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Abstract. The most widely adopted model to treat thin film (lubrication) problems with cavitation is

the Elrod-Adams model. An efficient numerical solution is by no means trivial, as the classical Newton-

Raphson method is not suitable for this problem. The best approach so far is to solve it with a Jacobi

or Gauss-Seidel type algorithm, as done by Ausas (R. Ausas et al, Journal of Tribology, 131(3):031702

(2009)). However, it becomes computationally expensive for large problems, due to the elliptic problem

being solved for the pressure. Multigrid methods arise like a natural choice to accelerate results, yet

their implementation for the Elrod-Adams model is not straightforward. A mass-conserving multigrid

algorithm was presented by Checo (Doctoral dissertation, Universidade de São Paulo (2016)), where it

was shown that care must be taken when transferring the solution between multigrid meshes due to the

cavitation boundary shift between them. Here we propose a fixed-point method to solve stationary flow

in porous media, which outperforms our previous algorithm.
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1 INTRODUCTION

Fluid-dynamic bearings are present in many key high-load, high-speed precision applica-

tions where other mechanisms like ball bearings would not perform as well due to noise and

vibrations, or because is it even impossible to apply another solution. Most of these compo-

nents, such as journal bearings, thrust bearings, connecting rods, ring/liner contacts in com-

bustion engines among others, work under severe loading and velocity conditions. A complete

separation of both bearing surfaces (hydrodynamic lubrication regime) is not assured, and par-

tial solid-solid lubrication (mixed lubrication regime) or mainly solid-solid contact (boundary

lubrication regime) takes place. Also due to the convergent-divergent geometry of the surfaces,

the squeeze effect and the high velocities the fluid cavitates. Under these conditions the real

topography of the surfaces is a determining factor in the bearing performance.

Surface roughness is usually treated in lubrication problems by means of stochastic models,

averaged models or homogenization methods. The stochastic models (Tzeng and E. (1967);

Christensen (1969)), compute expected values of pressure, friction force and load carrying ca-

pacity. The approach of averaged models (Patir and Cheng (1978, 1979)) is quite different,

as in this case an average Reynolds equation is developed in terms of empirical flow factor

functions based in a probability distribution for the surface roughness. Homogenization meth-

ods (Bayada et al. (1988, 1989); Jai (1995); Buscaglia et al. (2002); Buscaglia and Jai (2004))

assume periodicity of the surface and develop an average equation with coefficients computed

from solutions of local problems. In this work, the uncertainties associated with such methods

are avoided, thus leading to larger problems and the ensuing need of better numerical methods

to alleviate the computational burden.

The Elrod-Adams model (Elrod and Adams, 1974) is the most acknowledged model to treat

cavitation in hydrodynamic lubrication problems. As the solution obtained is discontinuous in

one of its variables, Jacobian-based methods are unfitting. The most appropiate approach is to

solve it with a relaxation scheme, as done by Ausas et al. (2009), however, it is expensive from a

computational point of view. Fine meshes are required to capture the effect of the smaller scale

features such as surface roughness and micro-textures and therefore the computational cost is

high. As in the Elrod-Adams model an elliptic equation is solved in the pressurized parts of

the domain, this makes the problem suitable for a multigrid implementation. An efficient and

robust multigrid algorithm for dynamic lubrication problems with cavitation is here presented,

and the difficulties of a Full Approximation Scheme solution (Fulton et al., 1986) are discussed.

This article is organized as follows: in Section 2 a general model for lubricated devices

where cavitation phenomena takes place is presented. Details of the discretization are given

in Section 3. In the same section fixed point single-grid and multigrid algorithms to solve the

Elrod-Adams equations coupled with the bearing dynamics are presented. The methods based

in Alt’s (Alt, 1980) and Ausas (Ausas et al., 2009) algorithms are also introduced. A discussion

of problems and performance issues arising from both methods is given in Section 4. Finally,

conclusions are drawn in Section 5.

2 A MODEL FOR LUBRICATED CONTACTS

Let us pose the lubrication problem with cavitation in the most general form. The problem’s

domain is the rectangle Ω = (x1ℓ, x1r)× (0, w). We can set two surfaces moving with relative

velocity u(t) one against the other, with u(t) in the x1 direction. The reference frame is fixed

on the upper surface. This is depicted in Figure 1. The upper surface, which bears a load W (t),
is given by the function hU(x1, x2) satisfying min(x1,x2) hU(x1, x2) = 0, while the lower one is

given by hL(x1 − u t, x2) ≤ 0, with the gap h between the surfaces being (partially) filled with
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a lubricating fluid.

