
WAVES IN A POROELASTIC SOLID SATURATED BY A

THREE-PHASE FLUID

Juan E. Santosa and Gabriela B. Saviolib

a Universidad de Buenos Aires, Facultad de Ingeniería, Instituto del Gas y del Petróleo, Av. Las Heras

2214 Piso 3, C1127AAR Buenos Aires, Argentina and, Department of Mathematics, Purdue University

and, Universidad Nacional de La Plata, jesantos48@gmail.com

bUniversidad de Buenos Aires, Facultad de Ingeniería, Instituto del Gas y del Petróleo, Laboratorio de

Ingeniería de Reservorios, Av. Las Heras 2214 Piso 3, C1127AAR Buenos Aires, Argentina,

gsavioli@fi.uba.ar

Keywords: poroelastic media, three-phase fluids, wave propagation

Abstract. This work presents an analysis of the behavior of body waves in a multiphase system con-

sisting of a poroelastic solid saturated by a three-phase fluid, taken to be oil, water and gas, with water

being the wetting phase. The constitutive relations and the equations of motion include the effect of

two capillary relations between the water and oil phases and the oil and gas phases, and three relative

permeability functions. A plane wave analysis shows that four compressional waves and one shear wave

can propagate in this multiphase system, all suffering dispersion and attenuation effects. The behavior

of all waves as function of confining pressure, saturation of the fluid phases and frequency is analyzed in

the numerical examples.
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1 INTRODUCTION

The theory of propagation of waves in a poroelastic solid saturated by a single-phase fluid

was presented by M. Biot in Biot (1956a,b, 1962), where he showed the existence of two com-

pressional waves (Type I or fast wave and Type II or slow wave) and one shear wave. When

the pore volume is occupied by more than one fluid phase a different treatment is required,

depending on the behavior of the fluids and their distribution within the pore space. Among

authors employing Biot’s theory to treat cases of miscible, immiscible or segregated fluids, we

mention White et al. (1975) and Dutta and Odé (1979), that analyzed attenuation and dispersion

of waves in rocks saturated by brine and gas, and Berryman et al. (1982), that studied cases of

segregated or mixed liquids and gas. None of these authors take into account capillary forces

or relative permeability functions in their models. This work presents a model that describes

the propagation of waves in a poroelastic solid saturated by three immiscible, compressible,

viscous fluids, namely water, oil and gas. Capillary pressure effects, due to pressure differences

between the oil and water and the oil and gas phases, are included in the model as restrictions by

introducing Lagrange multipliers in the principle of virtual complementary work (Fung, 1965).

Capillary pressures are assumed to be functions of the saturation of the non-wetting phases.

The relative permeability of each phase is a function of its own saturation. The elastic constants

in the constitutive relations and the mass and viscous coupling coefficients are determined in

terms of the properties of the solid and fluid phases, the two capillary pressure functions and

the three-phase relative permeability functions. A plane wave analysis shows the existence of

four compressional waves, denoted as P1, P2, P3 and P4, and one shear wave. The model is

applied to compute the phase velocities and attenuation coefficients for a sample of Nivelsteiner

sandstone saturated by water, oil and gas, with water assumed to be the wetting phase.

2 CONSTITUTIVE RELATIONS AND EQUATIONS OF MOTION

Let us consider a poroelastic isotropic homogeneous medium Ω saturated by a three-phase

fluid, taken here to be oil, water and gas. Let So = So(x), Sw = Sw(x) and Sg = Sg(x) denote

the oil, water and gas saturations, respectively, and assume the fluids fully saturate the pore

space, so that

So + Sw + Sg = 1.

Let φ = φ(x) be the effective porosity in Ω and let us = us(x), ũo = ũo(x), ũw = ũw(x) and

ũg = ũg(x) denote the locally averaged solid, oil, water and gas displacements, respectively.

