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Abstract. Numerical simulations of fluid structure interaction problems have become affordable for a

wide range of engineering applications. However, since the complexity of such simulations has increased

due to the introduction of other physical phenomena like thermodynamics and acoustics, it is convenient

to use a partitioned strategy whenever possible. The coupling of well developed and reliable computer

codes can tackle, without introducing major modifications, the numerical solution of such problems. In

this scenario, it is also desirable to count with the flexibility of using different discretizations for com-

puting the solution of each physical problem. However, this introduces the requirements of projecting

the solution from the interface of one subdomain to that of its neighbour subdomain, to track the dis-

placement of the boundaries and to sychronize the solvers to be able to use differente time step sizes for

the computations. In this work, a conservative projection and a tracking algorithm are analyzed by com-

puting the solution of benchmark problems of the fluid structure interaction kind with non-coincident

meshes at the interfaces. The accuracy, consistency and conservativeness of the implemented algorithms

are evaluated and compared to those of another ones mentioned in the literature. The strengths and

weaknesses of both algorithms are finally mentioned.
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1 INTRODUCTION

Nowadays, the numerical solution of complex Fluid-Structure Interaction (FSI) and other

kind of multiphysics problems like Soil-Structure Interaction (SSI) requires to use parallel

computer codes together with high performance computing resources. The development and

validation of a parallel FSI computer code is a very complicated task which also involves a lot

of time. In some situations, it is possible and desirable to combine the capabilities of well devel-

oped and specialized computer codes to tackle the numerical solution of such problems using a

partitioned solution scheme. In the FSI case, the Computational Fluid Dynamics (CFD) and the

Computational Structure Dynamics (CSD) problems are solved by different codes. However,

since the codes are assumed to work independently, there is a need to develop software layers

which sychronize and transfer the required information between them.

On the other hand, the usage of a partitioned solution scheme allows to use different spatial

domain discretizations for the fluid and the structure, thus providing the flexibility to use diffe-

rent meshes for the CFD and the CSD problems. For example, the fluid domain discretization is

usually very refined at the boundaries with a solid object because of the boundary layer existance

and the solver may be based on the Finite Volume Method (FVM). On the other hand, the mesh

of the structure usually does not need to be that fine at those interfaces and the solver may be

based on the Finite Element Method (FEM). In a SSI problem the solution on the structure

could be computed with a FEM formulation and the wave propagation in the soil by means of

a Scaled Boundary Element Method (SBFEM) formulation (Schauer et al., 2011). In general,

different domain discretizations means that both meshes are non-coincident at the interfaces,

perhaps with gaps between them. Even if the interface boundaries coincide in the geometrical

surface or line, their nodes generally have different locations (Gatzhammer, 2014) (see Fig.1),

introducing the difficulty of transferring the information from one of the domain boundaries

to the other. In these situations, special care has to be taken in the solution projection step to

ensure a conservative transfer of the loads or another solution field from the fluid to the structure

boundary. Also, after the structure suffers deformation, the movement of its boundary has to be

followed or tracked by that of the fluid domain, which forces to adopt a tracking methodology.

The latter should also fulfill the requirements of consistency and conservativeness. Finally, a

synchronization strategy must be used between the CFD and the CSD codes in order to consider

different time-step sizes for computing the corresponding solutions (Cebral, 1996).

In this work we describe and analyze two algorithms, one to deal with the load transfer issue

and the other to track the structure interface deformation. The former is conservative in the

sense that it is devised by enforcing that the load on the fluid boundary must be equal to that

on the structure side. The scheme is based on the usage of Gauss numerical quadrature to ap-

proach an integral term that arises in the formulation, where the product of mixed finite element

shape functions from the structure and the fluid flow appears (Cebral and Löhner, 1997). On

the other hand, the methodology known as initial distance vectors is used for carrying out the

surface tracking of the structure boundary mesh. This technique is adopted since it is useful

when the meshes of the domains do not match and also allows to couple models of different

dimensionality (Cebral (1996); Cebral and Löhner (1997)). The analysis of both algorithms are

performed by solving benchmark problems presented in de Boer et al. (2006, 2007); de Boer

(2008), focused on the accuracy, consistency and conservativeness of the methods. The results

obtained are compared to those shown in those works for these strategies and another ones.
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(a) Non-conforming meshes

due to non-coincident nodes

but coinciding interface ge-

ometry.

(b) Non-conforming meshes due to

non-coincident boundaries.

