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Abstract. In recent years, and in the context of the so called discrete cohesive models, finite 

elements with embedded strong discontinuities have gained popularity for the numerical 

simulation in fracture mechanics. The adopted kinematical representation of the 

discontinuous displacement field makes possible to consider a general clasification of these 

models in two groups or finite element families, i.e: elements with discontinuous modes of 

elemental (statically condensable) suport (E-FEM) and elements with nodal (not 

condensable) enrichment (X-FEM). 

In this work, a rigurous and comparative study between both numerical approaches is 

presented. In order to obtain consistent results, a common numerical scenario was adopted. 

Particularly, we have chosen the same constitutive law (continuum damage) and element 

topology (triangles and tetrahedras). In addition, special attention has been paid to 

computational efficiency topics. Fundamental aspects in the context of failure mechanics 

analysis, such as robustness, convergence rate, presition and computational cost, are 

adderesses. For this goal, tipical examples in concrete fracture are showed, including in this 

modelling the resolution of single and multi cracking problems for 2D and 3D cases. 
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1 INTRODUCTION 

In recent years finite elements with embedded discontinuities have gained increasing 

interest in modelling material failure, due to their specific ability to provide, unlike standard 

finite elem+ents, specific kinematics to capture strong discontinuities. They essentially 

consist of enriching the (continuous) displacement modes of the standard finite elements, with 

additional (discontinuous) displacements, devised for capturing the physical discontinuity i.e.: 

fractures, cracks, slip lines, etc. The discontinuity path is placed inside the elements 

irrespective of the size and specific orientation of them. Then, typical drawbacks of standard 

finite elements in modelling displacement discontinuities, like spurious mesh size and mesh 

bias dependences, can be effectively removed. In addition, unlike with standard elements, 

mesh refinement is not strictly necessary to capture those discontinuities, and the simulation 

can be done with relatively coarse meshes. By using that technology, in conjunction with 

some additional refinements, realistic simulations of multiple strong discontinuities 

propagating in three-dimensional bodies can be achieved, with small computers, in reasonable 

computational times.  

As for the enriching technique, two broad families can be distinguished in terms of the 

support of the enriching discontinuous displacement modes: 

• Elemental enrichment
1,2,7-9,16-18,21,28,33

: the support for each mode is a given element, 

see Figure 1-a. For the purposes of identification of this kind of enrichment, in the 

remaining of this work it will be termed as E-FEM enrichment. 

• Nodal enrichment
4,5,14,15,20,32

: the support of each mode is the one of a given nodal 

shape function i.e.: those elements surrounding a specific node, see Figure 1-b. Most of the 

formulations of this family, available in the literature, have been developed in the context 

of the partition of unity methods, of a broader scope, under the name of X-FEM method
5
. 

Therefore, this name will be assigned, in this work, to this kind of enrichment. 

 

To the best of the authors’ knowledge, a rigorous comparative study on both families of 

elements and their relative performance is still lacking. At the most, some speculative 

statements about the behaviour of each method have been made from every author’s 

experience and feeling, but quantitative aspects about relative errors; rates of convergence 

with mesh refinement, and computational cost are not yet available. This is the purpose of this 

work: to assess the relative performance of both types of enrichments in terms of those 

aspects that can be quantitatively measured through numerical tests and simulations; covering 

a wide range of cases: two-dimensional and three-dimensional simulations and single and 

multiple fracturing.  In order to make the comparison as fair as possible, the best (intending to 

be the most effective) numerical implementation for every case has been implemented in the 

same numerical simulation code
13
. In this sense, the implicit-explicit procedure, presented 

elsewhere
23-25

, has been used to integrate the constitutive model. This procedure renders 

positive definite and constant, in every time step, the algorithmic stiffness matrix of the 

linearized problem, even in presence of strain or displacement softening; convergence of the 

non-linear problem is always achieved in just one iteration per time step and, therefore, the 

time advancing procedure is completely robust and the same number of iterations in every 
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implementation is guaranteed as the number and length of time steps is imposed.  

Then, for a selected set of numerical tests, results have been obtained using the same basic 

element (linear triangles or tetrahedra) elementary or nodal enriched by discontinuous 

displacement modes and using exactly the same data: finite element mesh, material properties, 

time advancing algorithm, number of time steps, linearization procedure etc. Finally, 

representative action-response curves, measures of the accuracy, and records of the 

computational cost have been obtained for each case and used for comparison purposes. 

 

The remainder of this work has been structured as follows: in Section 2 the fundamentals 

of E-Fem and X-Fem enrichments are presented; in Section 3 details of the comparison 

setting in terms of the constitutive model and numerical implementation issues are given. 

Then, in Section 4, results obtained with both formulations, for a number of representative 

examples, are systematically compared in terms of accuracy, convergence and computational 

cost. Finally, in Section 5, original conclusions about this comparative study are obtained. 