Also, let ǫij(u
s) be the strain tensor and set

uθ
i = φ(ũθ

i − us
i ), ξθ = −∇ · uθ, θ = o, w, g. (1)

Let τij = τ ij + ∆ τij and σij = σij + ∆ σij be the total stress tensor in the bulk material and

the stress tensor in the solid part of Ω, respectively, where ∆ τij and ∆ σij denote changes with

respect to reference stresses τ ij and σij associated with the initial equilibrium state.

Let pθ = pθ + ∆pθ, θ = o, w, g, be the θ-fluid pressure, with ∆pθ being increment in the

θ-fluid pressure with respect to given reference pressures pθ in the initial equilibrium state.

The two capillary pressure functions are chosen to be strictly increasing functions of a single

saturation as follows:

Pcow = Pcow(So) = po − pw, P cgo = Pcgo(Sg) = pg − po.
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Next set

βow = Pcow(So)/Pc′ow(So), βw
ow = pw/Pc′ow(So),

βw
go = pw/Pc′go(So), βgo = Pcgo(Sg)/Pc′go(Sg),

βow
go = Pcow(So)/Pc′go(Sg),

and define the generalized forces

∆Fo ≡ (So + βow + βw
ow)∆po − (βow + βw

ow)∆pw,

∆Fw ≡ (Sw + βw
ow)∆pw + (βw

go − βw
ow)∆po − βw

go∆pg,

∆Fg ≡ (Sg + βgo + βow
go + βw

go)∆pg

−(βgo + βow
go + βw

go)∆po.

Then, if es = eii, the stress-strain relations can be stated as

∆τij = 2N ǫij + δij(λce
s −B1 ξ

o − B2 ξ
w −B3ξ

g), (2)

∆Fo = −B1 e
s +M1 ξ

o +M4 ξ
w +M5 ξ

g, (3)

∆Fw = −B2 e
s +M4 ξ

o +M2 ξ
w +M6 ξ

g, (4)

∆Fg = −B3 e
s +M5 ξ

o +M6 ξ
w +M3 ξ

g. (5)

The elastic constants in (2)-(5) can be determined employing a set of gedanken experiments

(Santos and Savioli, 2016)

Let ρθ, θ = s, o, w, g, be the mass densities of the θ-phase and let ρ = (1 − φ)ρs +
φ(
∑

θ=o,w,g ρθSθ). Let gθ, aθ, θ = o, w, g, and glt, alt, lt = ow, og, wg, be the mass and viscous

coupling coefficients. Also, let krθ(Sθ), θ = o, w, g be the three-phase relative permeability

functions and k the absolute permeability (Peaceman, 1977). Then

gθ = SθρθT/φ, aθ =
S2
θ

krθ
, bθ =

aθηθ
k

, θ = o, w, g, (6)

gst = ǫ(gogwgg)
1/3, ast = ǫ(aoawag)

1/3, bst =
ast(ηsηt)

1/2

k
, s 6= t,

with T being the tortuosity factor, ηθ the viscosity of the θ-phase and ǫ a small number.

In the isotropic case the equations of motion are given by (Santos and Savioli, 2015, 2016)

ρüs + ρoSoü
o + ρwSwü

w + ρgSgü
g −∇ ·∆τ(~u) = f

s, (7)

ρoSoü
s + goü

o + gowü
w + gogü

g + bou̇
o + bowu̇

w (8)

+bogu̇
g +∇∆Fo(~u) = f

o,

ρwSwü
s + gowü

o + gwü
w + gogü

g + bowu̇
o + bwu̇

w (9)

+bwgu̇
g +∇∆Fw(~u) = f

w,

ρgSgü
s + gogü

o + gwgü
w + ggü

g + bogu̇
o + bwgu̇

w (10)

+bgu̇
g +∇∆Fg(~u) = f

g,

where f
s, f o, f w and f

g indicate external forces in the solid, oil, water and gas phases, respec-

tively.
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3 PLANE WAVE ANALYSIS

