situation, with the difference of the viscosity. The inlet velocity was 0.146 [m/s] and

the time step was 0.137 [seg]. The results obtained utilizing the mesh 5 are in agreement with

the one obtained for Constantinescu and Squires (2003) and Jones and Clarke (2008) having a

difference of 1.01% and 2.52% each. A better drag coefficient (Cd) was obtained by the mesh

4 due to more number of cells utilized.

3 COMPUTATIONAL METHODOLOGY

3.1 Parallel Programming

Foster (1995) has concluded that is possible to increase potential computing power more

cost effectively by utilizing multiple, slower, less expensive components rather than a single,

faster, more costly component. Therefore, the trend in computing hardware is towards multiple

processors. Another trend that is affecting the way computing is being done, is the increase in

network transfer rates. This allows physically separated resources to be utilized for solving a

single problem.

These simultaneous use of more than one processor to execute a program is the basis of the

message passing paradigm of parallel programming; where computers are a set of sequential

processors, each with their owns memory, interconnected by some communication link, Foster

(1995). Each processor executes a sequential set of instructions and communicates with other

processors and accesses remote memory through the communication link. Distributed memory

Mecánica Computacional Vol XXXIV, págs. 1245-1258 (2016) 1249

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Regimen Mesh 4 Mesh 5 Mesh 6 Cd Ref Referencies Dif. % Mesh 4 Dif. % Mesh 5 Dif. % Mesh6

— 0.661 Jones and Clarke (2008) 0.60% 0.45% —

— 0.658 Giacobello (2005) 1.05% 0.90% —

Reynolds 300 0.665 0.664 — 0.657 Kim et al. (2001) 1.20% 1.05% —

— 0.656 Johnson and Patel (1999) 1.35% 1.20% —

— 0.656 Constantinescu and Squires (2003) 1.35% 1.20% —

0.393 Constantinescu and Squires (2003) 1.01% 10.68% —

Reynolds 10000 —- 0.397 0.44 0.387 Jones and Clarke (2008) 2.52% 12.05% —

0.438 Kim et al. (2004) -10.33% 0.45% —

0.800 Constantinescu and Squires (2004) — — 43.20%

0.141 Jeong and Hussain (1995) — — -0.11%

Reynolds 1000000 —- —- 0.1408 0.139 Jones and Launder (1972) — — 1.31%

0.104 Jones and Clarke (2008) — — 26.16%

0.142 Jones and Launder (1972) — — -0.82%

Table 2: Drag coefficients obtained by different simulations regimes

and shared memory systems fit this model. As the work is shared or distributed among different

processors, data has to be exchanged.

The most predominant message passing data is the Message Passing Information (MPI),

which defines a set of library routines that can be called from C and Fortran programs. The

programming style for MPI has changed over the years, which in turn has continued to spur the

evolution of the MPI standard (Hempel, 1994). MPI is expected to provide better performance

on large massively parallel processors (MPP) but does not provide for heterogeneous distributed

computing and lacks many task management functions, McBryan (1994). Likewise, other mod-

els are available for parallel programming, the most popular is the share memory programming

model Pthreads McBryan (1994). Pthreads is a standard implementation for shared memory

programming using threads. A thread is a light-weigh process that shares memory with other

threads, but has it owns program counter, registers and stack that each thread can execute a

different part of the code. OpenMP is an alternative library of Pthreads that attempts to avoid

the low-level programming constructs required by Pthreads.

The processor of a share memory system have a more efficient way of accessing remote

memory than do the processors of a distributed memory. A very effective way to improve our

productivity is utilizing both models, so as to make the most profitable parallel algorithms. In-

deed, MPI and OpenMP are combined together to take advantages of both programming models

when clusters of shared memory multiprocessor (SMP) machines are linked. Hybrid codes be-

came more interesting for compute nodes with the growing number of cores in a common shared

memory domain. Each MPI spawns several threads and we have the logical processors.

#LogicalProcessor = #ranks ·#threads (6)

Logical processors are the available cores and the goal of this methodology is to maximize

the number of threads and minimizing the numbers of MPI ranks so as to reduce the overhead

that grows with the number of ranks. This overhead is due to the memory consumption of

internal buffers and limited scaling potential of collective MPI operations, Jeffers and Reinders

(2013).
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3.2 Cluster Employed

The Supercomputer that was employed for running the simulations is at the Research Centre

of Computing Mechanics (CIMEC) which is located on the city of Santa Fe, Argentina. This

Centre works together with the Argentinean Council for Scientific Research (CONICET), the

Argentinean National Agency for Technological and Scientific Promotion (ANPCyT) and the

National University of the Litoral (UNL).