Cavitation is common phenomena in lubricated devices due to the convergent-divergent ge-

ometries and the squeeze effect of the relative movement of the components. The Elrod-Adams

model incorporates into a single formulation the Reynolds equation for the pressurized region

and the Jacobsson-Floberg-Olsson boundary conditions for cavitation. In this model two fields

are computed: p = p(x1, x2, t) and θ = θ(x1, x2, t), the hydrodynamic pressure and an auxil-

iary saturation-like variable, respectively, that (weakly) satisfy the equation

∇ ·

(

h3

2
∇p

)

=
u(t)

2

∂ hθ

∂x1

+
∂ hθ

∂t
(1)

under the complementarity conditions







p > 0 ⇒ θ = 1
θ < 1 ⇒ p = 0
0 ≤ θ ≤ 1

(2)

which is here given in its non-dimensional form, assuming constant viscosity. Initial conditions

for θ and p are provided. A flux of lubricant η is set upstream at the boundary of the computa-

tional domain. At x2 = 0 and x2 = w proper boundary conditions are set to enforce periodicity

in the x2 direction.

The gap h changes not only due to the relative movement of the surfaces, but also due to the

imbalance on the forces on the upper surface. For simplicity and without loss of generality we

set one degree of freedom in the x3 direction, and thus

h(x1, x2, t) = hU(x1, x2)− hL(x1 − u t, x2) + Z(t) , (3)

where Z(t) > 0 parametrizes the position of the upper surface, that is, its distance to the

x1 − x2 plane. Then, its dynamics are given by

m
d2Z

dt2
= W (t) +W h(t) , (4)

where m is the mass associated to the upper surface, which in this case is allowed to move

only in the x3 direction. All quantities are assumed to be non-dimensional. Equation (4) is

supplemented with initial conditions for Z(t = 0) = z0 and Z ′(t = 0) = v0. The hydrodynamic

lift W h(t) is given by

W h(t) =

∫ w

0

∫ b

a

p(x1, x2, t) dx1 dx2 , (5)

where a and b are the starting and ending positions of the upper surface, e.g., a = x1ℓ

and b = x1r in Figure 1. Notice that equations (1) and (4) are coupled through the function

h(x1, x2, t), as the hydrodynamic pressure p depends on the solution of equation (1), which in

time depends on h(x1, x2, t).
The mathematical problem to be solved is to

“Find function Z(t) > 0 and fields p(x1, x2, t) and θ(x1, x2, t) in Ω× [0, T ] solution of



















m
d2Z

dt2
= W (t) +W h(t) t ∈ [0, T ]

Z(0) = z0,

Z ′(0) = v0,

(6)

(7)

(8)
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where m > 0 , T > 0 are two given real numbers and W (t) is a time-implicitly known

function. The fields p(x1, x2, t), θ(x1, x2, t), defined on Ω = (x1ℓ, x1r) × (0, w) and peri-

odic/reflective in x2 satisfy



























∇ ·

(

h3

2
∇p

)

=
u

2

∂ hθ

∂x1

+
∂ hθ

∂t
in Ω×]0, T [

p > 0 ⇒ θ = 1

θ < 1 ⇒ p = 0

0 ≤ θ ≤ 1

(9)

(10)

(11)

(12)

with boundary and initial conditions:



















uhθ − h3 ∂p

∂x1

= η(x2, t) ∀x2 ∈ Γ0 = {x1ℓ} × [0, w]

p = 0 ∀x2 ∈ Γ1 = {x1r} × [0, w]

θ(x1, x2, t = 0) = θI(x1, x2), (x1, x2) ∈ Ω

(13)

(14)

(15)

”.

Since Elrod & Adams published the model the mathematical study of the problem has been

considered by several authors with increasing grade of complexity. Existence and uniqueness

(under some assumptions) of the steady state problem have been treated in Bayada and Chambat

(1984, 1986). The unsteady case was studied in El Alaoui (1986); Alvarez (1986) for journal

and face seals boundary conditions. Proof of the existence of a solution of the transient problem

for a journal bearing (that is, periodic boundary conditions in x1) are given in El Alaoui Talibi

and Jai (2012). Existence of a solution for the problem stated above was given by (Buscaglia

et al., 2015).

