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Abstract. A chimera method for pasting different meshes in the context of the finite element method

is presented. The method is based both on transferring the solution on one mesh to the boundary of

the other via Dirichlet boundary conditions and interpolation, and also with a penalization "pasting" op-

erator. One of the advantages of the proposed method is that no changes in topology arise during the

computations. The second advantage is that the solution can be obtained iteratively with a convergence

rate that is similar to that one for an equivalent non-chimera mesh, and the matrix-vector operator can

be computed by completely decouple operations on both meshes. For symmetric positive-definite oper-

ators the resulting system is not symmetric positive-definite, however the solution can be obtained with

biconjugate gradient stabilized method, so the memory requirement is almost the same as for the conju-

gate gradient method, which could be used for an equivalent non-chimera mesh. Several examples are

presented assessing the precision and computational cost of the method.
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1 INTRODUCTION

The main purpose of the chimera method (Steger, 1991) is to avoid the difficulty that rep-

resents the generation of a general unstructured mesh for problems containing complex bodies,

like an airplane wing or a windturbine blade (Andrew M. et al., 2009). The idea of the method

is to use a coarse grid on the background of the entire domain while using finer meshes around

the bodies. This way, the meshing work is greatly reduced while keeping the accuracy of the

solution and the computational cost. It is known that the chimera fixed grid approach in com-

bination with Arbitrary Lagrangean Eulerian (ALE) based method is a good choice for solving

large deformation fluid structure interaction (FSI) problems (Peter and Wolfgang A., 2006).

Also several studies (Andrew M. et al., 2009; Jean-Jaqcues Chattot, 1998; Houzeaux and Cod-

ina, 2003, 2004) have shown the advantages of this approach and its capability for engineering

applications, mainly in problems that involves moving bodies. Automation of the meshing pro-

cess, efficiency, accuracy and low memory overhead are the main reasons for choosing this

method.

In this work we propose a chimera type domain decomposition method, presented on a two

dimensional Poisson equation, for a square domain with homogeneous boundary conditions

and a delta circle source term in three different positions. The chimera mesh is composed

of two overlapping subdomains with different element sizes that are connected between them

by sharing information across each other internal boundaries. The results are compared with a

classical finite element method (FEM) solution on a uniform-structured grid and on a conformed

grid, analogue to the overlapped one.

2 CHIMERA METHOD

Consider a domain Ω where we want to solve the Poisson equation, given by

∆φ = −f, in Ω,

φ = φ̄, in Γ = ∂Ω
(1)

We consider the splitting in two domains Ω1,2 (see Figure 1). The domains have an overlap-

ping region Ωo. The two meshes do not coincide. Now, consider the solution on the Ω1 region.

A standard discretization with FEM gives a matricial equation of the form

Ax = b (2)

The nodes in the mesh can be partitioned in four blocks:

• B: nodes in the boundary of Ω1 and also in the boundary of Ω.

• D: nodes interior to Ω1 and not in the overlap region.

• O: nodes interior to Ω1 and in the overlap region.

• Z: all the interior nodes, i.e. the union of nodes in D and O.

• I: nodes in the boundary of Ω1 and not in the boundary of Ω (they must be interior to Ω2).
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Figure 1: Description of the chimera method.

This splitting of the nodes induces a splitting of the linear system as
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The values in xB are known, due to the boundary condition. If we would know the values

in xI then we would have a problem with Dirichlet conditions in the whole boundary and we

certainly could solve the problem

AZZxZ = bZ −AZBxB +AZIxI (4)

Of course, we do not know xI although if we consider that we can interpolate this values

from the interior values in the Ω2 domain, we get a full linear system in the interior values of

both domains. We use supra-indices for the domains,

A
1
ZZx

1
Z = b

1
Z −A

1
ZBxB +A

1
ZIΠI1,2x

2,

A
2
ZZx

2
Z = b

2
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2
ZIΠI2,1x

1, (5)

The ΠI1,2 is a projection operator that interpolates the values on a x2 vector in the nodes

on I1. It is assumed that in each domain there is at least one full element layer in the overlap

region, so that the interpolation involves only nodes in the 2B and 2Z nodes, not on 2I nodes.