 

Figure 1: Nodal and elemental enrichments. 

2 BASIC FORMULATION 

Let us consider the typical material failure problem in solid mechanics, exhibiting cracks 

or slip line modes in the spatial domain Ω  (see Figure 2), which are characterized by the 

following discontinuous displacement field: 
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where u  stands for the displacement field, u and ββββ  are, respectively, the regular 

displacement field and the displacement jump and )(x
S

H  stands for the Heaviside (step) 

function shifted to the discontinuity interface S . For the infinitesimal strain case and 

introducing generalized functions, the strain field compatible with equation (1) results: 
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SS
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where n  is normal to S  and Sδ  stands for the Dirac’s delta-function shifted to S . For the 

spatially discretized body, hΩ , the variational governing equation, in the standard form and 

in absence of body forces, reads: 

h

o
V∈∀Γ∫ ⋅=Ω∫ ⋅

σΓΩ
hhhsym

hh dd utuu δδδ σ ;σσσσ∇∇∇∇  (3) 

where hh Ω∂⊂Γσ  is the boundary with prescribed tractions, t , and h

o
V  is the space of 

admissible interpolated displacements, which should be appropriately defined. Both the 

displacement field (1) and the space h

o
V  are represented in different ways by the elemental 

and nodal embedded strong discontinuity enrichments. 

 

Figure 2: Strong discontinuity kinematics. 

2.1 X-FEM enrichment 

The space of interpolation functions is defined by: 
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1

h

FEM-X ∑ +==
=

noden

i
iiii

hh NN)( ββββxdxxuxu
S

HV  (4) 

iN  standing for the standard interpolation finite element shape functions, id  are the nodal 

regular displacement vector, ιββββ  the nodal displacement jump vector and noden  is the number 

of nodes of the finite element mesh. The corresponding (infinitesimal) strain field results: 
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Then the variations, with respect to parameters ),( ii ββββd  in equation (4) lead to the discrete 
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equilibrium equations: 
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The term SS tn =⋅σσσσ , in equation (6-b), can be interpreted as an interface cohesive traction. 

2.2 E-FEM enrichment 

In this approach, the discontinuous displacement is interpolated by using the following 

functional space: 
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where, elemn  is the number of elements and )(e

noden +  refers to those nodes of element e  placed in 

+Ω  (see Figure 1). In equation (7) 
e

ββββ  are degrees of freedom describing the elemental 

displacement jumps and 
(e)

S
M  is the so-called elemental unit jump function whose support is 

the elemental domain )(eΩ 27
. The corresponding strain field reads: 
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and variations, in equation (8), with respect to parameters ),( ei ββββd  lead to the discrete 

variational equations defining a kinematically consistent  E-FEM implementation
9,11

: 
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3 COMPARISON SETTING 

In order to make a rigorous comparison, a common comparison scenario for both methods 

has to be defined in terms of the constitutive model, the numerical algorithms and the finite 

element implementation. This is described in next sections. 

3.1 Constitutive model: projected traction separation law 

For the sake of simplicity, an isotropic continuum damage model, equipped with strain 

softening, has been chosen to model the mechanical behaviour of the material. The essentials 

of the model are the following: 
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where ),( rεεεεϕ  is the free energy, depending on the strain tensor εεεε  , and the internal variable 
r , ( ) I11C µλ 2+⊗=  is the elastic constitutive tensor, where λ  and µ  are the Lame’s 

parameters and 1  and I  are the identity tensors of 2nd and 4th order, respectively. In 

equation (10) rrqd /)(1−=  is the continuum damage variable, σσσσ  stands for the stress tensor 

and εεεεσσσσ :C=  is the effective stress tensor. Its positive counterpart is then defined as: 

∑ ⊗><=
=

=

+ 3

1

σ
i

i
iii ppσσσσ  (11) 

where >< iσ  stands for the positive part (Mac Auley bracket) of the i-th principal effective 

stress 
iσ  (

ii σσ >=< for 0σ >i
 and 0σ >=< i

 for 0σ <i
) and 

ip  stands for the i-th stress 

eigenvector. The initial elastic domain in the damage model is defined as 

}{:Ε
10

o

e r<⋅⋅= −+ σσσσσσσσ;;;;σσσσ Cσ  and, therefore, it is unbounded for compressive stress states 

( 0=+σσσσ ) so that damage becomes only associated to tensile stress states as it is usual for 

modelling tensile failure in quasi brittle materials. Material softening is defined by the 

evolution of the internal variable )(rq  in terms of the continuum softening modulus 

0)( ≤qH . Finally, uσ  and E  are, respectively, the tensile strength and the Young´s 

modulus. One of the advantages of the previous model, unusual in non-linear constitutive 

models, is that the internal variable r can be integrated in closed form as: 

)),((max)( 0
],0[

rstr
ts

εεεεετ
∈

=  
(12) 

and, from this, the complete constitutive model can be analytically integrated from equations 

in (10).  