Structured grid

e1

e2

x3

e3 hL

h
hU

x2

x1

Ω ⊂ R
2

i, j
∆x1

∆x2

W (t)e3

u(t)e1

w

Figure 1: Upper and lower surfaces moving with relative velocity u(t) along the x1 direction.

3 NUMERICAL METHOD

3.1 Discretization

The domain Ω is divided in finite volumes in a structured grid, as shown in Figure 1. Pressure

and saturation values are considered to be constant within each finite volume. A balance of
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fluxes in each cell i, j gives the following discrete equation for pi,j and θi,j:

ai,jθi,j + bi,jpi,j − ci,j(p, θ) = li,j , (16)

where

ai,j =

{

(q2 + u∆x1)h
n+1
ij if u ≥ 0 ,

(q2 − u∆x1)h
n+1
ij if u < 0 ,

(17)

bi,j = sn+1
i−1,j + sn+1

i+1,j + q21(s
n+1
i,j−1 + sn+1

i,j+1) , (18)

ci,j(p, θ) =















si−1,jp
n+1
i−1,j + si+1,jp

n+1
i+1,j + q21(si,j−1p

n+1
i,j−1

+si,j+1p
n+1
i,j+1) + u∆x1h

n+1
i−1,jθ

n+1
i−1,j if u ≥ 0 ,

si−1,jp
n+1
i−1,j + si+1,jp

n+1
i+1,j + q21(si,j−1p

n+1
i,j−1

+si,j+1p
n+1
i,j+1)− u∆x1h

n+1
i+1,jθ

n+1
i+1,j if u < 0 ,

(19)

si+k,j =
h3
i+k,j + h3

i,j

2
, si,j+k =

h3
i,j + h3

i,j+k

2
, (20)

with k = −1, 1 and

li,j = q2h
n
i,jθ

n
i,j . (21)

where q1 = ∆x1/∆x2, q2 = 2∆x2
1/∆t.

Equation (4) is solved through a Newmark scheme

Zn+1 = Zn +∆t
dZ

dt

n

+
∆t2

2

d2Zn+1

dt2
, (22)

dZ

dt

n+1

=
dZ

dt

n

+∆t
d2Zn+1

dt2
, (23)

which leads to

Zn+1 = Zn +∆t
dZ

dt

n

+
∆t2

2m

(

W (tn+1) +W h(tn+1)
)

, (24)

dZ

dt

n+1

=
dZ

dt

n

+
∆t

m

(

W (tn+1) +W h(tn+1)
)

. (25)

3.2 Fixed point algorithms for the lubrication problem

It is useful to introduce at this point the variable ω:

ωi,j = pi,j + θi,j ≥ 0 . (26)

It is easy to verify that pi,j and θi,j can be recovered uniquely from ωi,j ≥ 0 with:

pi,j(ωi,j) = max{ωi,j − 1, 0} , θi,j(ωi,j) = min{ωi,j, 1} . (27)

Given a certain ordering of the cell centers (i, j), for instance i′ = i+(j−1)N1, i = 1, ..., N1,

j = 1, ..., N2, we can then write in vector form:

ωωω = p+ θθθ , ωωω ∈ R
N=N1×N2 , (28)
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where ωωωi′ = ωi,j . At this point we can drop the prime superindexes on i′.
All the points i in the domain belong to a set that we will call I . The points in the Dirichlet

part of the boundary belong to I1 6= {∅} and those in the reflection/periodic boundaries are in

I2 6= {∅}, both subsets of I such that I1 ∩ I2 = {∅}.

Thus for all points i ∈ I\I1\I2

N i(ωωω) = aiθθθi + bipi − ci(ωωω) = li , (29)

must be satisfied. The flux η at the boundary Γ0 is usually defined as a constant oil film

thickness doil smaller than the gap, thus θ = doil/h(x1, x2, t) < 1, ∀(x1 = x1ℓ, x2, t), (x1 =
x1r, x2, t). Hence Dirichlet boundary conditions for ωωωi are set

ωωωi = ωωωi = pℓ/r +
doil,ℓ/r
h{1,N1},j

, (30)

for all i ∈ I1. Subindexes ℓ and r refer to the left and right extremes of the domain. For

points i ∈ I2 we define an injective operator:

I : I2 −→ I\I2 , (31)

that associates to every i in I2 the corresponding j in I\I2 such that j = I(i) is the corre-

sponding cell in the reflection/periodic boundary conditions.