Assuming constant coefficients and absence of external sources, (7)-(10) become

ρüs + ρoSoü
o + ρwSwü

w + ρgSgü
g (11)

= (Eu∇ es − µ∇× (∇× ~us) + B1∇eo + B2∇ew + B3∇eg,

ρoSoü
s + goü

o + gowü
w + gogü

g + bou̇
o + bowu̇

w + bogu̇
g (12)

= B1∇ es +M1∇eo +M4∇ew +M5∇eg,

ρwSwü
s + gowü

o + gwü
w + gogü

g + bowu̇
o + bwu̇

w + bwgu̇
g (13)

= B2∇ es +M4∇eo +M2∇ew +M6∇eg,

ρgSgü
s + gogü

o + gwgü
w + ggü

g + bogu̇
o + bwgu̇

w + bgu̇
g (14)

= B3∇ es +M5∇eo +M6∇ew +M3∇eg,

where

eθ = ∇ · uθ, θ = s, o, w, g,

and

Eu = λu + 2µ. (15)

To obtain the equations determining the propagation of compressional waves, we apply the

divergence operator in (11)-(14) and replace in the resulting equations a plane compressional

wave of angular frequency ω and wave number ℓ = ℓr + i ℓi travelling in the x1-direction in the

form

es = C
(ℓ)
s ei(ℓx1−ωt) = C

(ℓ)
s e−ℓix1eiℓr(x1−

ω
ℓr

t), (16)

eo = C
(ℓ)
o ei(ℓx1−ωt) = C

(ℓ)
o e−ℓix1eiℓr(x1−

ω
ℓr

t),

ew = C
(ℓ)
w ei(ℓx1−ωt) = C

(ℓ)
o e−ℓix1eiℓr(x1−

ω
ℓr

t),

eg = C
(ℓ)
g ei(ℓx1−ωt) = C

(ℓ)
g e−ℓix1eiℓr(x1−

ω
ℓr

t).

The equations are,

−ω2ρes − ω2ρoSoe
o − ω2ρwSwe

w − ω2ρgSge
g (17)

= (Eu∇
2es + B1∇

2eo + B2∇
2ew +B3∇

2eg,

−ω2ρoSoe
s − ω2go e

o − ω2gow ew − ω2gog e
g + iωboe

o (18)

+iωbowe
w + iωboge

g

= B1∆ es +M1∇
2eo +M4∇

2ew +M5∇
2eg,

−ω2ρwSwe
s − ω2gow eo − ω2gw ew − ω2gwg e

g + iωbowe
o (19)

+iωbwe
w + iωbwge

g

= B2∇
2 es +M4∇

2eo +M2∇
2ew +M6∇

2eg,

−ω2ρgSge
s − ω2gog e

o − ω2gwg e
w − ω2gg e

g + iωboge
o (20)

+iωbwge
w + iωbge

g

= B3∇
2 es +M5∇

2eo +M6∇
2ew +M3∇

2eg.

Setting

γ =
ω

ℓ
(21)
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(17)-(20) leads to the following eigenvalue problem

γ2AC(γ) = EC(γ). (22)

where

A =




ρ ρoSo ρwSw ρgSg

ρoSo g̃w g̃ow g̃og
ρwSw g̃ow g̃w g̃wg

ρgSg g̃og g̃wg g̃g


 , E =




Eu B1 B2 B3

B1 M1 M4 M5

B2 M4 M2 M6

B3 M5 M6 M3


 , C γ =




C γ
s

C γ
o

C γ
w

C γ
g


 ,

and

g̃o = go + i
bo
ω
, g̃w = gw + i

bw
ω
, g̃g = gg + i

bg
ω
,

g̃ow = gow + i
bow
ω

g̃og = gog + i
bog
ω

g̃wg = gwg + i
bwg

ω
.