In the context of the Continuum Strong Discontinuity Approach (CSDA) the preceding 

constitutive model should be adapted to return bounded stresses when the singular 

(unbounded) strain field (2) is introduced into the standard continuum context. This 
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regularization is achieved by substituting the Dirac’s delta function Sδ  by a regularized 

sequence, kSS /µδ ≡  ( 0→k ), where )(xSµ  is a collocation function on the discontinuity 

interface S . In addition, the continuum softening modulus, H , in equation (10), is 

reinterpreted, in the distributional sense
31
 and, then, regularized as 

)()( qHkqH =  (13) 

in terms of a discrete softening modulus H , considered a material property available from 

the mechanical and fracturing properties of the material  (peak stress uσ , Young modulus E , 

and fracture energy fG ; see
19,26

 for additional details). 

In this context it can be shown
19
 that the following traction separation law, relating the 

traction, nt ⋅= SS σσσσ , and the displacement jump, ββββ , is automatically fulfilled at the 

discontinuity interface S  after activation of the strong discontinuity kinematics  (2) : 
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where Sϕ  is the free energy density per unit of area at the discontinuity interface, q  and 

kr
k 0
lim

→
=α  are the internal variables, and loct  stands for the localization time or the time of 

activation of the traction separation law (see section 3.3). The (discrete) model in equations 

(14) is said to be a projection (degeneration) of the continuum model in equations (10) onto 

the discontinuity interface S . Then, as for implementation, to options emerge: 

 

• A continuum implementation of the model (10), )),(( ββββεεεεεεεεσσσσ , into the variational 

equations (6) and (9). This is the procedure followed in the Continuum Strong 

Discontinuity Approach (CSDA)
26
. 

• A discrete implementation, based on the substitution of the traction separation law 

(14), )(ββββSt , in the term n⋅Sσσσσ  in the variational equations (6) and (9). This is the 
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procedure followed in the Discrete Strong Discontinuity Approach (DSDA), see reference
2
 

for instance. 

 

Due to the equivalence of both models, the results obtained with the first option will only 

differ from the ones obtained with the second one in accounting for those volume dissipation 

mechanisms taking place before the localization time, loct . In this comparison study, the first 

option (continuum implementation) has been chosen, for both E-FEM and X-FEM 

enrichments, and considered representative of both implementation procedures. 

3.2 Implementation topics in finite element context 

Linear elements (triangles in 2D and tetrahedra in 3D) are selected as the basic elements to 

be enriched. Since one of the most relevant issues to be compared is the computational cost, a 

fairly optimized numerical implementation and coding of the mathematical models has been 

intended for both enrichments. In this sense, the E-FEM enriching degrees of freedom are 

condensed out at elemental level. As for X-FEM, although condensation is not possible, those 

nodal degrees of freedom associated to the enriching modes, and the memory allocated to the 

corresponding dimensions of the elemental matrices, are exclusively activated for those nodes 

belonging to elements of the mesh that are intersected by the discontinuity path, and only 

after the time that  failure in those elements is detected. Moreover, the additional nodal 

degrees of freedom are numbered as to minimize their impact on the banded structure of the 

resulting stiffness matrix. The remaining elements are computed following the classical 

implementation without enrichment. 

As for the specific integration rules, they are sketched in Figure 3. For the linear triangle 

and E-FEM enrichment two integration points have been considered, one corresponding to the 

regular domain )()( / ee SΩ  and the other to the singular domain )(eS . The X-FEM triangular 

element requires four Gauss-points (two regular and two singular) whose weights, PGw , are 

shown in the same figure. 

For 3D tetrahedron two sampling points (one regular and one singular) in E-FEM, and five 

sampling points in X-FEM (two regular and three singular) have been adopted. The accuracy 

of the three-points integration rule at )(eS , for X-FEM in tetrahedra, when the elemental 

singular domain is a quadrilateral instead of a triangle, has been assessed by comparison with 

the, theoretically exact, four points rule. No substantial difference was found and the three 

sampling points were adopted in all cases to reduce computational and implementation costs. 
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Figure 3: Integration rules for E-FEM and X-FEM in 2D nad 3D cases. 

The value k  in Figure 3, is that parameter in the CSDA used to regularize  the Dirac’s 

delta function, Sδ , in equations (5) and (8) (a very small parameter to which the results are 

insensitive, see reference
22
). Values el  and e

A  correspond to the length (for 2D) and the area 

(for 3D) of the discontinuity path inside the element.  