The supercomputer is called Seshat and its equipment is integrated by:

• Equipment:

– Head-Node

∗ Processor: Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz (2 CPU x 8 cores)

∗ Motherboar: Intel S2600CP

∗ Memory: 96 GB (12) 8GB - DDR3 - 1600 Mhz

– Calculation Available Nodes (69 nodes)

∗ Processor: Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz (1 CPU x 4 cores)

∗ Mother-board: Supermicro X9SRL-F

∗ Memory: 16 GB (2) 8GB - DDR3 - 1600 Mhz

– Total Memory: 1.2 TB

– Total Cores: 292 Cores

• Network

– Ethernet

∗ Switches: (2) Supermicro - 1Gpbs - 48 ports

– Infiniband

∗ QDR 40 Gbps

This computer-networking communications standard used in high-performance computing,

features very high throughput and very low latency. The theorical peak performance of this

supercomputer is:

TPP = 69 [nodes] · 1 [processor] · 4 [cores] · 2 [AVX units] · 4 [doubles] · 3.7 [GHz] (7)

TPP = 8, 196 [GFLOPS] (8)

Furthermore, a real High Performance Linpack (HPL) was performed.

HPL = 6, 927[ GFLOPS] (9)

η =
HLP

TPP
= 85% (10)
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Nodes Time Speed Up Efficiency

1 44.77 - -

2 22.22 2.01 1.01

4 11.5 3.89 0.97

8 5.69 7.87 0.98

16 3.04 14.73 0.92

24 2.15 20.82 0.87

36 1.52 29.45 0.82

48 1.38 32.44 0.68

56 1.37 32.68 0.58

Table 3: Speed Up and Efficiency of the Seshat cluster for 3 Million cells mesh

Nodes Time Speed Up Efficiency

1 141 - -

2 71.14 1.98 0.99

4 36.27 3.89 0.97

8 20.67 6.82 0.85

16 9.73 14.49 0.91

24 6.66 21.17 0.88

36 4.31 32.71 0.91

48 3.4 41.47 0.86

56 3.02 46.96 0.83

68 2.58 54.65 0.80

Table 4: Speed Up and Efficiency of the Seshat cluster for 9 Million cells mesh

3.3 Scalability Analysis of the Cluster Employed

As it was mention before, dividing a problem and linking efforts of several computers to

tackle it, is the main idea of parallel computing which is defined as a set of processors that are

able to work cooperatively to solve a computation problem.

Scalability relates to the behavior of an algorithms in terms of parallel efficiency or speed

up as a function of processor count. As it was mentioned before, in order to perform the most

profit parallel algorithms, MPI and OpenMP were combined together.

Code Saturne CFD includes the ability to perform scalar and parallel simulations with great

ease. The load balancing for parallel version is performed by partitioning. By default, Code Sat-

urne CFD employs scratch partitioning, whereas, for parallel computing it employs parmetis.

In order to asses the scalability of the Cluster Seshat the benchmark mentioned before was

run varying the number of logical processors. In each node one process was executed and each

process had four threads.

Both the speed up and the efficiency were assessed for the three following mesh size: 3, 9 and

19 millions cells. All the systems showed good speed up until reaching a threshold number of

processors, after that the run-time remains steady or even increase. The threshold is the number

of processors at which the processor message passing time equals the processor computation

time. From Figure 4 it could be seen that for the 3 millions mesh simulation up to 50 processors

the speed up is increasing, whereas it remain steady from this quantity. In fact, if we increase
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Figure 4: Figure of the Speed Up at the Cluster Seshat

Nodes Time Speed Up Efficiency

1 303 - -

16 21.84 13.87 0.87

24 14.96 20.25 0.84

36 9.85 30.76 0.85

48 7.54 40.19 0.84

56 6.45 46.98 0.84

68 5.35 56.64 0.83

Table 5: Speed Up and Efficiency of the Seshat cluster for 19 Million cells mesh

the number of nodes, no gain will be obtained, which means that the threshold for 3 millions cell

is 50 nodes. Nevertheless, for the other two situations no thresholds are evidenced on the Figure

4, due to the fact that we are still located at the speed up period. Likewise, these situations also

have a threshold which is absolutely more than 70 processors.

In the same way, the Figure 5 shows the parallel performance drops some for increasing the

number of nodes. Although, at grater number of nodes employed, the efficiency remains steady

for the biggest mesh, what means the parallel algorithm of 19 millions cell has a satisfactory

scalability.

4 MODEL

4.1 Model Geometry

The model adopted on the simulations was the bullet provided by the Ministry of Defense of

Argentinian Government. An schematic diagram of the basic shape is shown on the Figure 6.