Therefore the linear system (see Eqn. 5) can be solved for the interior values x1
Z and x

2
Z .

3 ITERATIVE SOLUTION

The scheme can be set as a linear operator that can be fed to a matrix-free iterative solver

like Generalized Minimal RESidual (GMRES) or BiConjugate Gradient Stabilized method

(BiCGStab). The system is not symmetric nor positive definite, however numerical experi-

ments show that it is good enough so as to be solved with BiCGstab and with convergence

rates similar to those obtained with Conjugate Gradient (CG) method on the whole (not using
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chimera) problem. This is very important because it means that the linear system has charac-

teristics similar to the non-chimera problem. Equation (5) can be rewritten as residuals in the

following form

R
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(6)

The algorithm that computes the residual from the interior values is as follows

1: ALGORITHM: compute r = f(x)
2: Extract x1

Z ,x
2
Z from x = [x1

Z ;x
2
Z ]

3: Interpolate x
2
Z on nodes I1

4: Compute residual r1Z on Z1 according to line 1.

5: Interpolate x
1
Z on nodes I2

6: Compute residual r2Z on Z2 according to line 2.

7: Combine r = [r1Z ; r
2
Z ]

4 ESTIMATION OF THE CHIMERA ERROR

Due to the decomposition of the domain Ω in two subdomains, Ω1 and Ω2, each one has its

own error according to its element size. We define the error in Ω1 as follows:

||uh − uref ||(L2,Ω1) =

√

√

√

√

(N1+1)2
∑

i=1

(uh1
− uref )2wh1 (7)

Where:
• uh1

: Chimera solution on Ω1.

• uref : solution for a uniform-structured grid of 20482 elements.

• wh1
: area of the element (h1xh1y/2). Where h1x and h1y are the length of the triangular

element in x and y directions respectively.

In the same way, we define the error in Ω2 as follows:

||uh − uref ||(L2,Ω2) =

√

√

√

√

(N2+1)2
∑

i=1

(uh2
− uref )2wh2 (8)

Where:

• uh2
: Chimera solution on Ω2.

• uref : solution for a uniform-structured grid of 20482 elements.

• wh2
: area of the element (h2xh2y/2). Where h2x and h2y are the length of the triangular

element in x and y directions respectively.

Aiming to compare the results obtained by the chimera method in contrast with a uniform-

structured grid, we define the total error in Ω for the chimera solution as it is shown below:

||uh − uref ||(L2,Ω) =
√

||uh − uref ||2(L2,Ω2)
+ ||uh − uref ||2(L2,Ω1)

(9)

For the overlapping zone, it would be unfair for the chimera scheme if we take into account

the error of both subdomains, because we would be adding the error of the overlap region twice.

To overcome this problem, we take into account only the error of the coarse mesh in the overlap

zone, which is the most adverse case.

B. STORTI, L. GARELLI, M.A. STORTI, J. D'ELIA3164

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



5 NUMERICAL EXAMPLE

We consider a singular source term as follows:

f =
δ

cosh((r − 0.2)/δ)2
,

r =
√

(x− xc)2 + (y − yc)2,

δ = 0.025;

(10)

This represents a concentrated source term on the circle r = 0.2, with its center placed in

(xc, yc). This is a monopolar layer, and the value of φ is almost constant in the interior of

the circle. The interest in this case is in the large curvature of the solution, due to the highly

concentrated source term.

The problem is solved with two domains spanning 0.525 of the x side, i.e.

Ω1 = [0, 0.525]× [0, 1],

Ω2 = [0.475, 1]× [0, 1],
(11)

The overlap region is then

Ω1 ∩ Ω2 = [0.475, 0.525]× [0.1]

The meshes are Cartesian homogeneously refined in both domains with N1y = 11 elements

in y direction for Ω1 and N2y = 23 for Ω2. Therefore, the meshes are not coincident. The mesh

sizes in the x direction are chosen so as to keep the aspect ratio (AR) of the elements. The mesh

is then refined in steps of
√
2 i.e. the mesh in refinement step n+ 1 is 1/

√
2 the one in step n.

5.1 Chimera vs Structured-uniform grid

We consider three different cases. In case 1 we have the center of the source in Ω2, over the

fine mesh. In case 2 we have it on the overlap region, in the center of Ω. And in case 3 it is in

Ω1, over the coarse mesh. For each test, we analyze the convergence of the proposed method for

an overlapped grid in contrast with the convergence of the conventional FEM method solving

a uniform structured grid (see Fig. 2). Structured triangular elements are used in both meshes.

Eight refinement levels were tested for each case. The overlapped mesh as well as the uniform

mesh were made by an ad-hoc Octave program.

(a) Chimera grid. (b) Uniform-structured grid.