Let us define the operator

(A(ωωω))i =







R(ωωωi) i ∈ I\I1\I2
ωωωi i ∈ I1
ωωωI(i) i ∈ I2

, (32)

The operator R will be defined shortly and it is what differentiates the algorithms here

presented. With appropriate properties on R, A satisfies

A(ωωω)i ≥ 0 ∀i ∈ I , (33)

The operator R, which is defined in section 3.2.2, depends on a = [ai], b = [bi], c = [ci]
and l = [li]. Therefore, A depends on hn+1 and then on Zn+1. Going back to equation 24, then

we have

Zn+1 = Zn +∆t
dZ

dt

n

+
∆t2

2m

(

(W )n+1 +W h(Zn+1)
)

. (34)

The solution to the previous equation is the fixed point Zn+1, however, it should not be

solved through a fixed point method, as the right hand side of (34) is not guaranteed to be a

contraction. It can be solved by Newton’s method or a secant method instead, until a defined

tolerance

|(Zn+1)q+1 − (Zn+1)q| ≤ ǫZ , (35)

is reached between two consecutive points (Zn+1)q+1 and (Zn+1)q in the iteration.

It is to be noticed that at each step q, (Zn+1)
q

must be updated and hence the operator A, in

order to solveωωω to afterwards compute W h((Zn+1)q). This leads us to the following algorithm:
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Algorithm 1 Algorithm to solve problem (6)-(15)

1: Provide initial values, Z0 = z0, (Z
′)0 = v0, ωωω0

i = (θI)i ∀i ∈ I
2: t = 0, n = 1
3: while t ≤ T do

4: q = 0, Zq = Zn−1, k = 0
5: while |Zq+1 − Zq| > ǫZ and ‖r‖ > ǫr do

6: Perform K iterations of ωωωk+K = AK(ωωωk) (Gauss-Seidel relaxations)

7: Compute W h(t)
8: Obtain Zq+1 by performing one iteration of the Newton or secant method on eq.

(34)

9: Update h(x1, x2, t)
q+1

10: q = q + 1
11: end while

12: Compute (Z ′)n according to eq. (25)

13: Zn = Zq

14: ωωωn = ωωωk

15: n = n+ 1
16: end while

That is, for each time step n within each secant iteration q, K applications of the operator

(32) are performed.

3.2.1 A multilevel algorithm

The operators of the previous sections were defined on a certain grid of size (∆x1,∆x2). We

will now establish a set of coarser meshes with sizes (2l∆x1, 2
l∆x2), with l = 0, 1, 2, ...,M−1.

With a structured finest mesh, the definition of the coarser grids l = 1, ...,M − 1 is straight-

forward. In each of these grids al, bl and cl are defined as in equations (17), (18) and (19),

however, ll is defined as

ll =

{

q2h
n
i θ(ωωω

n
i ) ∀i ∈ I if l = 0 ,

(Tr)
l
l−1 (r

l−1(ωωωl−1)) +N l((Tω)
l
l−1ωωω

l−1) otherwise
, (36)

where r is the residue

rl(ωωωl) = ll −N l(ωωωl) ∀l , (37)

T l
l−1 is the restriction from mesh l − 1 to l, a linear operator which can be different for the

residue (Tr) and the solution vector(Tω). For the former a full weighting operator is used and

for the latter the injection operator (Fulton et al., 1986). Notice that in equation (32) the right

hand side l is defined in the finest grid as in equation (21), but in the coarser meshes depends

on a solution vector ωωωl−1 on a immediately finer mesh l − 1. Introducing the vectors

νννd ∈ N
M−1 , νννu ∈ N

M , (38)

and the restriction T l−1
l from mesh l − 1 to l, then the multigrid operator, here defined in a

recursive manner, reads:
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M(ωωωl=0
d

) =















































ωωωl=0
u , where:

ωωωl

u =
(

A
l
)ννν

u

l

(

(

ωωωl

u

)(1)
, ll(ωωωl−1

d
)
)

, with

(

ωωωl

u

)(1)
= T l

l+1ωωω
l+1
u +ωωωl

d − T l

l+1T
l+1
l

ωωωl

d for l = 0, ...,M − 2 ;

ωωωl

u = ωωωl

d for l = M − 1 ;

ωωωl

d =
(

A
l
)ννν

d

l
(

T l

l−1ωωω
l−1
d

, ll(ωωωl−1
d

)
)

for l = 0, ...,M − 1 ;

(39a)

(39b)

(39c)

(39d)

(39e)

Here
(

Al
)νννu,d

l implies the application of the operator successively νννu,d
l times. The operation

M(ωωω) is called a V-cycle. This multigrid method is the Full Approximation Scheme (Fulton

et al., 1986).

Algorithm 2 Multilevel algorithm to solve problem (6)-(15)

1: Replace A in line 6 of Algorithm 1 by M

REMARK 1 (An important remark on operator M): Equation (39c) is the accretion of the high

frequency components (last two terms in the right hand side) to the coarse mesh solution (first

term). This does not guarantee
(

ωωωl
u

)(1)
≥ 0 for standard prolongation operators, that is, a vector

(

ωωωl
u

)(1)
complying with the complementarity conditions.

3.2.2 Defining the operator R

What remains to be defined is R. The operator R = RA for the algorithm introduced in

Ausas et al. (2009) can be written by first defining R1 and R2 as

R1(ωωωi) =







li+ci−ai

bi
+ 1 if ωωωi ≥ 1 and li + ci − ai ≥ 0 ,

θi(ωωωi) if ωωωi ≥ 1 and li + ci − ai < 0 ,
ωωωi if ωωωi < 1 ,

(40)

and

R2(ωωωi) =

{

li+ci

ai
if ωωωi < 1 and li+ci

ai
< 1 ,

1 if ωωωi < 1 and li+ci

ai
≥ 1 .

(41)

Then we define

RA = R2 ◦ R1 . (42)

REMARK 2 (Remark on operator RA): The operator RA takes aωωω ≥ 0 and if the finite volume

is pressurized (ωωω ≥ 1.0) it computes either pressure or saturation, as seen in equation (40).

Then this temporary R1(ωωω) is corrected if R1(ωωω) ≤ 1.0. The final outcome satisfies the com-

plementarity conditions, however, for a single application of RA it does not guarantee mass

balance at each cell. It is to be noticed in equations (40), (41) and (42) that the outcome of

applying RA on a certain wi < 1, i ∈ I\I1\I2 is RA(wi) = 1.0 if li+ci

ai
≥ 1:

RA(wi) = R2 ◦ R1(wi) = R2(wi) = 1.0 , (43)

while the answer given by operator RAlt is

RAlt(wi) =
lli + cli − al

i

bl
i

+ 1 . (44)
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This is most likely to be corrected in the next application of RA. In a single-grid algorithm this

does not make a difference in the final solution, however, in a multi-grid algorithm it does, as

the residue is higher in the cell i where the solution has not been correctly computed. Let us

remember that the residue is used to define the problem in the coarser meshes, as set in equation

(39e).

Alt (Alt, 1980) presented a general fixed point algorithm to solve stationary flow in porous

media. This algorithm applies well to the lubrication problem with cavitation. The operator R
as defined in Alt (1980) is

Rl
Alt(ωωωi) =







l
l
i+c

l
i−a

l
i

bl
i

+ 1 if li + ci − ai ≥ 0 ,
l
l
i+c

l
i

al
i

otherwise ,
∀l (45)

Notice that here mass-balance is satisfied at each cell i.

4 NUMERICAL TESTS

The computational domain is Ω = (0, 2)× (0, 0.2). A sinusoidal traveling texture

hL = A

(

1− sin

(

2π
x1 − u t

λ

))

, (46)

is set as the lower surface, with A = 2, λ = 0.4 and u = −1. The upper surface describing

the shape of the pad is given by

hU =

{

32000−
√

320002 − (1000(x− 1.0))2 if 0.5 ≤ x1 ≤ 1.5
500 otherwise .

