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Abstract. The very recently introduced Virtual Element Method (VEM) is a numerical method for

solving partial differential equations that was created out of the mimetic difference method, but was later

reformulated into the Galerkin framework. It is a generalization of the standard Finite Element Method

(FEM) to general meshes made up by arbitrary polyhedra. The greatest advantage of VEM is to be able

to deal with very complex geometries, i.e., made up by elements of any number of edges not necessar-

ily convex, hanging nodes, flat angles, collapsing nodes, etc, while retaining the same approximation

properties of FEM. In this paper we propose the simulating of the mechanical response of cement-based

composites by means of a Virtual Element approach for discretization of the domain, along with a novel

interaction between zero-thickness interface element for meso-scale analysis within the framework of

the so-called discontinuous-based approach. Following a similar modeling approach already available

in literature for FEM and iso-parametric interface elements, the formulation of the VEM for elasticity

problems is a novelty that can be used to capture the key mechanical phenomena controlling concrete

heterogeneity by taking advantage of the versatility of polyhedral meshes.
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1 INTRODUCTION

In the last decades, meso-scale analysis of concrete material emerged as promising approach

for concrete modeling and its failure prediction. Among other issues, the soundness and ca-

pabilities of meso-scale approaches deeply depend on the accurate description of the represen-

tative meso-geometry and the proper description of the non-linear numerical processes of the

specimen when submitted to external actions (Häfner et al., 2006; Wriggers and Moftah, 2006).

A large amount of theoretical models and numerical tools have been proposed with the aim

to realistically predict the pre- and post-cracking behavior of concrete at meso-scale levels. As

a reference, we recall the work by Carol et al. (1997) where a fracture-based interface model

for meso-scale analysis of concrete specimens subjected to several loading conditions such

as tension, compression, biaxial and Brazilian tests (López et al., 2008) is described. The

aforementioned formulation has been recently extended for modeling failure behavior of fiber-

reinforced cementitious composites (Caggiano et al., 2012) and for coupled thermo-mechanical

analysis of concrete failure under high temperature (Caggiano and Etse, 2015).

In this work, and in the framework of the so-called discontinuous-based approach, the sim-

ulating of the mechanical response of concrete composites is approached through the VEM for

discretization of the domain, along with a novel interaction between zero-thickness interfaces

for meso-scale analysis.

VEM is a new addition to the use of polytopal meshes. It was inspired by techniques used

in the Mimetic Differences Method (Brezzi et al., 2005) but later was given a framework as a

generalization of the standard FEM.The use of polyhedral meshes has many interesting possi-

bilities such as allowing hanging nodes, improving adaptivity, introducing cracks and fractures

as well as facilitating the meshing of complex geometries. Many approaches for polygonal fi-

nite elements already exist in the literature. As with all new developments, the VEM literature

is still in its early stages, specially in experimental results, although it has been steadily growing

since its introduction. On the other hand, the method is free from many of the most common

disadvantages of other approaches for polygonal meshes and it has been shown to be robust

when dealing with highly irregular meshes as well as relatively easy to implement.

Zero-thickness interface elements, formulated in terms of contact stresses versus opening

relationships, have been historically employed for modeling material discontinuities, i.e. me-

chanical contacts (Lei, 2001), bond phenomena (Chen et al., 1999; Baky et al., 2012) and crack

evolutions in quasi-brittle materials like concrete (Xie and Jr., 2006; Ciancio et al., 2013). Sev-

eral plasticity-based interface formulations have been proposed to predict failure behaviors of

discontinuities in soil/rock mechanisms (Costa Daguiar et al., 2011). One of the most frequent

use of interface elements in computational concrete mechanics is related to mesoscopic failure

simulations (Stankowski et al., 1993; Lorefice et al., 2008).

After a brief literature review, Section 2 summarizes the meso-scale procedure for describing

the composite nature of cementitious composites like concrete. The mathematical formulation

of VEM as a generalization of standard FEM for (even non-convex) polyhedra is described in

Section 3. Then, the basic equations behind the use of zero-thickness interface elements is given

in Section 4. Section 5 introduces the potential applications and exemplifies some of the uses

of the proposed model. Finally, some concluding remarks are reported in Section 6.

