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Abstract. The image inpainting problem consists of restoring an infem a (possibly noisy) obser-
vation, in which data from one or more regions is missing.egginpainting models to perform this task
have been developed, and although some of them performnaalgowvell in certain types of images,
quite a few issues are yet to be sorted out. For instances ifthge is expected to be smooth, the inpaint-
ing can be made with very good results by modeling the salmthe result of a diffusion process using
the heat equation. For non-smooth images, however, suchpaoah is far from being satisfactory. On
the other hand, Total Variation (TV) inpainting models lzhea high order PDE diffusion equations can
be used whenever edge restoration is a priority. More rgcehe introduction of spatially variant con-
ductivity coefficients on these models, such as in the cagguofature-Driven Diffusions (CDD), has
allowed inpainted images with well defined edges and entiboloject connectivity. The CDD approach,
nonetheless, is not quite suitable wherever the image isdmas it tends to produce piecewise constant
solutions. Based upon this, we propose using CDD to intre@upriori information into an anisotropic
diffusion model that allows for both edge preservation apjéct connectivity while precluding the stair-
casing effect that TV-based methods entail. Comparisotvgdas the results of the implemented models
will be illustrated by several computed examples, alondy\wérformance measures.
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1 INTRODUCTION

The image inpainting problem consists of restoring an infewya an occluded and possibly
noisy observation of it, i.e. data from one or more regiomsraissing. There are a few pro-
posed models to perform this task and although some of thefiorpereasonably well in certain
types of images, all of them are far from being totally satsbry. If the image is expected to be
smooth, for instance, inpainting can be reasonably peddrby means of a Bayesian approach
and a maximum a posteriori computatiGalvetti et al.(2009, while for non-smooth images
such an approach is far from being satisfactory. Althoughititroduction of anisotropy ideas
to the latter methodology is known to produce better redaltslim occlusionLCalvetti et al.
(2006, the quality of the restoration decays as the occludednsgividen. also Total Varia-
tion (TV)and inpainting models based on PDE diffusion epret can be used whenever edge
restoration is a priority. Recently variants of these mdthsuch as Curvature-Driven Diffusion
(CDD) inpaintingChan and She(2002 which takes into account curvature into the diffusion
coefficient, have resulted in inpainted images with verydyedge preservation and object con-
nectivity properties. The CDD approach, nonetheless, doeproduce satisfactory results in
regions where the image is smooth, as it tends to producewise constant restorations, which
is a reminiscent manifestation of its TV origins.

In this article we present a two-step inpainting processistimg of a first in painting round
for building a pilot image from which to infea-priori structural information on the image’s
gradient via CDD and a second step where the final inpainsngeiformed via mixed.?-
anisotropic TV regularization. We present a few resultsxshg the improvement of our two-
step approach over all preexisting inpainting methods.

Our (in principle grayscale) image is defined by a function Q@ ¢ R? — [0, 1], where
u(z,y) represents the light intensity of the point, y) (v = 1 being white and: = 0 being
black). The occlusion will be denoted By while v = u|o\ p shall denote the known part of

Before describing our two-step method, we briefly recale¢hof the most traditional in-
painting methods.

1.1 Tikhonov-Phillips Inpainting

The Tikhonov-Phillips regularization method of order 1 JThn be used to performed a
basic inpainting. With this method, the inpainted solui®defined as

ueL2(0)

whereT : L*(Q) — L*(Q2\ D) is the D-occlusion operatofT u = u |\ p @andX > 0 is an
appropriately chosen regularization parameter. If thgioal image has edges or borders set
apart by an occlusion, then such an inpainting method faiéxtend them inside the occluded
region (see Figuré&(b)). This lack of edge preservation can then be improveddpyapriately
modifying the penalizing term inlj, for instance by means of the introduction of introduce an
anisotropy matrix fieldd Calvetti et al.(2006, which attenuates penalization on on directions
of large gradients. In this case, the inpainted image is défas

i = argmin {[|Tu — v[|72(q p) + MAVU[Z2)}- 2)
u€L?()