(47)

This geometry can be seen in the plane x2 = 0.1 for Z = 2 in Figure 2. A constant load

W (t) = −8.3×10−3 is set on the pad, which has mass m equal to m = 1.67×10−7. Although

the domain in which the problem is solved is two-dimensional, the solution of this particular

problem is one-dimensional. This is kept like this for the sake of clarity and simplicity in the

presentation of results.

−4

−2

 0

 2

 4

 6

 0  0.5  1  1.5  2

x1

x3

Figure 2: Section of the domain along the plane x2 = 0.1.
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Tolerances for the convergence of the hydrodynamic pressure p and the pad position Z are

set to ǫr = 10−5 and ǫZ = 10−4 respectively. This values have been chosen so as to ensure

convergence for a mesh made of 512×32 finite volumes. The time step ∆t is defined to enforce

a Courant number (u∆t/∆x1) of 1.0 which for a final simulation time T=6.0 gave a total of

3072 time steps.

4.1 Single-level algorithm

In this section we solve the problem with algorithm 1, that is, only in the finest mesh

(512×32 mesh) and with K = 100 in Algorithm 1, that is, Z is updated each 100 relax-

ations. Thus, we will distinguish between the implementation with the operator RA and the

implementation with the operator RAlt. In a single-level algorithm, that is, just performing

Gauss-Seidel relaxations in the finest mesh, both RA and RAlt return the same solution. This

can be seen in Figure 3(a): the differences in results in terms of dynamics Z(t) are negligible

for the chosen tolerances. In terms of pointwise quantities some small deviations can be seen.

In Figure 4 both the fluid film (hθ) and the hydrodynamic pressure are plotted at t = 2.6953.

In the variable θ both results concur, although some small differences can be observed in the

hydrodynamic pressure.

Even the computational burden is comparable for both operators RA and RAlt. Figure 3(b)

shows the number of Gauss-Seidel iterations.
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Figure 3: (a) Minimum clearance for Algorithm 1 using both operators. (b) Number of relaxation sweeps required

to achieve tolerances ǫr and ǫZ . Results for RA are shown at every tenth time step.

4.2 Multi-level algorithm

In the previous section it was made clear that no apparent advantage came from neither of

both operators. The differences arise in multi-level algorithms, such as Algorithm 2. Here we

will consider again the 512×32 finite volume mesh as the finest mesh, and 256×16, 128×8 and

64×4 as the coarser meshes, which will be identified as meshes l= 0, 1, 2 and 3 respectively.

4.2.1 With operator RAlt

The problem is solved with Algorithm 2 and operator RAlt as presented in Section 3.2.1. For

the residue rl defined in each mesh l we set the same previous tolerances ǫr = 10−5 (for every

multigrid level) and ǫZ = 10−4. What remains to be defined are the vectors νννu and νννd. Here we

choose νννd = {1 1 1} for every test. This amounts to perform just one Gauss-Seidel relaxation
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Figure 4: (a) Fluid film and (b) hydrodynamic pressure at t = 2.6953 for Algorithm 1 and both operators RA and

RAlt.

sweep in each mesh l=0,1,2 on the way down a V-cycle, which is the minimum required to

define the problem to be solved in the immediately coarser mesh l+1, as seen in equation (36).

Results for nineteen νννu vectors are shown in Table 1. The fourth column is the total number

of Gauss-Seidel relaxations performed in the fine mesh in the 3072 time steps of the sim-

ulations. This is a good measure of the computational effort only for Algorithm 1, but for

Algorithm 2 the cost of the Gauss-Seidel iterations in the coarser meshes must be accounted

for too. If we define a work unit (Wu) as one relaxation sweep in the finest mesh, then in the

coarser meshes the cost of a Gauss-Seidel relaxation is 0.25 Wu, 0.0625 Wu and 0.015625 Wu

respectively. Knowing the vectors νννd and νννu the cost in terms of work units can be computed

for a v-cycle. This is shown in column 5. Then, the total computational work made in term of

work units makes for a more fair comparison of the total computational burden. This is shown

in column 6.