Figure 2: Meshes
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5.1.1 Case 1. Source term contained in fine mesh region

In this case we solve the Poisson equation (see Eqn. 1) for a singular source term (see Eqn.

10) with its center located in xc = 0.75 and yc = 0.50. The total overlapped length is 0.05, so

for the first refinement level, only one column of the elements belonging to Ω2 are overlapped

with the elements of the other subdomain (see Fig. 2a). Mesh data and the computed errors are

presented in Table 1 and Table 2, respectively.

Chimera overlapped grids Uniform grid

ref N1y N2y h1y h2y Elements Nx,y h Elements

1.00 11 23 9.0909e-02 4.3478e-02 730 23 4.3478e-02 1058

1.41 16 33 6.2500e-02 3.0303e-02 1476 33 3.0303e-02 2178

2.00 23 47 4.3478e-02 2.1277e-02 2948 47 2.1277e-02 4418

2.82 32 66 3.1250e-02 1.5152e-02 5708 66 1.5152e-02 8712

4.00 45 93 2.2222e-02 1.0753e-02 11274 93 1.0753e-02 17298

5.65 63 131 1.5873e-02 7.6340e-03 22362 131 7.6340e-03 34322

8.00 89 185 1.1236e-02 5.4050e-03 44626 185 5.4050e-03 68450

11.31 125 261 8.0000e-03 3.8310e-03 88536 261 3.8310e-03 136242

Table 1: Mesh information for case 1.

Chimera error Uniform grid error

ref Ω1 Ω2 Ω Ω

1.00 1.518e-02 1.215e-02 2.445e-02 7.5035e-03

1.41 1.417e-03 3.276e-03 3.717e-03 1.3559e-03

2.00 6.295e-05 3.593e-04 3.689e-04 5.9680e-04

2.82 5.409e-05 1.423e-04 1.537e-04 1.5154e-04

4.00 1.363e-05 7.261e-05 7.418e-05 7.4389e-05

5.65 7.482e-06 3.655e-05 3.742e-05 3.7537e-05

8.00 3.872e-06 1.815e-05 1.862e-05 1.8758e-05

11.31 2.011e-06 9.080e-06 9.331e-06 9.3992e-06

Table 2: Errors.

It can be seen (see Fig. 3 ) that when the major gradients are placed in the fine mesh the

error of the chimera method (Eqn. 9) is very similar to the error for a full uniform-structured

mesh which its element sizes are equal to the element sizes of the fine mesh in the chimera

domain. As we have two different element sizes for both subdomains, the smallest is used for

error comparison. Also we can see that the convergence is O(h2) as expected.
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Figure 3: Convergence of both, chimera method and uniform and structured grid.

(a) Chimera solution (b) Absolute error

Figure 4: Solution(a) and error(b) to Poisson equation with the source placed in the fine mesh.

The solution as well as the absolute error in both meshes for case 1 are shown in Figure 4.

5.1.2 Case 2. Source term placed in overlap region.

For this test, we solve the Equation 1 for a singular source term (see Eqn. 10) with its center

placed in xc = 0.5 and yc = 0.50, over the overlapped region. The total overlap length is 0.05.

The main purpose of this test is to ensure the convergence of the method even when the largest

curvature of the solution is placed in the overlapping area. The mesh data and the computed

errors of the overlapped and uniform grids are presented in Tables 3 and 4 respectively, for each

refinement level.

Mecánica Computacional Vol XXXIV, págs. 3161-3175 (2016) 3167

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Chimera overlapped grids Uniform grid

ref N1y N2y hΩ Elements Nx,y h Elements

1.00 11 23 5.3149e-02 730 23 4.3478e-02 1058

1.41 16 33 3.7216e-02 1476 33 3.0303e-02 2178

2.00 23 47 2.6463e-02 2948 47 2.1277e-02 4418

2.82 32 66 1.8932e-02 5708 66 1.5152e-02 8712

4.00 45 93 1.3482e-02 11274 93 1.0753e-02 17298

5.65 63 131 9.5655e-03 22362 131 7.6340e-03 34322

8.00 89 185 6.7623e-03 44626 185 5.4050e-03 68450

11.31 125 261 4.8005e-03 88536 261 3.8310e-03 136242

Table 3: Mesh information for case 2.