The construction oA requieres prior information of the gradient inside the osin. Ways
of constructingA will be presented later. Figur&c) depicts an order 1 Tikhonov-Phillips
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anisotropic inpainting for whickd was build upon ara-priori order 2 Tikhonov-Phillips in-
painting of the gradient field, as suggestecalvetti et al.(20069. Although this method sig-
nificantly improves the performance os its isotropic coypd€, it becomes inappropriate as

occlussions widen (see Figutér)).
I(b) I I | I

Figure 1: (a) Occluded image; (b) T1 inpainting; (c) Anisipic T1 inpainting.

1.2 Total Variation inpainting
Total variationAcar and Voge(1994), Rudin et al.(1992 inpainting is defined by:

it = axgmin {7 = o]0, + M [V L} @
ueL?(Q)

The Euler-Lagrange equations show that the solutiorBpis(also the steady-state solution
of the following diffusion PDE (seei et al. (2010)

ou [ Vu

2
E:V W}ﬂLX(Tu—v) (4)

| I I(b) I

Figure 2: Occluded image (a); TV inpainting (b).

The property of being able to link similar objects on opp®sitles of an occlusion is referred
to asobject connectivityAlthough TV inpainting improves object connectivity it$avo main
draw backs. One one side, it tends to produce piecewiseargrsilutions (see Figu® and
on the other hand the results strongly depend on the widtheobtclusion (see Figuré&ga)
and2(b)).
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I(b) I

Figure 3: (a) Occluded image; (b) TV inpainting.

Although this puts into evidence that any inpainting precean entail a high level of subjectiv-
ity, a “good” inpainting method could be conceived as on¢ Wuld most frequently emulate
what most humans would do. The rest of the article is stroalyiyned with this belief.

1.3 Curvature Driven Diffusion Inpainting

Roughly speaking, arsophoteof an imageu can be thought of as a level line afthat
separates regions of different light intensities. It ishygdesired for an inpainting method to
be able to connect isophotes inside the occlusions sinsentiresult in the "reconnection”
of edges set apart by the occlusion. In fact, in FigB(t®) we see that the original isophotes
(the edges of the black bar) do not result connected as we [@ast most of us!) would hope.
Note also that the isophotes of the inpainted image haveecarmeaning that their curvature
 at those points is-oo, in contrast with the zero curvature in the isophotes of thgected”
inpainted image (Figurg(b)). This observation led Chan and Shehan and She(2002 to
include the curvature into the diffusion modd)(By letting D = W—lu‘, equation 4) restricted
to the occlusion reads

ou -
5=V [DVU] .
In Chan and She(2002 the diffusion coefficientD was redefining a® = 9‘%), whereg :

Ry — Ry is an increasing function such thgf0) = 0 andg(co) = oo. In this way, diffusion
is strong where curvature is large, while it is weak wherevature is small. This modification
leads to the so called Curvature-Driven Diffusion (CDD) &tion

Ou _ o [9(xl)

Since the curvature of the level lines4sx at the corners of the TV inpainted image in
Figure 3(b), is is clear now that such an image cannot be the steadly-st equation5). It
turns out that in this case the method strongly favors cdivigcon the steady state, as it can
be seen in Figurd. Nonetheless, as mentioned before, being this method atypt of TV
regularization, it tends to produce piecewise constartbrasons, and therefore it does not
produce completely satisfactory results over smooth regy{see Figurd).
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I(b) I

Figure 4: (a) Occluded image; (b) CDD inpainting.

The CDD inpainting model5) can also take into account the presence of noise outside the
occlusion, for instance, by using TV regularization ougside occluded region. The resulting
diffusion PDE takes then the form

du 9(lsDxp + xa\p

-V
ot V4l

2
Vul| + X(U — U)XO\D- (6)

Note that 6) reduces to equatior) inside the occlusion, and td) outside of it.