According to these specifications both the E-FEM and X-FEM elements have been 

inserted in the same finite element code for non-linear solid mechanic analysis
13
. Therefore, 

those ingredients of the analysis that are not specific of each of the compared methods (like 

time advancing schemes, tracking algorithms, continuation methods, non-linear solvers etc.) 

are common for both E-FEM and X-FEM implementations and they will not affect the 

relative performance of each method. 

3.3 Estimation of the discontinuity path 

An important issue in the numerical solution of cracking problems in the CSDA is the 

correct prediction of the discontinuity path and, therefore, determination of those elements 

that have to be enriched with discontinuous modes. For this purposes several strategies 

(tracking algorithms
5,6,17,21

 are available in the literature. In this comparison study a global 

tracking algorithm has been used on the basis of the following ingredients
22
: 

• The normal to the propagation direction, )(xn , at every material point x , is 

determined, by resorting to the so-called discontinuous bifurcation analysis based on the 

spectral properties of the localization constitutive tensor locQ  as: 
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(15) 

where tanC  stands for the tangent constitutive operator, defining the incremental 

constitutive equation of the selected model ( εεεεσσσσ �� :tanC= ), ( , )H tx  is the softening modulus 

defined in equation (12), and )(xloct  is the localization time, i.e.: the time as the chosen 

constitutive model becomes unstable allowing local bifurcation of the strain field and the 

formation of a weak discontinuity. It is characterized by the loss of strong ellipticity of the 

localization tensor locQ  in equation (15). Closed form formulas for determination of n , for 

several families of constitutive models, can be found elsewhere
22,30

. The value of ),( txn  is 

computed for every material point (element) at every time step. 

 

• Construction, at every time step, of the enveloping family (lines in 2D or surfaces in 

3D) of the vector field orthogonal to ),( txn  i.e.: the propagation vector field. This is done 

through a so-called pseudo thermal algorithm (more details can be found in
21
) . Then, those 

elements crossed by the same member (envelop) of that family and fulfilling the 

localization condition ( )()( xx loctt ≥ ) are enriched with the discontinuous modes according 

to the respective E-FEM and X-FEM procedures. 

3.4 Time integration scheme 

It is a very well known fact the lack of robustness typical of models involving strain 

softening in Computational Material Failure. Even as the B.V.P is mathematically well-posed, 

the negative character of the tangent constitutive operator progressively deteriorates the 

algorithmic stiffness of the problem, as material failure propagates trough the finite element 

mesh. As a consequence, the robustness of the convergence procedure for solving the non-

linear problem is strongly affected and, in most cases, convergence can be achieved only by 

using very skilful procedures, which translate into large computational costs. In order to 

overcome this problem, an implicit/explicit integration scheme, presented elsewhere
23,24

, for 

integration of the constitutive model has been adopted for both the E-FEM and X-FEM 

procedures. Two are the main advantages of that scheme: 

• The resulting algorithmic tangent operator is always positive definite, which avoids 

the fundamental reasons for loss of robustness (at the cost of introducing an additional 

time-integration error in comparison with the standard implicit integration scheme). In 
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consequence, a result is always obtained whatever is the length of the time step. The 

accuracy of the results can be then increased, and controlled, by shortening the length of 

the time step. 

 

• The resulting algorithmic tangent operator is constant (for the adopted infinitesimal 

strain format). In consequence, convergence of the iteration procedure, to balance the 

internal and external forces, is achieved in just one iteration per time step. 

 

The beneficial effects of that integration procedure in computations involving strain 

softening are dramatic, both in robustness and computational costs, as compared with the ones 

of the implicit scheme
23
. This is why, in the spirit, of using the best available algorithmic 

procedures in the comparison setting, the implicit/explicit integration scheme has been 

adopted in this study for both the computations using E-FEM and X-FEM. In addition, and 

since robustness is almost complete, this guaranties the same number of time steps (and, 

therefore, of iterations) required to trace the response of a give problem with both methods, 

and makes the comparison completely objective in terms of robustness and computational 

costs. 

4 NUMERICAL EXAMPLES 

In the computational setting defined in section 3, the relative performances of the E-FEM 

versus the X-FEM formulations are compared by solving a set of two and three–dimensional 

material failure problems in concrete, for single or multiple crack cases. 

All the examples shown below have been run in a standard PC equipped with a single 

Pentium 4 -3.0 GHz, 512 MB Ram- processor. As for comparison of the computational cost in 

the tables below, the following nomenclature has been adopted to identify some of the 

features and results for every problem: 

� Nstep: number of time steps used for the complete analysis. 
� Nei: number of initial equations (at the beginning of the analysis without any 

enriching degree of freedom). 
� Nef : number of final equations (at the end of the analysis, including the additional 

enriching degrees of freedom). 
� RNe: ratio of number of equations Nef/Nei 

� bwi: initial average half bandwidth of the stiffness matrix. 
� bwf : final average half bandwidth of the stiffness matrix. 
� Rbw: ratio of average bandwidths bwf/bwi. 
� Ta: absolute CPU time for the problem (in seconds) for each formulation. 
� RCC: relative computational cost (Ta with X-FEM/Ta with E-FEM). 