Chimera error Uniform grid error

ref Ω1 Ω2 Ω Ω

1.00 1.433e-02 1.648e-02 2.979e-02 9.4406e-03

1.41 6.627e-03 2.220e-03 7.057e-03 3.5459e-03

2.00 2.270e-03 1.562e-03 2.893e-03 1.2711e-03

2.82 2.034e-03 1.151e-03 2.394e-03 1.6490e-04

4.00 5.953e-04 3.377e-04 7.115e-04 7.4229e-05

5.65 1.265e-04 5.965e-05 1.432e-04 3.7984e-05

8.00 5.686e-05 2.234e-05 6.248e-05 1.8966e-05

11.31 2.732e-05 7.076e-06 2.853e-05 9.5043e-06

Table 4: Errors.

For this particular case, we define a resulting element size for the chimera mesh according

to Jinsheng Cai (2005) as follows:

hΩ =





2

N12





N1D
∑

i=1

∆A1i +

N2
∑

i=1

∆A2i









1/2

(12)

where ∆A1i is the area of the i − th element in Ω1 and N1D is the number of elements in

Ω1D = Ω/Ω2, i.e. the elements of Ω1 that are not inside the overlap region. ∆A2i is the area of

the i − th element in Ω2 and N2 is the number of elements in Ω2, i.e. the elements inside and

outside of the overlap region that belongs to Ω2. Then we define N12 = N1D +N2 for compute

the chimera element size.

We can see from Figure 7 that the second order convergence is maintained and the error is

similar for the uniform grid.
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Figure 5: Convergence of chimera method and a uniform-structured grid, with the source

placed in the center of the domain.

(a) Chimera solution (b) Absolute error

Figure 6: Solution(a) and error(b) to Poisson equation with the source placed in the mesh center

The solution and the absolute error in both meshes for case 2 are shown in Figure 6.

5.1.3 Case 3. Source term contained in coarse mesh region.

Here we solve Eqn. 1 with the singular source term (see Eqn.10) with its center positioned

in xc = 0.25 and yc = 0.5. We keep the overlapped region length of 0.05. The analyzed meshes

and the computed error are shown in Table 5 and Table 6, respectively.
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Chimera overlapped grids Uniform grid

ref N1y N2y h1y h2y Elements Nx,y h Elements

1.00 11 23 9.0909e-02 4.3478e-02 730 11 9.0909e-02 242

1.41 16 33 6.2500e-02 3.0303e-02 1476 16 6.2500e-02 512

2.00 23 47 4.3478e-02 2.1277e-02 2948 23 4.3478e-02 1058

2.82 32 66 3.1250e-02 1.5152e-02 5708 32 3.1250e-02 2048

4.00 45 93 2.2222e-02 1.0753e-02 11274 45 2.2222e-02 4050

5.65 63 131 1.5873e-02 7.6340e-03 22362 63 1.5873e-02 7938

8.00 89 185 1.1236e-02 5.4050e-03 44626 89 1.1236e-02 15842

11.31 125 261 8.0000e-03 3.8310e-03 88536 125 8.0000e-03 31250

Table 5: Meshes for case 3.

Chimera error Uniform grid error

ref Ω1 Ω2 Ω Ω

1.00 2.084e-02 1.805e-02 3.373e-02 3.6717e-02

1.41 5.104e-03 1.099e-03 5.263e-03 1.0113e-02

2.00 4.938e-03 1.939e-03 5.406e-03 7.5035e-03

2.82 1.294e-03 1.574e-04 1.306e-03 2.2885e-03

4.00 8.868e-04 3.104e-04 9.560e-04 9.2744e-04

5.65 1.772e-04 3.293e-05 1.809e-04 2.0521e-04

8.00 8.100e-05 9.039e-06 8.167e-05 8.0990e-05

11.31 4.101e-05 4.752e-06 4.137e-05 4.1253e-05

Table 6: Errors for case 3.

Figure 7: Convergence of chimera method and a uniform-structured grid, with the source placed

in the coarse mesh.
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(a) Chimera solution
(b) Absolute error

Figure 8: Solution(a) and error(b) to Poisson equation with the source placed in the coarse mesh

The solution and the absolute error in both meshes for case 3 are shown in Figure 8.

5.2 Chimera vs conformed mesh

A complementary convergence study was carried out in contrast with a conformed mesh, as

similar as possible to the overlapped meshes (see Fig. 9), that has a very well define coarse

zone as well as the fine zone, connected by an adaptive scheme where the overlapped region

is supposed to be. The conformed mesh was made with the Open-source software Salome

(Ribes and Caremoli, 2007.). We test eight refinement levels and we compare the results for

both schemes. In this study we analyze the Poisson equation for the same source term as the

previous case (see Eq. 10) although only with the circle center placed in the fine zone (xc = 0.75
, yc = 0.5). Results are shown in Table 7.