In the multigrid runs (Algorithm 2) a maximum number v-cycles is fixed, while for Algo-

rithm 1 a number of Gauss-Seidel relaxations large enough to achieve convergence was pro-

vided. The seventh column presents the percentage of the 3072 time steps in which the solver

failed to reduce the norm of the residue ‖r‖ to the specified tolerance ǫr.
The first line in Table 1 correspond to the usual number of relaxation sweeps νννu = {1 1 1 1}

taken in linear multigrid methods. The residue is not reduced to a value below the tolerance

ǫr for 8.7% of the 3072 time steps. In those steps, the residue is not reduced to the tolerance

not only because the maximum number of v-cycles is reached, but because of a problem in

decreasing it. This is shown in Figure 5. In the top figure the residue is first reduced, then it

slightly increases and then oscillates between two values higher than the required tolerance ǫr.
This can be explained in terms of Remark 1. Both the prolongation T l

l+1 operator (linear

interpolation in this case) and the addition of the high frequency components tamper with the

complementarity conditions, specially at the reformation boundaries. The bottom left figure

(Fig. 5) shows in blue circles the position of the cells where the complementarity conditions

have been tampered by the interpolation from the coarser meshes to the finest mesh. The residue

r at each cell center is also shown. It can be noticed that at those points the residue is orders of

magnitude higher than in the rest of the domain. After one Gauss-Seidel relaxation the residue

is reduced and all cells in the domain satisfy the complementarity conditions as seen in the right

figure, however, it is still high compared to the rest of the domain. This problem is repeated in

the next v-cycle.
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Figure 5: Top: Residue at the end of each v-cycle performed for the second time step of simulation 8 of Table

1. Bottom: Residue at every cell in the domain for v-cycle 30, Left: previous to relaxation and Right: after one

Gauss-Seidel relaxation. In the left figure the solution from mesh l=1 was interpolated to mesh l=0 (finest mesh).

The blue circles show the location of the cells where the complementarity conditions are not being met.

# Algorithm νννu iterations in

fine mesh

Wu per

v-cycle

Total Wu ‖r‖ > ǫr? Speedup

1 1 — 106,999,200 — 106,999,200 0.0 % 1.0

2 2 { 1 1 1 1 } 1,222,974 2.64 1,614,325 8.7 % 66.3

3 2 { 2 2 2 2 } 1,286,316 3.97 1,702,224 12.3 % 62.9

4 2 { 4 4 4 4 } 1,176,505 6.64 1,561,222 6.6 % 68.5

5 2 { 8 8 8 8 } 806,814 11.94 1,070,149 1.8 % 100.0

6 2 { 16 16 16 16 } 909,211 22.56 1,206,576 1.0 % 88.7

7 2 { 32 32 32 32 } 1,244,793 43.81 1,652,557 0.6 % 64.7

8 2 { 1 1 1 40 } 2,243,288 3.25 3,645,343 69.7 % 29.4

9 2 { 16 32 64 128 } 876,112 31.31 1,613,721 1.8 % 66.3

10 3 { 1 1 1 1 } 1,401,801 2.64 1,849,426 0.0 % 57.9

11 3 { 2 2 2 2 } 1,004,439 3.97 996,905 0.07 % 107.3

12 3 { 4 4 4 4 } 877,792 6.64 726,922 0.0 % 147.2

13 3 { 8 8 8 8 } 852,668 11.94 636,176 0.0 % 168.2

14 3 { 16 16 16 16 } 1,142,736 22.56 805,628 0.0 % 132.8

15 3 { 32 32 32 32 } 1,650,624 43.81 1,129,904 0.0 % 94.7

16 3 { 1 2 4 8 } 604,427 3.19 963,305 0.16 % 111.1

17 3 { 2 4 8 16 } 456,960 5.06 771,120 0.07 % 138.8

18 3 { 4 8 16 32 } 284,616 8.81 501,636 0.0 % 213.3

19 3 { 8 16 32 64 } 302,623 16.31 548,504 0.0 % 195.1

Table 1: Computational cost and efficiency for Algorithms 1, 2 and 3.
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To circumvent this situation, the most forthright solution is increasing νννu
l at each multigrid

level l. This is demonstrated in lines 2 to 7 of Table 1. From νννu
l = 1 to 32 ∀ l the percentage

of time steps where the residue stalls is reduced from 8.7% to 0.6%, although with a increase

in the computational cost. Merely increasing the number of iterations in the coarser meshes

does not seem to bode well, as seen in the increase of column 7 for lines 8 and 9. These results

suggest the following adaptive algorithm:

Algorithm 3 Adaptive multigrid algorithm to solve problem (6)-(15)

1: Provide initial values, Z0 = z0, (Z
′)0 = v0, ωωω0

i = (θI)i ∀i ∈ I
2: t = 0, n = 1
3: while t ≤ T do

4: q = 0, Zq = Zn−1, k = 0
5: ‖rq=0‖ = ∞, νννu = νννu

default
6: while |Zq+1 − Zq| > ǫZ and ‖r‖ > ǫr do

7: Perform K iterations of ωωωk+K = MK(ωωωk)
8: if ‖r‖ ≥ ‖rq‖ then

9: νννu → νννu + νννu

default
10: end if

11: ‖rq‖ = ‖r‖
12: Compute W h(t)
13: Obtain Zq+1 by performing one iteration of the Newton or secant method on eq.

(34)

14: Update h(x1, x2, t)
q+1

15: q = q + 1
16: end while

17: Compute (Z ′)n according to eq. (25)

18: Zn = Zq

19: ωωωn = ωωωk

20: n = n+ 1
21: end while

Modifications from Algorithm 2 are shown in red. The idea behind it is to increase the

number of relaxations νννu if the residue does not decrease. In Algorithm 3 it is done by adding

a fixed number of relaxations νννu

default
, which is completely arbitrary, any other strategy could

be devised to increase the number of relaxations when the residue is not decreased.

Lines 10 to 19 of Table 1 corresponds to this adaptive approach. The number of time steps

where the residue fails to be reduced to the tolerance is much smaller or in most cases null than

with Algorithm 2. From line 10 to 15, the workload increased (14.5%) only for νννu = {1 1 1 1}
compared with their Algorithm 2 counterparts.

Increasing the number of iterations in the coarser meshes in Algorithm 3 decreases con-

siderably the number of v-cycles required, as seen in lines 16 to 19 of Table 1, thus lower

computational times. For νννu = {4 8 16 32} the tolerance was achieved in all time steps. The

speedup, here defined as the quotient of the total work units required by the non-multigrid Al-

gorithm 1 divided by the ones required by Algorithm 2 or 3, was around 200 for simulations

18 and 19 of Table 1.
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4.2.2 With operator RA

In a single-level algorithm it has been shown that both RAlt and RA return the same results

with comparable efficiency. However, several problems arise with the use of operator RA in

Algorithm 2 (and 3):

1. The problem with the prolongation operators as explained in Remark 1. This begets

a much bigger problem with operator RA, since the former checks whether a cell is

pressurized (wi ≥ 1.0) or cavitated (wi < 1.0), rather than mass-balance as with RAlt,

and thus requires a w satisfying wi ≥ 0;

2. The problem explained in Remark 2. In a single-grid algorithm this does not make a

difference in the final solution as shown in the numerical examples. However, in a multi-

grid algorithm it does, as the residue in a cell where the solution has not been correctly

computed is high, and can lead to negative right hand sides in equation (36) for the

problems defined in the coarser meshes.

Modified prolongation operators exploiting some heuristics to effectively reduce the residue

with the algorithm originally proposed by Ausas are given in Checo’s PhD thesis (Checo, 2016).

However, the resulting algorithm is much more complicated than Algorithm 2 using operator

RAlt, which allows within certain limitations (the need of increasing νννu) to make use of a

straightforward implementation of the Full Approximation Scheme.

5 CONCLUSIONS

In this work we have presented two relaxation operators to solve the discrete Elrod-Adams

equations, the first one originally presented in Ausas et al. (2009) and another one based on

Alt’s Alt (1980) algorithm to solve multiphase stationary flow in porous media. The former is

based on a cavitation check while the latter on mass-balance at each finite volume.

On a single-grid algorithm both operators showed similar performance, however, differences

arise with multigrid algorithms. On a full approximation scheme the prolongation operators do

not preserve the complementarity conditions, which has a different impact on both approaches.

The Alt based operator proved to be more robust to this problem. A simple adaptive strategy

based on the residue of the Elrod-Adams equation was devised, which proved efficient. Solving

the problems emerging from a multigrid implementation using the other operator proved to be

much more difficult, and not as efficient. A strategy to do so is presented in Checo (2016).
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