4.1 Double Cantilever Beam with diagonal loads. 

The experimental test, reproduced in this section using two and three-dimensional models, 

was reported in
10
, and its numerical solution, in 2D, was also studied in

26,29
.  

Figure 4 shows the geometric description and the spatial and temporal loading conditions. 
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The diagonal compression forces, 2F , are initially introduced together with the wedge loads, 

1F , increasing along the time, until reaching 3.78 [kN]. Then, the diagonal loads remain 

constant while the wedge loads increase. The material parameters are, Young´s modulus: 

=E 30500.[MPa] , Poisson’s ratio: ν = 0.2, fracture energy: fG  = 100 [N/m], and ultimate 

tensile strength: uσ  = 3 [MPa] . 

The choice of this test for comparison purposes lies on two reasons: 

 

• The reported experimental crack path follows a flat surface (inclined 71° with the 

horizontal axis). Therefore, simulations can be made independent of the tracking procedure 

by imposing that specific crack path. This strategy has been followed in the 2D and 3D 

modelling, and,  for the remaining examples of this work, the discontinuity path   has been 

determined by means of the global tracking procedure reported in section 3.3.  

• For 2D analyzes it is rather simple to construct structured meshes such that the 

discontinuity path intersects the elements in arbitrary directions. Those meshes will 

strongly challenge E-FEM formulations, which perform particularly well when the 

propagation direction is parallel to the element sides
9
 . 

 

 

(a)  

 

 

 
 

 

 

(b)  
 

(c)  

Figure 4: Double-Cantilever-Beam (DCB) test with diagonal loads:a) geometry and loading conditions. b) 

Loading history. c) Typical deformed mesh 

4.1.1. 2D Modelling 

A plane stress condition has been assumed. Convergence with mesh refinement has been 

analyzed by using a uniformly decreasing (in element size) sequence of meshes ( 1S , 2S , 3S , 

4S ) in the fracture zone, with  element sizes h = 32, 16, 8 and 4 [mm], see Figure 5. 
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1S   286 elements, h~32mm. 

 

2S   855 elements, h~16mm. 

 

3S   2824 elements, h~8mm. 

 

4S   9867 elements, h~4mm. 

Figure 5: 2D Double-Cantilever-Beam (DCB) test with diagonal load. Structured mesh sequence, 

Let { }efemefemefemefemefem SSSSS 4321 ,,,=  and { }xfemxfemxfemxfemxfem SSSSS 4321 ,,,=  be, respectively, 

the sequence of numerically obtained equilibrium curves (load F1 vs CMOD ) for the E-FEM 

and X-FEM formulations using the four meshes. They are plotted in Figure 6-a, for the E-

FEM sequence, and in Figure 6-b, for the X-FEM.  There, a clear qualitative convergence, 

with mesh refinement, in both cases is noticed. 

 

 
(a)  

 
(b)  

Figure 6: 2D Double-Cantilever-Beam (DCB) test with diagonal load. Equilibrium curves (Load F1 vs. 

CMOD): a) E-FEM and b) X-FEM solutions. 
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Figure 7 compares, for each couple of the two solution sequences, the results obtained by 

the E-FEM and X-FEM procedures. There it can be observed that the solutions provided by 

both methods converge to each other as the mesh is refined. 

 

  

  
Figure 7: 2D Double-Cantilever-Beam (DCB) test with diagonal loads. Comparison of E-FEM and X-FEM 

solutions for every mesh of the sequence  

However, in order to translate these qualitative observations into figures, normsL −2  of 

the differences are computed by means of the following formula: 

3,2,1;
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)max(
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2
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=

∫

∫ −
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= i

dxS
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e
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ref

CMOD

refi

Lref

Lrefi

Li
 (16) 

where 
2

CMOD Li
e stands for the relative error of solution iS , in the normL −2  , with respect to 

a reference (exact) solution refS . Since the exact solution is not available, the one obtained 

with the finer mesh is considered as the reference solution ( 4SSref ≡ ). In Figure 8-a. the 

obtained relative errors with respect to the corresponding finite element size, h , for every 
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discretization, are plotted in a log-log diagram (and fitted in a linear regression) for the E-

FEM and X-FEM solutions. There, it can be clearly observed a higher accuracy for E-FEM, 

and that both methods exhibit a super-linear convergence (the slope of the regression curves 

is at the interior of the interval [ ]2,1 ). 