(a) Chimera grid (b) Conformed grid

Figure 9: Meshes of the two cases
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Chimera overlapped grids Conformed grid

ref Elements Error Elements Error

1.00 730 2.445e-02 650 4.8696e-03

1.41 1476 3.717e-03 1361 2.1124e-03

2.00 2948 3.689e-04 2736 5.7245e-04

2.82 5708 1.537e-04 5214 2.8146e-04

4.00 11274 7.418e-05 11604 1.2195e-04

5.65 22362 3.742e-05 20596 6.9399e-05

8.00 44626 1.862e-05 46202 3.1310e-05

11.31 88536 9.331e-06 81114 1.7930e-05

Table 7: Error of Overlapped and Conformed meshes.

Figure 10: Convergence of chimera method and a conformed grid, with the source placed in

the fine grid.

Once we had the solution on the nodes for the conformed mesh, we interpolate these values

on the reference mesh used as the "exact solution" and the error is computed. As it can be seen

from Figure 10 the chimera error is slightly lower than the error for a Conformed grid. With

this results we proved that we are having a resulting error of the overlapped grid scheme which

is very similar to the error solving a conformed grid with a classical FEM method, saving time

on meshing the geometry.

6 RESIDUAL ANALYSIS

The convergence of BiCGstab and Conjugate Gradient iterative methods were studied for

case 1. A special analysis was made for this case because we will always want for the dis-

continuities and the greatest gradients to be in the finest mesh of the chimera grid. The study

was carried out solving a chimera grid with 125 x 64 elements and then split in triangles for

the coarse mesh, and 261 x 144 elements (also split) for the fine mesh, with BiCG iteration
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method. Meanwhile, a conformed adaptive mesh of triangular elements was solved with Con-

jugate Gradient without any preconditioning. In contrast, the same problem was solved for a

uniform-structured coarse grid of 125x125 split in triangular elements, and for uniform struc-

tured fine grid of 261x261, split in triangular elements too, with Conjugate Gradient without

any preconditioning. All cases were solved for a relative residual tolerance of 1e-08.

Figure 11: Convergence of BiCGstab (for chimera grid) and CG (for comforming and uniform

grids).

Total elements Iterative solver Iterations Error

Chimera 88536 BiCGstab 503 9.3310e-06

Comformed 81114 CG 699 1.7930e-05

Coarse 31250 CG 327 8.0000e-03

Fine 136242 CG 687 9.3992e-06

Table 8: Convergence analysis.

As can be seen from the Figure 11 the chimera method solved with BiCGstab shows a very

good convergence, reaching the preset tolerance in 503 iterations, proving a better convergence

than the adaptive mesh, that takes it 699 iterations to converge.Also, the total number of it-

erations that takes chimera method to reach the convergence, keeps lower than for the fine

uniform-structured grid.

7 CONCLUSIONS

A chimera scheme for overlapped grids was presented as well as the mathematical formula-

tion and the algorythm for solving it iteratively.

It was defined an estimation of the resulting error for the chimera method that takes into

account the error of both subdomains, which allowed us to compare it against other methods

Mecánica Computacional Vol XXXIV, págs. 3161-3175 (2016) 3173

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



errors.

The scheme was tested solving a poisson equation in a two dimensional domain for three

different cases. It was shown that the chimera solution maintain its accuracy and good conver-

gence even if the largest curvature of the solution is placed over the coarse zone of the over-

lapped grids. We did special emphasys on the first case in which the major gradients are located

in the fine mesh, because that is the main purpose of the scheme presented. A comparison with

a equivalent conformed mesh was made. It was shown that the error for the overlapped grids is

slightly lower than it is for the conformed mesh from the third refinement level onwards.

Also a convergence analysis was carried out solving the overlapping grid scheme with BiCGstab

in contrast with a classical FEM scheme, solving for a fine, a coarse and a conformed mesh with

Conjugated Gradient without preconditioning. The results showed that in the case of the over-

lapped subdomains, the problem was well defined, proving a good convergence for the iterative

method. Also it was proved that the robustness of the chimera method in conjunction with the

BiCGstab solver lead us to a lower number of iterations to achieve convergence.

As future work we are aiming to improve the algorithm for solving Stokes equation on un-

structured meshes. Also we are in the way to solve transient problems with moving bodies.
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