The main objective of this article is to develop an inpaigtmodel which simultaneously
complies with edge preservation, object connectivity anddginpainting performance over
smooth regions.

2 COMBINED, TWO STEP CDD + T1-TV INPAINTING

Regularization methods can be combined by using spatiallying weighted averages of
two or more penalizerslazzieri et al (2014 to extract the the good characteristic properties of
each one. We shall consider here the case of mixed T1 and Taregation, taking advantage
of the fact that the first one tends to produce smooth resdosatwhile the latter is better suited
for edge preservation. In this case the inpainted imageeis e defined as the minimizer of

T (W) = ITu = vlLxqp) + AnllVI = 0 AVl L) + Arv 104Vl 1), (7)

whereAr; > 0 and\ry > 0 are appropriately chosen regularization parametérs, A(z, y)

is an anisotropy matrix field antl= 0(z,y) € [0, 1] is a spatially-varying function weighting
both penalizers at each point. Note that 0 leads to pure anisotropic T1 regularization, while
0 = 1 leads to pure anisotropic TV regularization.

Thereare several ways of constructing the matrix figld) — R2*2 used for introducing
anisotropy. One way can be found@alvetti et al (2009, where it is built by using the gradient
field of ana-priori estimationu,(x, y) of u(x, y), as follows. First a continuous and decreasing
functionh : Ry — (0, 1], satisfyingh(0) = 1 andlim;_,., h(t) = 0 is defined, to determine the
eigenvalues of\(zx, y), which is constructed as follows:

v [;ZZEZMT'

As a consequenceé has the following important properties:

Ale,y) = T — (1 — h([Vay(a,y)]) [ @)
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o A(x,y)is a symmetric positive definite matixz, y) € Q.
o If Vu,(z,y) =0, A(z,y) = I (the identity matrix).

o If Vu,(z,y) # 0, A(z,y) has eigenvalues;(z,y) and eigenvectors;(x,y), j = 1,2,
such that

vi(@,y) || Vup(z,y), a1(z,y) = h([Vuy(z,y))),
vo(z,y) L Vuy(z,y), oo(z,y) = 1.

With the required properties oh, the eigenvalues, (z,y) are small at point$z, y) where
the norm of the estimated gradieWiu,(z, y) is large, whileos(z, y) remains constant. This
is desirable since it will later translate into a decay ongbieation in the expected gradient
direction while keeping it unchanged in its normal direstiol' he functionh can be chosen,
for instance, a%(t) = 1/(1 + (t/7)*), wherer, k > 0 are control parameters that could be
roughly thought of as a lower threshold for the value$\ot,| starting from which we infer
the image has an edge and the width of the transition regespectively. To overcome the
disadvantage of lack of edge preservation presented fot methods, we shall use CDD to
construct the gradient field estimati®fn:,. Hence we shall build both the weighting function
# and the matrix field4, based upon the gradients of aipriori CDD inpainting of the image,
which as previously noted, also favors object connectivity particular we taked(z,y) =
w(|Vu,(z,y)|), wherew is an appropriately chosen increasing function, with< w(t) <
1Vt € R{. Itis important to remark that due to the way in which the piloage is built, if
used directly as obtained by the CDD-inpainting processsthircasing effect on, will have
a negative impact on the effect of the weighting and aniggtfanctions, which in turn might
lead to sharp artificial edges appearing in the final inpdinteage. To overcome this, the pilot
image is smoothed out with a small-variance Gaussian kernel

Our new full inpainting process can then be stated as follows

Step 1: CDD inpainting. Perform a CDD inpainting to obtain a first pilot imagg as the
steady state of the equation

ou g(l&l)xp + Xa\p 2

Step 2: Pilot image smoothing.Smooth outi, by means of a low-pass filter by computing
up, = G * Uy,
whered is, for instance, a low-variance Gaussian kernel.