Hence, to determine the complex wave-numbers ℓ = ℓr + iℓi it is sufficient to solve the

eigenvalue problem

det(S − γ2I) = 0, (23)

where

S = A−1E . (24)

The four physical meaningful solutions (i.e. ℓi > 0) (γ(j))2, j = 1, 2, 3, 4 of (23) determine four

compressional phase velocities v(j) and attenuation coefficients b
(j)
i of the P1, P2, P3 and P4

modes of propagation from the relations

vpj =
ω

|ℓrj |
bpj = 2π.8.655588

|ℓij |

|ℓrj |
. (25)

The P1 wave is the analogue of the classical P1 wave in Biot theory. The P2, P3 and P4 waves

are slow waves associated with the motion out of phase of the four phases.

Applying the curl operator in (11)-(14) and replacing plane wave in the resulting equations

we can determine the phase velocities vs and attenuation coefficients bs of the rotational waves:

vs =
ω

|ℓr|
bs = 2π.8.655588

|ℓi|

|ℓr|
. (26)

4 NUMERICAL EXAMPLES

In this section we compute phase velocities and attenuation coefficients for a sample of

Teapot sandstone. Its material properties, taken from Rosenbaum (1974), and those of the

saturant fluids, water, oil and gas, are given in Tables 1 and 2.

The gas properties correspond to a dry gas at reference pressures 5, 10 and 20 MPa using the

correlations given in Standing (1977) and McCoy (1983).

Figures 1, 2 and 3 display phase velocities of all waves for the purely elastic case (i.e., zero

viscosities) as function of gas saturation at water saturation Sw = 0.25 and water reference

pressures pw = 5, 10 and 20 MPa.
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Table 1: Material properties of the Teapot sandstone

Solid grains bulk modulus, Ks 37.9 GPa

density, ρs 2650 kg/m3

Dry matrix bulk modulus, Km 8.6676 GPa

shear modulus, µm 6.4798 GPa

porosity, φ 0.297

permeability κ 1.9 10−12 m2

Table 2: Material properties of the saturant fluids

Water bulk modulus, Kw 2.25 GPa

density, ρw 1000 kg/cm3

viscosity, ηw 0.001 Pa · s

Oil bulk modulus, Ko 0.57 GPa

density, ρo 700 kg/cm3

viscosity, ηo 0.01 Pa · s

Gas at pressure 5 MPa bulk modulus, Kg 44515183.855 ×10−10 GPa

density, ρg 42.3156366 kg/m3

viscosity, ηg 1.1186139 ×10−5 Pa · s

Gas at pressure 10 MPa bulk modulus, Kg 89314762.7 ×10−10 GPa

density, ρg 86.5156181 kg/m3

viscosity, ηg 1.17348206 ×10−5 Pa · s

Gas at pressure 20 MPa bulk modulus, Kg 229138783.0 ×10−10 GPa

density, ρg 151.545384 kg/m3

viscosity, ηg 1.28131716 ×10−5 Pa · s
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Figure 1: P1 (left) and P2 (right) wave phase velocity as function of gas saturation at Sw = 0.25

and pw = 5, 10 and 20 MPa

In Figure 1 (left) it can be observed that P1 wave phase velocities decrease until a threshold

gas saturation value is reached. For saturations greater than the threshold value, velocities

exhibit a continuous increase. Besides, while at low gas saturations velocities increase with pw,

the opposite behavior is observed at high gas saturations.

Figure 1 (right) and Figure 2 (left) show that P2 and P3 wave phase velocities have a general

decreasing behavior as gas saturation increases.

On the other hand, P4 phase velocities in Figure 2 (right) are almost independent of gas

saturation, and increase with increasing values of pressure pw. Besides phase velocities of P3

and P4 waves increase with increasing pw.

Shear waves in Figure 3 are increasing functions of gas saturation and decreasing functions

of pw.

Figures 4, 5 and 6 show phase velocities of all waves as function of frequency at saturations

Sw = 0.25 and Sg = 0.1 and reference water pressures equal to 5, 10 and 20 MPa.