2 MESO-SCALE APPROACHES

A meso-mechanical approach for the numerical analysis of concrete specimens subject to

external actions is presented in this section. Cement-based composite will be represented as a
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composite material characterized by larger aggregates embedded in a surrounding mortar plus

fine aggregates matrix as schematically indicated in the meso-structure of Figure 1.
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Figure 1: Concrete meso-scale specimen: (a) random pertubed points (started from a regular array) and (b)

Voronoi/Delaunay tessellation.

 
(a)        (b) 

Figure 2: Finite Element mesh: (a) meso-scale concrete specimen and (d) detail of zero-thickness interfaces.

Convex polygonal representation, adopted for representing both large aggregates and the

surrounding mortar matrix, is numerically generated though standard Voronoi/Delaunay tessel-

lation (Klein, 1989) from a regular array of points which are slightly perturbed as shown in

Figure 1a. Both the polygonal particles and the areas between them (surrounding matrix of

Figure 1b) are meshed with finite elements for generating the model analysis (Figure 2a). The

continuum elements obtained by means of the above procedure are assumed as linear elastic.

The idea is to simplify this mesh by replacing Finite Elements with Virtual Elements.
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Once the specimen discretization in continuum elements is completed, the interface ele-

ments need to be introduced along all potential discontinuous lines. This process consists of a

proper duplication of the nodes and subsequent changes in element nodal connectivities (Figure

2b). Thus, all (thermo-chemical-mechanical)-nonlinearities will be concentrated within zero-

thickness interface elements defined throughout the adjacent edges of the elements of the mesh.

3 THE VIRTUAL ELEMENT METHOD

3.1 General formulation

In short, the VEM is a generalization of standard FEM to meshes made up by arbitrary,

possibly non-convex polyhedra. It was first introduced in Beirão da Veiga et al. (2013) and the

basic ideas are recalled here for the case of the general second order elliptic equation (described

in Beirão da Veiga et al. (2016)). We choose to begin with this equation because it makes the

presentation of the basic concepts clearer. This equation is used to model the concentration of

some chemical substance under the processes of diffusion, transportation of mass due to the

movement of the underlying medium and undergoing reaction. In its most general form, the

time dependent equation is written as

∂u

∂t
+∇ · (βu− ν∇u) + γu = f, (1)

where u represents the concentration, ν is the diffusion coefficient, β is the flow velocity, γ is a

source parameter and f is the source function that models the changes in concentration due to

reactions. This equation is obtained from the conservation of mass in a continuum model and

there may be nonlinearities present in the coefficients. When some of the coefficients are null,

the equation reduces to special cases. In particular, when no reaction term is present (γ = 0)

it simplifies to the advection diffusion (also known as convection-diffusion) equation, which is

of particular interest in transport problems. The steady state equation is obtained by putting
∂u
∂t

= 0.

We present the main ideas for the construction of the local Virtual Element space V E
k,h, the

choice in degrees of freedom as well as the global space: given a domain F covered with a

triangulation τh, for a desired order of accuracy k and with the space Pk of the polynomials of

maximum degree k, let us define the local space V E
k,h as

V E
k,h =

{

vh ∈ H1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ⊂ ∂E, ∆vh ∈ Pk−2(E)
}

,

where h is a mesh parameter, E is an element of the triangulation, ∂E is its border and e an

edge. This definition already exhibits the main novelty of the VEM: the base functions in the

local space are not necessarily explicitly known. In fact, they are only known at the boundary

of the element, where they are piecewise-continuous polynomials, and they satisfy a certain

property of their Laplacian in the interior. The global virtual element space is simply

Vk,h =
{

vh ∈ H1(F ) : vh|E ∈ V E
k,h ∀E ∈ τh

}

.

Let us define the local terms of the weak formulation of the problem as

aE(u, v) = (ν∇u,∇v)E, bE(u, v) = (β · ∇u, v)E, and cE(u, v) = (γu, v)E. (2)

The main idea in the VEM is to approximate these bilinear forms without explicitly knowing

the shape functions in V E
k,h so as to retain optimal convergence of the error. In order to do so, let
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us consider a basis for Pk given by the polynomials pα with α = 1, ..., dim(Pk). The notation φi

will be use for the shape functions in V E
k,h. The following projection operators are introduced:

Π0
k : V E

k,h → Pk, that is the solution of an L2 projection problem given by

(pα,Π
0
kφi)E = (pα, φi)E ∀α = 1, ..., dim(Pk), (3)

and the second projector Π0
k−1 : V E

k,h → (Pk−1(E))2 also given by a L2 projection of ∇φi

satisfying

(pα,Π
0
k−1∇φi)E = (pα,∇φi)E ∀α = 1, ..., dim(Pk−1). (4)

Note that only the basis for the space Pk−1 is needed in this case, since the projection of the

gradient is a polynomial of degree k− 1. Another crucial point in the description of the method

is that these projectors can be exactly computed for functions in the local VEM space using

their Degrees Of Freedom (DOF) and integration by parts (we refer the reader to the references

provided for further details). The DOF are usually k vertex values, k − 1 values for each edge

interior and the rest are moment DOFs in the interior of the element. The total number of DOF

is nk + k(k − 1)/2 where n is the number of edges of the element.

If we introduce the following decomposition of the shape functions φi we obtain

φi = Π0
kφi + (I − Π0

k)φi,

∇φi = Π0
k−1∇φi + (I − Π0

k−1)∇φi,

where I is the identity operator.

Finally, given vh and uh ∈ V E
k,h it is possible to obtain the discrete bilinear forms as

aEh (uh, vh) = (νΠ0
k−1∇uh,Π

0
k−1∇vh)E + SE

a ((I − Π0
k−1)∇uh, (I − Π0

k−1)∇vh),

bEh (uh, vh) = (β · Π0
k−1∇uh,Π

0
kvh)E, (5)

cEh (uh, vh) = (γΠ0
kuh,Π

0
kvh)E,

where SE
a (uh, vh) is a symmetric bilinear form that scales in a desired way in order to account

for the neglected contributions involving products with (I − Π0
k) and (I − Π0

k−1). It is called

the stabilization term and for aEh it is approximated by

SE
a

(

(I − Π0
k−1)∇uh, (I − Π0

k−1)∇vh)
)

≈

NDOF
∑

n=1

χn((I − Π0
k−1)∇uh)χn((I − Π0

k−1)∇vh),

where NDOF is the number of degrees of freedom of the shape functions in V E
k,h and χn is the

functional that evaluates the function at its nth DOF. With this new discrete bilinear forms, the

local stiffness matrix can be assembled. The load term is simply computed with a suitably

accurate scheme and the rest of the procedure follows closely that of standard FEM.

3.2 VEM for elasticity problems

The first work introducing the Virtual Element Method to elasticity was described by Brezzi

et al. (2013), which was followed by a generalization to handle different material models with

non elastic behavior and even finite strain problems (see Beirão da Veiga et al. (2015)). As

in the case of general second order elliptic equations explained previously, the method takes

advantage of a projection operator and uses integration by parts to allow the computation of the

stiffness matrix without explicit knowledge of the local shape functions.
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The problem is to find displacements u : Ω → R
2, such that







−div σ = f in Ω
u = 0 on ΓD

σn = 0 on ΓN

(6)

where ΓD and ΓN are the Dirichlet and Neumann boundaries, respectively, and n is the normal

vector to the Neumann boundary. The definitions for three dimensional problems is a straight-

forward generalization of the plane case.

We assume a given constitutive law at every point x in the domain Ω ⊂ R
d, in the form

σ = σ(x,∇u). This law may also consider the history of the material and uses the "black-box"

approach present in many commercial softwares. Similarly as before, the local space V E
h is

defined as

V E
h =

{

vh ∈
[

H1(E) ∩ C0(E)
]2

: vh|∂E ∈ C0(∂E), vh|e ∈ P1(e) ∀e ⊂ ∂E, ∆vh = 0
}

.

Only a linear approximation is available at the moment, but a higher order generalization is

foreseeable.

The global space is simply

Vh =
{

Allowable displacements vh : vh|E ∈ V E
h ∀E in the triangulation

}

.