Step 3: Construction of the anisotropy matrix field. Usew, to construct4 as

A=1- (1 T 14 (IVlupl/r)’f) LEZ\] [IEZZJT'

Step 4: Construction of the weighting function. Useu,, to build§ as

[Vuy(2,y)|

max(y, .y | Vup(w, )|

0(z,y) =
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Step 5: Final inpainting. UseA andd as above to build the mixed weighted T1-TV anisotropic
functional and compute the restored image as

i = argmin {||Tu — v||72 + Ar1||[V1 — 0 AVul||72 + Ay [|[|[0AVY| |2} (9)

ueL2(Q)

Having stated our new inpainting method, we shall procedxdliedly describe an appropriate
numerical implementation.

3 NUMERICAL IMPLEMENTATION

We start the implementation of our inpainting method by pering a discretization over
the image domain. We assume that the grayscale image dosfir-i [0, 1] x [0, 1] and we
discretize it to obtain an/-by-M pixel grid and an\/-by-M matrix U, consisting its entries of
the values of the function at the centerpoints of the pixels. Next, we stack the coluofitise
matrix U to get a vecton € RM* s0 thatup;g—1y4m = Upy VI, m = 1,2,..., M. For better
understanding we will often identify; 1)+, With u(z,y).

3.1 The CDD method

Let us defing = (&,,&)T = %VU, whose divergence we need to approximate. We do it
by computing

51(1‘ + h/27y) B 51(1‘ B h/27y) + 52(:L‘7y + h/2) B fg(l’,y - h/2)
h h '

whereh = 1/M is the pixel-width.

Now, in order to computel(Q) at the midpoints between adjacent pixels, we need to eima
both the gradient ofi and the curvature at those points. Firstly, for the points of the form
Vu(x + h/2,y), we compute the componentsGi. as

h o u(x+hy) —uz,y)

Ux(l'—i— 27y)N h )

At the points of the forn{z, y + h/2) the construction is analogous.
As for the isophote curvature we compute it explicitly as a function of the gradient.of

. Vu | 0 u 0 uy
B |Vul | 0z |Vu| 9y |Vu|

At points of the form(z + h/2,y), we approximate it with

1T w(zt+hy) ul(z,y)
“(“hﬂ’y)‘hbwum,yn |w<x,y>|] ()
1 [ uy(z+h/2,y+h)  ux+h/2,y—h)
2h | |Vu(z+h/2,y+h)] |Vu(z+h/2,y—h)|]

The computation of: at points of the form(z,y + h/2) is analogous. To avoid division
by zero in the last equation (whé&hu = 0), we replaces| by v/s2 + €2, with ¢ > 0 chosen
sufficiently small.
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We are then ready to state the algorithm for the CDD inpagnpirocess. It is timely to point
out here that due to numerical stability issues, insteasgioiguiEuler's method to solve the IVP
(as stated irChan and Shef2002), we use an Adams-Moulton Adams-Bashford predictor-
corrector method, which showed better performance. Ouiifieddterative algorithm reads as
follows:

Step 1: Initializing. Define an arbitrary initial estimatiosl”’, coinciding with the data outside
the occlusion, and let = 0.

Step 2: Updating. Form : 1... M, define

g(155 ) xp + xavp
[Vl

. n 2 n
f(ﬁgg)v USJ)) =V Vugn) + X(ugn) - Um)XQ\D7 (12)

(n+1)

and compute.,, ’ as follows:

5 (2340430, ) = 16 (85 , uD) 57 (02, )]

— [5f(/@£r’;‘+l),ygl+1 ) —|—8f( m 7 n?)) _ f(:‘i,(ffl),u%*l))}

slbolk

where for eachn, ™ and Vu(™ are computed from(™) as previously described. A
second order Runge-Kutta method is used for the first twsstep

Step 3: Stopping. If an appropriate stopping criterion (defined upon the dexfaje sum of
the curvature at each pixel) is reached, the process stojghampainted image is defined
asut1). Otherwisey is increased/{ = n + 1) and the algorithm continues from Step 2.