The normL −2  of the difference of solutions in the two sequences of solutions 

{ }efemefemefemefemefem SSSSS 4321 ,,,=  and { }xfemxfemxfemxfemxfem SSSSS 4321 ,,,=  is obtained as: 

4,...,1;
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where now 
2L

xfemefem

ie
− is a measure of the difference of the solutions between the E-FEM and 

X-FEM procedures for the same mesh. In Figure 8-b the corresponding results are plotted in a 

log-log diagram and fitted with a linear regression. The clear reduction of the error with 

decreasing element sizes proves the convergence of both formulations, with mesh refinement, 

to the same value ( 0)(lim 0 =−→
xfem

i

efem

ih SS ). 
 

 
(a)  

 
(b)  

Figure 8: 2D Double-Cantilever-Beam (DCB) test with diagonal loads. a) Relative errors vs. element size b) E-

FEM-X-FEM differences vs. element size h. 

Table 1 refers to the computational costs required for solving the problem, with both 

methods, for every mesh. Recalling that, in the last column, RCC  refers to the relative 

computational cost, X-FEM/E-FEM, it can be clearly observed that X-FEM is, in all meshes, 

more expensive than E-FEM though the relative extra cost tends to decrease as the mesh is 

refined. This is the general trend observed in all the analyzed examples in this work. 
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Table 1: 2D Double-Cantilever-Beam (DCB) test with diagonal loads. Computational data and relative 

computational cost X-EFEM/E-FEM (RCC). 

4.1.2 3D Modelling 

The same test is now conducted in a 3D modelling. Four unstructured meshes, shown in 

Figure 9, with average element sizes in the crack path zone h= 32, 20, 16 and 8 [mm] are used 

defining the mesh sequence  ( 1S , 2S , 3S , 4S ). 

 

 
 

1S : 763 elements, 

h~32mm. 

 
 

2S : 2200 elements, 

h~32mm. 

 
 

3S : 3820 elements, 

h~16mm. 

 
 

4S : 25137 elements, 

h~8mm. 

Figure 9: 3D Double-Cantilever-Beam (DCB) test with diagonal loads. Unstructured mesh sequence. 

Figure 10 shows the set of finite elements capturing the discontinuity in an advanced 

localization state corresponding to the maximum attained CMOD value. 

 

  

Figure 10: 3D Double-Cantilever-Beam (DCB) test with diagonal loads. Modelled crack path. 

Finite element 

mesh 

(1) 

Nstep 

 

(2) 

Method 

 

(3) 

Nei 
 

(4) 

Nef 

 

(5) 

RNe 

(6)= 

(5)/(4) 

bwi 

 

(7) 

bwf 

 

(8) 

Rbw 

(9)= 

(8)/(7) 

Ta 

[secs.] 

(10) 

RCC 

 

(11) 

EFEM 343 343 1.00 22 22 1.00 26.69 Mesh 1  

(286 elem.) 
1445 

XFEM 343 387 1.13 22 26 1.18 39.20 
1.47 

EFEM 935 935 1.00 42 42 1.00 92.03 Mesh 2  

(855 elem.) 
1610 

XFEM 935 1027 1.10 42 47 1.12 133.79 
1.45 

EFEM 2949 2949 1.00 59 59 1.00 349.21 Mesh 3  

(2824 elem.) 
1700 

XFEM 2949 3127 1.06 59 63 1.07 487.87 
1.40 

EFEM 10073 10073 1.00 108 108 1.00 1760.01 Mesh 4  

(9867 elem.) 
1700 

XFEM 10073 10431 1.03 108 112 1.04 2262.31 
1.28 
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Figure 11 displays the numerical solution of the structural response (F1 loads vs. CMOD 

curves) for both, E-FEM and X-FEM procedures, using the four meshes. Figure 12 shows 

one-to-one comparison of the solution obtained with both methods for every mesh. 

 

 

  

  
Figure 12: 3D Double-Cantilever-Beam (DCB) test with diagonal loads. Comparison of E-FEM and X-FEM 

solutions for every mesh of the sequence . 

 
(a)  

 
(b)  

Figure 11: 3D Double-Cantilever-Beam (DCB) test with diagonal load. Equilibrium curves (Load F1 vs. 

CMOD): a) E-FEM and b) X-FEM solutions. 
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Finite element 

mesh 

(1) 

Nstep 

 

(2) 

Method 

 

(3) 

Nei 
  

(4) 

Nef 

 

(5) 

RNe 

(6)= 

(5)/(4) 

bwi 

 

(7) 

bwf 

 

(8) 

Rbw 

(9)= 

(8)/(7) 

Ta 

[secs.] 