The variational form of the problem is then to find an allowable displacement u such that

a(u,v) =

∫

Ω

f(x)w(x)dx ∀w in the space of variations, (7)

with

a(u,v) =
∑

E∈τh

∫

E

σ(x,∇v(x)) : ∇w(x)dx. (8)

We use a suitably defined projection operator Π0
E (see the references for a complete descrip-

tion), that can be computed using only knowledge of the value of the function at the degrees

of freedom, and therefore is well defined for the local VEM space. DOF for this problem are

vertex values. We define a discrete bilinear form as

âh(uh,vh) =
∑

E

∫

E

σ(x,Π0
E(∇vh)(x)) : (Π

0
E(∇wh)(x))dx (9)

=
∑

E

|E|σ(Π0
E(∇vh)) : Π

0
E(∇wh).

In (9), Π0
E is a suitably defined projection operator that approximates the gradient of the dis-

placement with a constant value in each element. Once again, this operator can be computed

using only knowledge of the value of the function at the DOF, and therefore is well defined for

the local VEM space. Note that the VEM space contains functions that may not be polynomials

(unlike standard FEM). However, the discrete bilinear form â(uh,vh) is computed exactly when

either one of the arguments is a polynomial. In this way, the formulation of the element is such

that it guarantees the passing of the patch test. For non-triangular elements (or non-tetrahedral

elements in 3D), this approach may lead to spurious modes in the solution. As in the case of

second order elliptic problems, an stabilization form Sh is introduced that scales appropriately,
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i.e., takes care of the spurious modes and guarantees stability without affecting convergence

and accuracy of the solution as it it bounded above and below by the a constant multiples of the

a bilinear form (that guarantees consistency).

Finally, the complete global bilinear form becomes: for any uh,vh ∈ Vh,

ah(uh,vh) = â(uh,vh) + α(uh)Sh((uh,vh) (10)

where α > 0 is a parameter depending on the material model and is necessary to adjust the

stabilization. Loading terms and boundary conditions are computed as in standard FEM proce-

dures.

4 DISCONTINUOUS INTERFACE ELEMENTS

In the framework of continuous mechanics problems which also account for explicitly con-

sidered cracks, the governing equations including the equilibrium equation, the natural and es-

sential boundary conditions as highlighted in Eq. (6), are completed with the traction continuity

on the crack surface as follows:






σn+

d = t+c
σn−

d = t−c
t+c = −t−c

onΓd (11)

where tc is the cohesive traction across the crack line Γd, while n is its unit normal vector.

The above relationship is valid for any kind of discontinuous approach employed for discrete

crack analysis. When zero-thickness interface elements are used for this purpose, the displace-

ment field of the upper and lower faces of the element are given by

u+ = VintU+

u− = VintU−

[[u]] = u+ − u− = Vint (U+ −U−)
(12)

being Vint the matrix of the interface shape functions; U+ and U− denote the nodal displace-

ments of the upper face and lower face, respectively, while [[u]] the displacement jump vector.

Introducing Eq. (12) into the weak form of equilibrium, the following equations can be

derived:

fEXT = f INT + f int (13)

where fEXT and f INT are the classical external and internal forces of a continuous FE, while

f int represents the interface force vector, obtainable as follows:

{

f int,+ =
∫

Γd

[Vint]
T
tcdΓd,

f int,− = −
∫

Γd

[Vint]
T
tcdΓd.

(14)

In the framework of the classical theory of plasticity, that considers the extension to interface

kinematic field of the Prandtl-Reuss additive decomposition law, the following equations can

be written as

u̇ = u̇el + u̇cr, (15)

where u̇ = [u̇, v̇]t is the vector of relative velocities across the interface and u̇el and u̇cr are the

elastic and cracking (inelastic) velocity vector components, respectively.
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The interface elastoplastic constitutive equation can be expressed as

u̇el = C−1ṫ

ṫ = C (u̇− u̇cr)
(16)

being ṫ = [σ̇N , σ̇T ]
t the interface stress rate vector and C the elastic stiffness matrix.

The rate of normal and tangential interface stresses is derived through the rates of relative

displacement vector as

ṫ = Cepu̇ (17)

where Cep is the tangential elastic-plastic operator.

Therefore, the tangent stiffness matrix for a given interface element is given by

Kint
e =

[

∫

Γd

[Vint]
T
QCep[Q]TVintdΓd −

∫

Γd

[Vint]
T
QCep[Q]TVintdΓd

−
∫

Γd

[Vint]
T
QCep[Q]TVintdΓd

∫

Γd

[Vint]
T
QCep[Q]TVintdΓd

]

(18)

where Q = [n, s, t] is a vector constructed with the unit normal vector of the interface

element n and s, t are the unit tangential interface vectors.