Figure 1: Different cases of non-conforming meshes. Figure taken from ref.(Gatzhammer, 2014).

2 CONSERVATIVE PROJECTION

Following the formulation presented in Cebral (1996), the conservative strategy states that

the integral of the variable of interest (e.g. the pressure p(x), displacemente u(x) or energy

w(x)) along the fluid domain boundary Γf must be equal to the integral along the structure

domain boundary Γs. Considering for the analysis the pressure variable p(x), assuming that a

FEM approximation is used for its computation, and also that a weigthed residual approach is

considered on the fluid-structure boundary interface Γfs, particularly a Galerkin technique, it

can be stated that

∫

Γfs

W (x)ps(x)dΓ =

∫

Γfs

W (x)pf (x)dΓ (1)

∫

Γfs

N(x)ps(x)dΓ =

∫

Γfs

N(x)pf (x)dΓ (2)

where N(x) is the usual FEM shape functions. If N(x) is considered on Γs on both sides of the

former equation and introducing the FEM approach for the pressures, it can be stated that

∫

Γfs

N i
s(x)N

j
s (x)p̂sjdΓ =

∫

Γfs

N i
s(x)N

j
f (x)p̂fjdΓ (3)

where N j
s (x) is the shape function at vertex-j on the structure boundary mesh, N j

f (x) is the

shape function at vertex-j on the fluid boundary, p̂fj is the fluid pressure at vertex-j of the

fluid mesh computed with FEM, p̂sj is the pressure at vertex-j on the structure boundary mesh

computed by projection (i.e., the unknown of the projection problem). On the left-hand side of

eq.(3) there appears the mass matrix of the structure boundary elements and on the right-hand

side arises an integral which includes the product of mixed shape functions on both the structure

and the fluid discretizations. In this work, such integral is approximated by using a Gauss
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Figure 2: Conservative projection scheme in 2-D

numerical quadrature, introducing the Gauss points on the fluid elements side and projecting

them by their corresponding normals onto the structure elements (Cebral, 1996). The shape

functions for the weigthed residual approach are evaluated on the structure side in equation (3)

because it is easier to compute and more convenient for inverting the mass matrix since the

unknown is p̂s. The linear system of equations that is finally solved can be written as,

Mcsp̂s = r (4)

where Mcs is the global consistent mass matrix for the elements on the structure boundary, p̂s is

the solution vector with the projected pressures and r is the right-hand side vector in which the

entry associated with vertex-i of the structure is evaluated as follows,

ri =

Nefl
∑

e=1

Ngpts
∑

g=1

N i
s(x̃g)A

(e)
f W (g) p̂f (xg) (5)

being Nefl the number of elements of the fluid mesh at the interface of both domains for which

the summation over the Gauss points is not identically null, Ngpts is the number of Gauss points

for the current fluid element, A
(e)
f is the area (or length) of the current fluid element, W (g)

the weight at Gauss point g with coordinates xg, p̂f (xg) the fluid pressure evaluated at Gauss

point g and N i
s(x̃g) the value of the shape function associated with vertex-i of the structure

boundary mesh, evaluated at the normal projection x̃g of Gauss point g. The evaluation of the

right-hand side term of eq.(4) is done in this way because it guarantees that all the fluid pressure

is transmitted to the structure (i.e., conservation of pressure).

Solving the linear system of equations (4) allows to find the pressures on the structure side.

Figure (2) depicts the elements previously mentioned.

2.1 Numerical tests for the conservative projection

The following tests were taken from de Boer et al. (2006, 2007); de Boer (2008). Therein,

different methods for transferring the pressure from the fluid to the structure side of the interface

are evaluated. These include the Nearest Neighbour or Direct interpolation (NN) method, Near-

est Neighbour Projected (NN proj), Weigthed Residual plus numerical integration by Gauss
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quadrature (WR+GI) (which is the method already implemented in this work), Intersection

Method (IS), Multi-quadratic Biharmonic Splines (MQ), Thin Plate Splines (TPS) and Radial

Basis functions (RB), considering two approaches: conservative and consistent. It is worth

to mention that these terms are used to denote different methodologies to solve the projection

problem. In de Boer (2008) they are defined as

Consistent approach occurs when a constant state or distribution of a variable (e.g. pressure,

displacement, load or energy) on one side of the interface is exactly recovered, after pro-

jection, on the other side of the interface.