(10) 

RCC 

 

(11) 

EFEM 797 797 1.00 62 62 1.00 160. Mesh 1 

(763 elem.) 
1200 

XFEM 797 974 1.22 62 78 1.26 456. 
2.84 

EFEM 1760 1760 1.00 114 114 1.00 521. Mesh 2 

(2200 elem.) 
1200 

XFEM 1760 2036 1.16 114 145 1.27 1334. 
2.56 

EFEM 2787 2787 1.00 149 149 1.00 975. Mesh 3 

(3820 elem.) 
1200 

XFEM 2787 3114 1.12 149 181 1.21 2298. 
2.36 

EFEM 14958 14958 1.00 448 448 1.00 17169. Mesh 4 

(25137elem) 
1200 

XFEM 14958 16245 1.09 448 488 1.09 27337. 
1.59 

Table 2: 3D Double-Cantilever-Beam (DCB) test with diagonal loads. Computational data and relative 

computational cost X-EFEM/E-FEM (RCC). 

Finally, Table 2 compares both formulations in terms of the computational costs. It is 

remarkable that, for this 3D case the relative computational cost, X-FEM/E-FEM, in the last 

column of the table, increases considerably with respect to 2D case. 

4.2 3D Four point bending test. 

In order to extend the comparison to the case of modelling curved cracks, the classical 

problem of a single-edged notched beam supported in four points, shown in Figure 13, is 

considered. 

 

 
Figure 13: Single-notched beam under four points bending test . 

The numerical simulations, have been done without imposing, beforehand, the 

discontinuity path, which is obtained using the methodology presented in section 3.3. The 

problem is solved using a 3D model and the four unstructured meshes of Figure 14. 

In Figure 15, four points bending test details about the obtained three-dimensional curved 

crack surface are presented. 

Figure 16 displays the sequences of solutions, with progressively refined meshes, supplied 

by the E-FEM and X-FEM procedures. The abscissa (CSMD) has been computed as the 

average value of CSMD along the specimen thickness. 
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1S  

5383 elements, h~25mm 

 
 

2S  

9528 elements, h~20mm 

 

3S  

17291 elements, h~16mm 

 

4S  

32213 elements,h~13mm 

Figure 14: 3D four points bending test. Mesh sequence. 

 

 
(a)  

 

 
 

(b)  

Figure 15: 3D four points bending test: a) Elements intersected by the crack. b) Failure deformation mode  

 

 
(a)  

 
(b)  

Figure 16: 3D four points bending test. Load P vs. CMSD curves: a) E-FEM. b) X-FEM solutions. 

Figure 17 displays the corresponding error and convergence curves with mesh refinement. 
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Finally, Table 4 presents the comparative computational cost. Again it can be noticed a 

substantial difference of the computational cost ratios X-FEM/E-FEM. 

 

 
(a)  

 
(b)  

Figure 17: 3D four points bending test: a) Relative errors vs. element size h. b) E-FEM-X-FEM differences vs. 

element size h. 

Finite element 

mesh 

(1) 

Nstep 

 

(2) 

Method 

 

(3) 

Nei 
  

(4) 

Nef 

 

(5) 

RNe 

(6)= 

(5)/(4) 

bwi 

 

(7) 

bwf 

 

(8) 

Rbw 

(9)= 

(8)/(7) 

Ta 

[secs.] 

(10) 

RCC 

 

(11) 

EFEM 3768 3768 1.00 237 237 1.00 714 Mesh 1 

(5383 elem.) 
400 

XFEM 3768 4377 1.16 237 289 1.22 1536 
2.15 

EFEM 6096 6096 1.00 431 431 1.00 2460 Mesh 2 

(9528 elem.) 
400 

XFEM 6096 7131 1.17 431 571 1.32 4954 
2.01 

EFEM 10401 10401 1.00 524 524 1.00 5519 Mesh 3 

(17291 elem) 
400 

XFEM 10401 12048 1.16 524 625 1.19 9394 
1.70 

EFEM 18479 18479 1.00 833 833 1.00 9931 Mesh 4 

(32213 elem) 
178 

XFEM 18479 20783 1.12 833 955 1.15 14727 
1.48 

Table 3: 3D four points bending test. Computational data and relative computational cost X-EFEM/E-FEM  

4.3 Multifracture modelling. 

The single fracture case considered so far is a very specific case, in material failure 

modeling, restricted to homogeneous materials in quasistatic problems. When the material is 

non-homogenous, as it happens in many cases of interest like in composite materials, multiple 

cracks can remain simultaneously active during long parts of the analysis. The purpose of this 

test is to check the relative performance of E-FEM and X-FEM for this case. Since the degree 

of accuracy and convergence does not substantially change from what has been shown in 

previous examples, the comparison is only presented in terms of the computational cost.  

For this purpose the test displayed in Figure 18 is used. It consists of a theoretical 

specimen of composite material made of a concrete matrix reinforced by steel bars distributed 

across the height as elastic steel layers. The specimen is increasingly pulled horizontally from 
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the right end, and a number of vertical cracks appear. Their separation and, therefore, the 

number of cracks, depends on the amount of reinforcement with respect to concrete and their 

relative bonding
3,12

. For the simulation, and since perfect concrete/steel bonding has been 

considered, that number of cracks has been artificially imposed by perturbing the concrete 

peak stress in the appropriate number of vertical layers of elements. The mechanical 

properties of concrete are: =E 27350 [Mpa] (Young´s modulus), ν = 0 (Poisson´s ratio), fG = 

100 [N/m] (Fracture energy), uσ =3.19 [MPa] (ultimate tensile strength). The reinforcing steel 

properties are =E 210000 [Mpa] and ν = 0. Due to symmetry only the lower half of the 

specimen has been modeled. 