5 APPLICATIONS AND POTENTIAL DEVELOPMENTS

5.1 Domain decomposition

Among the most immediate applications of the VEM is domain decomposition, in which

the domain of the problem is split into several subdomains, each one with its own mesh. The

problem is then to assemble the different meshes on the boundaries to obtain the solution for

the global problem.

This approach has been successfully tested in the context of solving flow on Discrete Fracture

Networks (DFN) in Benedetto et al. (2014). In Figure 3 a, the domains are represented by plane

rectangular domains F , each with its own mesh. A base mesh composed by triangles is modified

on the intersections between planes and new polygonal elements are created, giving rise to the

VEM mesh.

(a) Domains and intersections (b) VEM mesh on domain F

Figure 3: VEM for DFN and domain decomposition.

Since the VEM allows for any arbitrary polygonal to be used as an element, all that is needed

to solve the global problem is to combine the problems at the interfaces. This was done by
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means of a globally conforming approach that shares all nodes on interfaces between domains

(see Benedetto et al. (2016b)) or using the well-known Mortar method to impose weak continu-

ity on interfaces (Benedetto et al. (2016a)). Figure 3 b shows the resulting mesh for F , where

element coloring indicates number of edges and red lines show intersection segments. An ex-

ample of a domain in a much larger and complex system is shown in 4 where elements range

from triangles to 10-sided polygons.

0 5 10 15 20 25 30 35 40

Y

0

5

10

15

20

25

30

35

(a) Original mesh
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(b) VEM mesh after modifications

Figure 4: Example of a subdivision of a base triangular mesh.

To illustrate the method, a VEM mesh and its solution for a typical fracture in a medium-

sized DFN are presented in Figure 5, showing how easily the method can handle complex

element geometry and elements with severe shape complications.
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(a) (b)

Figure 5: VEM mesh and obtained pressure head.

5.2 Integrating interface elements for Meso-scale simulations

Meso-scale simulations of heterogeneous materials (like concrete) must represent geometri-

cally the different components of the material, with their different properties. If there exist some

component much more rigid than the surrounding material, the versatility of handling arbitrary

polynomials can be exploited to reduce the number of degrees of freedom and meshing the rigid

element as a single Virtual Element. Since only a relatively small deformation is expected to

appear in the more rigid element, not much error is introduced in the solution component with a
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clear reduction in degrees of freedom. Since meshing complex aggregate geometry is no longer

needed, there will be an improvement in element quality despite the possible presence of small

edges and angles. Traditional interface elements are added on edges of the triangulation made

up by Virtual Elements. The interfaces can be introduced regardless of the shape of the Virtual

Element. Figure 6 illustrates the idea of combining interface elements around the aggregates

that are discretized using only one arbitrary-shaped element, where a random polygonal mesh

with interface elements (bold lines) is shown before and after the application of a load. Once

again, element coloring indicates number of edges, and deformation of interface elements is

shown in red.

(a) Before loading (b) After loading

Figure 6: Polygonal mesh with interface elements around aggregates.

One of the limiting factors in cracking analysis is the need to introduce a priori crack sur-

faces, i.e., to propose a potential failure path before the analysis. Complex material models

usually require large computational effort and therefore it is desirable to reduce the number of

degrees of freedom. This limits the possibility of introducing many possible failure paths in

the form of interface elements that increase the computational effort (Oliver et al., 2006; Wells

and Sluys, 2001). Thus a new approach for dealing with these problems using virtual elements

consists on simply running a test analysis to determine critical areas. Using the same mesh

and only introducing interfaces at these areas preserves most of the original mesh, aside from

the new polygonal elements included. The key ingredient here is to use the capibilities of the

VEM as a domain decomposition method and the ability to introduce fracture paths at any angle

without the need to remesh to have all triangular or quadrilateral elements.

6 CONCLUDING REMARKS

Since the introduction of the VEM is very recent, many applications other than the mentioned

ones are expected to surface in the foreseeable future. The introduction of this new technology

in numerical methods always leads to new insight into the nature of the problem under study.
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We believe that the preliminary results and ideas are very promising and could lead to a new

viable framework for studying materials and cracking problems while avoiding some of the

issues that have historically plagued the study of these types of problems.
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