Conservative approach it makes reference to conservation of the energy or virtual work at the

interface. The projection matrix for the pressures Hfs is related to the projection matrix

for the displacements Hsf , so that conservation of energy is guaranteed. This relation is

Hfs = [MffHsfM
−1
ss ]T , where Mff is the consistent mass matrix for the fluid interface

and Mss is that for the structure interface.

Both test problems consist in a single transfer of a pressure field defined over an interface

with shape given by y(x) = 0.2 sin(2πx) and x ∈ [−0.5, 0.5]. The profile of the pressure to be

transmited is smooth in the first test and non-smooth in the second one. The pressure, computed

with the conservative projection implemented in this work (denoted Weighted Residual + Gauss

Integration, WR + GI in the figures) on the structure side of the interface Γs, is compared to

the analytical values given by the corresponding smooth or non-smooth profiles through the

computation of the relative L2-transfer error for the pressure,

ErrL2 =

√

√

√

√

∑ns

i=1 ‖ p
(i)
ex − p

(i)
app ‖2

∑ns

i=1 ‖ p
(i)
ex ‖2

(6)

where ns is the number of structure vertices on Γs, p
(i)
ex is the value of the exact pressure at

vertex-i of the discretized Γs and p
(i)
app is the corresponding approximate pressure computed by

conservative projection.

2.1.1 Smooth pressure profile

A smooth pressure field is transmitted from the fluid side of the interface to the structure

side. The pressure field is given by the following equation, according to de Boer et al. (2006)

p(x) = 0.2 + 0.01 cos(2πx) (7)

The pressure field is discretized on the fluid side and it is projected onto the structure side.

The number of cells which discretize the fluid and structure interfaces is nf = 21 · 2k and

ns = 7 · 2k, for k = 0, . . . , 5, so that fluid and structure discretizations do not match at the

interface. Figure (3.a) shows both the approximate and the exact pressure distributions on the

structure side of the interface and figure (3.b) the error in the L2-transfer error for the pressure.

The results shown in both figures were computed for ns = 112 and nf = 336. It can be seen

that there is almost no difference between the exact pressure distribution and that computed

with the WR+GI method presented in this work, being the difference of O(10−5) for the whole

interval.
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puted on the structure side of the interface.

Figure 3: Numerial test results for smooth pressure distribution with ns = 112 and nf = 336.

On the other hand, figures (4.a) and (4.b) are used to analyze the accuracy and convergence

rate of the conservative projection strategy implemented in this work with regards to other

interpolation strategies and to itself as implemented in de Boer (2008). Figure (4.a) is extracted

from this reference, and it shows that the implemented method behaves as expected if the line

corresponding to the weighted residual method (WR) for the conservative approach is compared

to that shown in figure (4.b). The convergence rate for this method in this particular test problem

is quadratic on the number of cells at the structure interface. Also, the accuracy obtained with

this method is the same than that shown by the WR method in de Boer (2008). It can be

concluded that the WR+GI method implemented in this work behaves as expected.

(a) Convergence for the methods presented in de Boer

(2008).

(-: conservative approach, - -: consistent approach).
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Figure 4: Interpolation error and interpolation order of convergence for a smooth pressure distribution.
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(a) ns = 20 and nf = 104
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(b) ns = 40 and nf = 208
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(c) ns = 80 and nf = 416
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(d) ns = 160 and nf = 832

Figure 5: Interpolated and exact pressure distributions on structure side of the interface for non-smooth pressure

profile.

2.1.2 Non-smooth pressure profile

In this case, a non-smooth discretized pressure field is transmitted from the fluid side of the

interface to the structure side. Such a discontinuous pressure distribution could be produced,

for example, by the presence of shock waves in the fluid. The pressure field is given by the

following equation, according to de Boer (2008)

p(x) =

{

0.01(2− |x|/a) |x| < a

0.01 |x| ≥ a
(8)

The expressions which define the number of cells that discretize the fluid and structure sides

of the interface are nf = 26 · 2k and ns = 5 · 2k, for k = 0, . . . , 5, so that fluid and structure

discretizations do not match at the interface. Figures (5.a) through (f) show both the approxi-

mate and the exact pressure profiles on the structure side of the interface for increasing number

of elements for both the fluid and structure sides.