Next, we show how the mixed weighted anisotropic T1-TV raegahktion can be numerically
implemented.
3.2 Mixed anisotropic T1-TV implementation

To find the minimizer of the T1-TV inpainting functional given (7), we consider the dis-
cretized version

2

Tw) = 3Tl + 552 37 (1~ 6, ‘Am ( ﬁ&f - Sﬁ)) )
meM 2
)\TV M (= Um1)
D KR Gvinr S|

whereT € RM**M* js the diagonal matrix associated to the occlusion opef&idr, and4,,
are the evaluations of the weighting function and of the@nipy matrix field at the centerpoint
of them!” pixel, and)t denotes the set of indices corresponding to the interiaigjon which
the gradient is estimated, that®™® = {m € N: M < m < M(M + 1), Mk # m #
Mk+1Vk=1...M}.

Although there are several efficient ways to estimate themuzer of (13), we have chosen
a half-quadratic approach, which is described below, fbag proven to cope very well with
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the great dimensions that this problem can present (de@iide found irbarrola and Spies
(2019).

First, we approximatd by a differentiable functional and make use of a dualitytrefato
iteratively approach its minimizer. We begin by replacing last term in13) by a differentiable
approximation in order to find the minimizer by considerihg first order necessary condition.
We do so by replacing, fon € R?, the value of||w||; by ¢(||w|2), where¢ : R — R is
given byo(t) = \/t? + n? — n, for n sufficiently small. With this choice a#, it can be shown
(Rockafellar(1970) that there exists a function satisfying the following duality relation

B() = inf (st” + (s)), (14)
Y(s) = igﬂgw(t) — st?),

and therefore

~ inf {s, (t3n,1 +17,0) + U (sm)} (15)

smERT

where . .

bt = al,l(um - uli)/Lal,2<um - Um+1)’ (16)
and

n = a5’y (U — U 1) + a5 (U — umﬂ). a7

1/M
Define now theM*-by-M? diagonal matrices!*/, for i,j = 1,2, such thatd}/ == a",
if me M andAﬁ;g;m = 0 otherwise. In a similar fashion, 1€ = diag(0,,)rzxa2 @andS =
diag(sm)mzxnz. Let L, and L, be theM?-by-M? first order finite difference approximating
matrices for the components of the gradient, andAetand R, be the M?2-by-M? matrices
defined as?; = AM L, + AML, andRy, = A*'L, + A%?L,,. Finally, let] be theM?-by-M?
identity matrix, and define the functional

o1 A
Ko o(u,5) =25 | Tu — vl + %M(H{(z — ©)Ry + RI(I — ©)Ry)u+

A A
+ %uT(RI@SRl + RIOSRy)u + % > 00 (sm). (18)

It can be shownlbarrola and Spie§014) that
inf Ky 4(u,s) = Js(u) = J(u), (19)

seRM?

whereJ, is the functional obtained fronf by using approximationl©). Hence, our problem
turns out to be equivalent to minimizing with respect to both ands simultaneously. Note
that the first order necessary condition&nwith respect ta: can be written as

(TTT + Ar1(R{(I — ©)Ry + RI(I — ©)Ry) + Ay R{OSR; + Arv RJOSRy) u=T"Tv.  (20)

In order to minimizeX, ,(u, s) with respect tos, we define

b,, = argmin {sm (tfml + tfm) + w(sm)} ,

Sm €R+
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wheret,, ; andt,, , are defined as inlg) and (L7), respectively, and resort td4) to deduce

thatb,, must satisfy
AR
by, = :
24/t + Lo

Although details on de derivation of equatidil) can be found iridier (2008, we give here
a brief sketch of the proof. Lef : R? — R be defined ag(s,t) = st? + 1(s). Then, if
b = argmin, . f(s,t), the first order necessary condition ovemith respect tos yields
0=+ 22 Notice thats(t) = f(b,t), and hence