Phase velocities for P1 and Shear waves in Figure 4 show very little dispersion over the

whole range of frequencies. On the other hand, phase velocities of P2, P3 and P4 in Figures

5 and 6, are increasing functions of frequency. They vanish at low frequencies and stabilize at

high frequencies. P2 waves are little sensitive to changes in reference water pressure while P3

and P4 waves increase as water pressure increases.

Figure 7 (left) show P1 and Shear wave attenuation at reference water pressure 10 MPa. It

can be observed very similar (low) attenuation values for both waves with equal location of the

attenuation peak.

Figure 7 (right) show P2, P3 and P4 wave attenuation at reference water pressure 10 MPa.

It can be observed very similar attenuation values for the three waves. The attenuation is very

high at low frequencies, showing their diffusive type behavior. At high frequencies, attenuation

decays and these waves become truly propagating waves.

The corresponding attenuation Figures at pw = 5 and 20 MPa are almost identical and are

omitted.

Mecánica Computacional Vol XXXIV, págs. 3149-3160 (2016) 3155

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0 0.1 0.2 0.3 0.4 0.5 0.6
Gas Saturation

100

150

200

250

P
3

 w
a
v

e
 p

h
a
s
e
 v

e
lo

c
it

y
 (

m
/s

)

pw = 5 MPa, Sw = 0.25

pw = 10 Mpa, Sw = 0.25

pw = 20 Mpa, Sw = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6
Gas Saturation

40

50

60

70

80

90

100

P
4

 w
a
v

e
 p

h
a
s
e
 v

e
lo

c
it

y
 (

m
/s

)

pw = 5 MPa, Sw = 0.25

pw = 10 MPa, Sw = 0.25

pw = 20 MPa, Sw = 0.25

Figure 2: P3 (left) and P4 (right) wave phase velocity as function of gas saturation at Sw = 0.25

and pw = 5, 10 and 20 MPa
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Figure 3: Shear wave phase velocity as function of gas saturation at Sw = 0.25 and pw = 5, 10

and 20 MPa.
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Figure 4: P1 (left) and Shear (right) wave phase velocity as function of frequency at Sw = 0.25,

Sg = 0.1 and pw = 5, 10 and 20 MPa

0 2 4 6
Frequency (Hz) - Logarithmic Scale

0

50

100

150

200

250

300

P
2
  
w

a
v
e
 p

h
a
s
e
 v

e
lo

c
it

y
 (

m
/s

)

pw = 5 MPa, Sw = 0.25, Sg = 0.1

pw = 10 MPa, Sw = 0.25, Sg = 0.1

pw = 20 MPa, Sw = 0.25, Sg = 0.1

Figure 5: P2 wave phase velocity as function of frequency at Sw = 0.25, Sg = 0.1 and pw = 5,

10 and 20 MPa
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Figure 6: P3 (left) and P4 (right) wave phase velocity as function of frequency at Sw = 0.25,

Sg = 0.1 and pw = 5, 10 and 20 MPa
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Figure 7: P1, Shear (left) and P2, P3,P4 (right) wave attenuation (dB) as function of frequency

at Sw = 0.25, Sg = 0.1 and pw = 10 MPa
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5 CONCLUSIONS

We presented a model to describe wave propagation in a poroelastic solid saturated by a

three-phase fluid. The model predicts the existence of four compressional waves (P1, P2, P3,

P4) and one shear (S) wave. In the elastic case, at low gas saturations, P1 velocities increase

with water pressure and the opposite behavior is observed at high gas saturations while S-waves

velocities decrease as water pressure increases. Besides, P2, P3 and P4 velocities have a general

increasing behavior with water pressure.

In the general dissipative case, P1 and S waves show very little dispersion over the whole

range of frequency and very similar attenuation with similar peaks in the sonic range. Con-

cerning slow waves velocities vs. water pressure, P2 is little sensitive and P3, P4 are increasing

functions. Furthermore, attenuation of slow waves is almost independent of water pressure.
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