From these figures it can be concluded that the conservative interpolation introduces oscilla-

tions in the projected solution. The magnitude of these oscillations tends to decrease when both

the fluid and the structure interfaces are refined, although they never dissapear. Figures 6.(a)
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and 6.(b) are used to analyze the accuracy and convergence rate of the conservative projection

strategy implemented in this work for this particular test, with regards to other interpolation

strategies and to itself as implemented in de Boer (2008). Figure 6.(a) is extracted from this ref-

erence, and it shows that the implemented method does not behave as expected if the weighted

residual (WR) line in this figure is compared to that shown in figure 6.(b). The convergence rate

for the WR method in this particular test problem is between 1.5 and 2.0 on the number of cells

at the structure interface but this convergence rate is not achieved by the convervative method

implemented in this work.

(a) Convergence for the methods presented in de Boer

(2008).

(-: conservative approach, - -: consistent approach)
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(b) Convergence computed with the implemented conser-

vative method.

Figure 6: Interpolation error and interpolation order of convergence for a non-smooth pressure distribution.

3 A BRIEF DESCRIPTION OF THE INTERFACE TRACKING STRATEGY AND ITS

IMPLEMENTATION

In this work, the strategy called “initial distance / difference vectors” described in (Cebral,

1996) is followed. This algorithm allows the Computational Fluid Dynamics (CFD) mesh to fol-

low the Computational Structure Dynamics (CSD) mesh when both meshes are non-coincident

at the interface. The strategy can be described by the following steps,

1. First, the initial distance vectors between the fluid and the structure mesh are computed

for the initial setup. A distance vector is defined as a vector which measures the distance

between a vertex-i of the CFD mesh with respect to the boundary of the CSD mesh. To

this end, the host element (i.e., the segment of line or the surface element of the CSD mesh

where the projection by the normal at the CFD vertex-i falls within) has to be determined

(see figure 7). This is done by computing the normal vector ni at the CFD vertex-i as the

average of the normals to the elements which share vertex-i and finding its intersection

on the CSD boundary. Previously, an Approximate Nearest Neighbour (ANN) search

problem is solved by using the algorithms and data structures of the ANN library (Arya

and Mount, 2010). The problem consists in building a list of probable or potential host

elements to search on the CSD boundary for vertex-i on the fluid boundary. This list is

constructed by using a kd-tree search structure built on the centroids of the CSD boundary
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elements. Then, a list is assembled with the n-nearest structure elements to vertex-i and

iterations are performed on this list to determine the structure host element by solving a

line-segment intersection problem between the line that passes through both vertices of

the potential host element and the line normal to the fluid boundary mesh at vertex-i (or

equivalently, a line-plane intersection problem in 3-D). If intersection exists, it has to be

evaluated if it effectively falls within the potential host element by applying the condition

min(Nk(p), 1 − Nk(p)) ≥ 0, ∀k, where Nk(p) is the finite element shape function

associated to local vertex-k of the potential host element evaluated at the intersection

point p. Also, at this instance, it is found more valuable to store the values of the finite

element shape functions at the intersection point than the intersection point itself, since

they will be used in the next stages of the strategy.

2. Compute the normals to the CSD boundary vertices.

3. Use the shape function values stored in step 1 to compute a direction vector at the inter-

section point by interpolation of the normals to the CSD boundary vertices computed in

item 2.

4. Compute the distance between vertex-i and its intersection and scale the length of the

direction vector computed in item 3 to this length. This is the initial distance or difference

vector associated to vertex-i of the CFD boundary mesh which will be used to track the

CSD mesh boundary in subsequent time steps.

In a weakly-coupled FSI problem simulation, after the fluid flow solution is computed, the

loads or pressures are transferred to the structure, which suffers a deformation so that its bound-

aries move. Now, the CFD boundary mesh has to follow the CSD boundary movement. This

is done by updating the difference vectors by proper translation and rotation in the following

manner,

1. Rotation of the distance vectors follows those of the normals to the vertices of the corres-

ponding CSD element. Since the structure host element wherein projection of the CFD

mesh vertex-i falls within is known at this stage, the new direction of the distance vector

associated with this vertex can be computed by averaging the normals to the vertices

of the CSD host element using the values of the finite element shape functions already

computed in the initial position (see figure 8). As it is mentioned in Cebral (1996), this

way of updating the distance vectors allows to get smoother CFD boundary surfaces if

severe deformation of the CSD boundary occurs.

2. Translation of the difference vector is done by computing the new coordinates of its ori-

gin (point p in figures 7, 8 and 9) by averaging the coordinates of the vertices of the

corresponding CSD element.

3. Length of the distance vector is kept constant throughout the time steps. Consequently,

the new coordinates for vertex-i of the CFD mesh can be computed by adding new coor-

dinates of vertex p to the new distance vector, so that the boundary of the CFD mesh can

be moved (see figure 9).
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Figure 7: Schematic representation of the initial distance vector computation for both meshes at their starting

positions.