 
 

 
Figure 18: Reinforced concrete specimen. Geometry and deformed sets of elements capturing the vertical 

cracks. Number of elements 23245, h~26.mm 

Four different cases, corresponding to 2, 4, 6 and 8 developed cracks, have been analyzed 

using the E-FEM and X-FEM procedures. The corresponding computational costs, broken 

down into the main parts of the code (residual forces, stiffness matrix, solver and total 

computational costs) have been  tracked and plotted, in Figure 19, for an increasing number of 

cracks. There, it can be noticed that: 

• The E-FEM computational costs keep almost constant with the number of cracks. This 

could have been expected, since the additional degrees of freedom associated to the 

elemental displacement jumps are condensed out, and they do not substantially 

contribute to the computational costs, irrespective of their number. 

•  The X-FEM computational cost is always larger than the corresponding in E-FEM 

and grows linearly with the number of modeled cracks. The most affected operations 

are the stiffness matrix construction and the solver (in turn the most time consuming 

operations). This should also be expected since the additional nodal degrees of 

freedom are not condensed in this case. 

• As a result, the relative computational cost X-FEM / E-FEM grows linearly with the 

number of modeled cracks. 
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Figure 19: Reinforced concrete plate. Computational CPU time as a function of the crack number for different 

parts of the simulation procedure: a) Residual evaluation and assembly. b) Stiffness matrix evaluation and 

assembly. c) Solving the linearized system of equations. d) Total computational cost.  

5 FINAL COMENTS 

Along this work a comparison of nodal (X-FEM) and elemental (E-FEM) enrichments in 

finite elements with embedded discontinuities has been done. Both enrichments have been 

implemented in the same finite element code, on the basis of optimized algorithms and 

coding, and tested on a set of 2D and 3D examples under exactly the same conditions. The 

obtained results can be summarized as follows: 

 

• When implemented on the basis of the same element (linear triangles and linear 

tetrahedra in this study), both formulations converge to the same results, either the 

qualitative (captured discontinuity paths) or the quantitative ones. 

• The rate of convergence of both enrichments is similar. Substantial differences in 

terms of convergence rates, in  norms, have not been found (for both cases the convergence 

rates are fairly superior to linear).  
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• Therefore, unlike what some times has been asserted, the different kind of 

interpolation of the displacement jump provided by both types of enrichments (linear for 

X-FEM, element wise constant for E-FEM) does not affect neither the accuracy of the 

representation of the discontinuity nor the convergence rate. Neither the fact that X-FEM, 

unlike E-FEM, allows discontinuous elemental regular strains across the discontinuity 

interface seems to affect the accuracy and convergence rates. They rather seem to be 

dependent on the degree of interpolation for the standard displacement modes of the 

chosen basic element (linear in this study). Yet, it has been observed that, for rather coarse 

meshes, both the accuracy and the smoothness of the response are higher with the E-FEM 

formulation. 

• Computational costs are, in all cases, broadly favourable to the E-FEM enrichment. 

For single crack modelling X-FEM is 1.3-1.7 times (in 2D cases) and 2.0-2.8 times (in 3D 

cases) more expensive than E-FEM. Those ratios decrease with increasing levels of 

discretizations. The reasons for the higher cost for X-FEM seems to be the additional, not 

condensable at elemental level, degrees of freedom and the higher order integration 

necessary in X-FEM. 

• As for multiple cracking modelling, the computational costs associated to the   E-FEM 

enrichment remain almost constant for increasing number cracks. On the contrary, for the 

X-FEM enrichment, the computational cost increases linearly with the number of involved 

cracks. For the considered 3D case this increase is around 10% per every additional crack.  

• In the context of the implicit/explicit integration of the constitutive model both 

formulations are very robust. All simulations have been conducted beyond the critical 

loads and up to almost complete exhaustion of the loading capacity. 

 

In summary, from the specific comparison setting devised for this study, based on standard 

formulations of both methods and their optimised implementations and coding, the main 

differences are: a) the higher relative computational cost of X-FEM with respect to E-FEM, 

associated to the possibility of condensation at elemental level in E-FEM and the higher 

integration order in X-FEM, and b) the higher accuracy in E-FEM, mainly for coarse meshes 

Anyhow, both methods are amenable to be reformulated and improved, which could define 

different scenarios for which the corresponding comparison studies should be done. 
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