The maximus diameter and the length are 41, 3 and 73, 34 [mm] each.

Mecánica Computacional Vol XXXIV, págs. 1245-1258 (2016) 1253

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 5: Figure of the Efficiency at the Cluster Seshat

Two different flight situations were assessed, in which both the velocity of the flow and the

attack angle were switched. When a CFD simulation is performed, instead of setting a velocity

on the projectile, the projectile remains steady and the velocity is set as a boundary condition

of the inlet flow. The simulation were performed for the below flight conditions, where the

pressure, density and temperature were those of the ambient air, i.e. 101325 [Pa] 1, 225[kg/m3]
and 288, 15 [K].

• Situation 1, Angle of attack = 0 ◦:

Vx = -76 [m/s] Vy=0 [m/s] w=386,6 [rad/seg]

• Situation 2, Angle of attack = 10 ◦:

Vx= -75,06 [m/s] Vy=11.89 [m/s] w=386,6 [rad/seg]

Where w is the roll on clockwise direction, Vx and Vy are the velocities of the flow on the "x"

and "y" direction.

4.2 Computational Grids

The bullet under study was immersed in control volume which size was 0.5×0.25×0.25 [m].
The control volume extended from 0.1484[m] upstream of the bullet and 0.2782 [m] down-

stream. So as to perform the mesh, the projectile was divided in 2 groups: the skin of the bullet

and the front and back of it. The front and the back of the projectile were meshed with the quad-

rangle mapping criteria where the maximum and minimum size were set to 0.0005 [m]. The

skin mesh was generated also utilizing the mapping criteria that splits faces into quadrangular

elements. However this mapping was integrated by the revolution profile and the different cir-

cumferences that were generated by this profile. Both revolution profile and the circumferences
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Figure 6: Geometry of the bullet under study

were mesh utilizing the wire descritetization criteria, where the edge is split into a number of

mesh segments following the 1D hypothesis. For the revolution profile segment, the circum-

ference segments hypothesis was utilized and 100 elements were equidistantly distributed (1D

hypothesis) around the hole circumferences. On the other hand, for the revolution profile, a

long length criteria was utilized, where this length was set in 0.0004 [m]. For this configuration

a 14, 363, 803 meshed elements were obtained. Another meshes were also generated varying

the meshing parameters which were detailed before. This results are shown in Table 6 where

the average length of the quadrangle cell is shown.

Number of Average Boundary

Description elements Length layer

[elem] [mm] [elem]

Mesh 0◦2M 1463382 0.5 0.16

Mesh 0◦5M 4915990 0.486 0.16

Mesh 0◦7M 76228841 0.307 0.16

Table 6: Description of different meshes employed in the bullet for angle of attack 0◦

Likewise, to perform the study of the aerodynamics coefficients, forces and moments, the

finer mesh was utilized.

5 RESULTS

Numerical simulations have been carried out utilizing Code Saturne CFD software in the

same cluster located on the Research Centre of Computational Methods (CIMEC). The forces

and moments for the two different angles of attack were obtained. The simulations performed

were run utilizing LES turbulence model.

Fx Fy Fz Mx My Mz

Angle of attack = 0◦

[N] [N] [N] [Nm] [Nm] [Nm]

2 Millions -1.05 -0.0914 0.148 -4.02e-4 -6.3e-4 -2.69e-4

5 Millions -0.83 -0.0198 -0.028 -2.73e-4 -4.92e-4 -3.5e-4

7 Millions -0.82 0.042 -0.025 -2.68e-4 1.33e-4 -6.6e-5

Table 7: Forces and Moments for 0◦of angle of attack
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Fx Fy Fz Mx My Mz

Angle of attack = 10◦

[N] [N] [N] [Nm] [Nm] [Nm]

7 Millions -1.25 0.116 1.08 -4.8e-3 -4.1e-2 4.36e-4

Table 8: Forces and Moments for 10◦of angle of attack

Both on the Figures 7 and 8 the streamlines at the front and back of the projectile. On the

first one, also the pressure, the velocity and the strain efforts are shown, whereas on the second

one, just the velocity. Also the shear stress is detailed on the Figure 9. Moreover, Q criterion is

shown on the Figure 10, where the vortex shedding are perfectly visualized.

Figure 7: Streamlines and Effort on the bullet, angle of attack 10◦

Figure 8: Streamlines and Effort on the bullet, angle of attack 10◦
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Figure 9: Shear efforts on the bullet, angle of attack 10◦

Figure 10: Iso-surfaces of the Q Criterion, angle of attack 10◦
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