Figure 8: Schematic representation of the difference vector updating after the CSD mesh boundary moves.

Figure 9: Schematic representation of the CFD position updating with the new difference vector.
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3.1 Numerical tests for the interface tracking strategy

The following test is proposed in de Boer et al. (2007) to evaluate the accuracy and con-

vergence rate of different surface tracking algorithms. This latter is measured by computing

the L2-norm of the displacement error, considering the exact coordinates that the fluid vertices

should have at the interface against the coordinates which are obtained with the surface tracking

method, that is

eL2 =

√

√

√

√

nf
∑

i=1

[y(xi)− yi]2 (9)

where y(xi) is the y-axis component of the exact position and yi is the corresponding approxi-

mate value. The initial position of the interface for both the structure and the fluid boundaries

is given by the following sinusoidal law

y0(x) = 0.5 sin(2πx) (10)

where x ∈ [−0.5, 0.5]. The fluid side of the interface is subdivided into 2559 intervals of equal

length. On the other hand, the structure side of the interface is also subdivided into intervals of

equal length, but the number of points increases as 20, 40, 80, 160 and 320 in order to explore

the convergence of the method. Then, the structure side of the interface is displaced according

to the following law

dy(x) = 0.05 cos(2πx) (11)

so the final coordinates of the vertices on the structure side are given by y(x) = y0(x) + dy(x).
Figure 10.(a) is extracted from de Boer et al. (2007) and it is taken as reference to analyze the

implemented method. On the other hand, figure (10.b) shows the results computed with the

tracking method based on the initial distance vectors algorithm implemented in this work. It

can be seen that the method has second order convergence rate and it is as accurate as those

based on the Gauss Integration technique and Multi-quadratic Bihamornic Splines (denoted as

GI and MQ in figure (10.a), respectively).

Finally, for the surface tracking strategy to satisfy the consistency property, it should be

considered that a constant displacement applied to the structure interface is exactly recov-

ered at the fluid interface after the surface tracking is applied (de Boer et al., 2006). To this

end, it is considered the same initial geometry for the structure interface that was used in

the previous test, given by eq.(10). Then, ∀x ∈ ΓS a constant displacement dy(x) = 0.1
is applied, where ΓS is the structure interface. Then, the surface tracking is applied and

the fluid interface is displaced accordingly. Thereafter, the following values are computed,

|0.1−max∀x∈ΓF
(dy(x))| = 3.572e− 5 and |0.1−min∀x∈ΓF

(dy(x))| = 1.045e− 6, where ΓF

is the fluid interface. Based on these values it can be concluded that the constant displacements

of the structure interface have been exactly transferred to the fluid interface and therefore the

surface tracking strategy of initial distance vectors satifies the consistency property.

4 CONCLUSIONS

On regards to the conservative state projection method introduced in section 2 in this work,

based on the results obtained in the numerical tests it can be concluded that this scheme is much

more accurate than a direct interpolation scheme (NN) or a projected interpolation scheme (NN
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(a) Results for the methods considered in de Boer

et al. (2007) - Figure taken from the same reference.
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(b) Results computed with the initial distance vec-

tors tracking.

Figure 10: Interpolation error and interpolation order of convergence for surface tracking test 4.

proj) if what matters is to preserve the total load transfer from the fluid boundary mesh to the

structure boundary mesh. This behaviour is even more notorious when the solution on the fluid

side exhibits jump discontinuities or steep gradients. The meshes used in the tests are very

simple but all of them are non-matching at the interface so that the method presented in this

work provides a great flexibility for computing the solution of FSI problems if compared to

the solution schemes that require matching meshes. However, care should be taken since it is

shown in the results corresponding to the projection of the non-smooth solution that the conser-

vative method introduces spurious oscillations due to the lack of monotonicity of the numerical

formulation. Monotonicity preserving methods based on the Flux-Corrected Transport (FCT)

technique (Kuzmin et al., 2012) are the following step to be analyzed and implemented.

On the other hand, based on the results obtained for the interface tracking method, it can

be concluded that the algorithm works as expected, considering that the structure and the fluid

meshes do not have a common interface. Also, the accuracy of the method, based on the bench-

mark proposed in de Boer et al. (2007) is similar to that based on Multi-quadratic Bihamornic

Splines and has second order convergence rate. Finally, the tracking strategy satisfies the con-

sistency property.
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