99(t) _ 0f(bt) _ b5 OP(b) b _ (5 0PO) _
= T = 2k o o S = Obt e (# — ) = 2t

(21)

Finally, we state our cyclic iterative algorithm for the T1l£image inpainting as follows:

Step 1: Initializing. Setj = 0, and initializew’ = u° (e.g. u’|\p = v andu’|p = 0) and
b = 1° (e.g.1° = 0).

Step 2: Counting. Makej = j + 1.
Step 3: Updatingb. Updateb’ using equationZ1):

o (Vi + )

b = A A , meM,
2/ (#,1)2 + (th,2)
where ‘ , ‘ ,
b aty (uh, — up,_pp) + ai(uh, — upy)
ol 1/M ’
and

ay’ (uf, — U‘anM) + a%(ugn - U¥n+1)

tho, =
2 1/M

m

Step 4: Updatingu. Updateu’ by solving the linear system
(TTT + M1 (R{(I — ©)Ry + R}(I — ©)Ry) + Arv(R]OB Ry + RJOB/Ry)) ! = TTv

whereB’ is the M?-by-)M? diagonal matrix with elements, for m € 9t and0 otherwise. It
is worth noticing that this linear system is well pos&thbgzieri et al(2014) since the matri-
ces appearing as a consequence of the penalization termstatly positive eigenvalues,
and hence solving it entails no difficulties.

Step 5 - Convergence:if a previously defined convergence criterion is satisfibd,dlgorithm
ends and our inpainted imagds defined as:/’ (in our case, this criterion was defined upon
the norm||u/ — u/~!||). Otherwise, the algorithm repeats from step 2.

In the next section we present some examples of the perfaenarihe previously described
inpainting method.
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4 INPAINTING APPLICATION RESULTS

We begin by comparing the performance of our new approadh thé isotropic order-one
Tikhonov-Phillips and Curvature-Driven Diffusion metlsdn the previously used test image,
occluded over both smooth and piecewise constant regiong% &aussian white noise was
added to the grayscale image. Fig@relepicts the occluded noisy image together with the
results obtained with three different inpainting methoAs.it can be clearly seen, the mixed
anisotropic T1-TV inpainting outperforms the isotropic Tfirfethod in terms of edge preser-
vation, while it also works better than CDD inpainting on sgraooth region of the image.
Although this is a somewhat subjective analysis, theselusimns are supported by the corre-
spondingpeak signal-to-noise ratid®SNR shown in Tablel. ThePSNRis defined as follows:

I (b)I
I(C) I I | I

Figure 5: (a) Occluded image; (b) Isotropic T1 inpaintingy CDD inpainting; (d) Mixed anisotropic T1-TV
inpainting.

(@)

. 1
PSNRU) = 101Og10 (m) s

wherei, u, € RM” are the vectors associated to the inpainted image and taitfiead image
(unknown in real problems), respectively, and

M?

. L. 1 X
MSE, ug) = WHU —uoll3 = 2 Z(Um — Uom)?.

m=1
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: Anisotropic
Isotropic T1 CDD TLTV
PSNR 20.140 35.497 36.329

Table 1:PSNRvalues for the test image (Figusg

(@) (b)

© | ()

Figure 6: (a) Occluded noisy image; (b) Isotropic T1 inpaigt (c) CDD inpainting; (d) Anisotropic T1-TV
inpainting.

Up next, we show the performance of our new method on a molistrea@xample. A300 x 300
pixel grayscale image was occluded and contaminated%atiBaussian white noise. Figuée
shows the resulting occluded noisy image, along with thieagpioc T1, CDD and anisotropic T1-
TV inpainted images. Once again we observe an improvemettteoquality of the inpainting
with the two-step method, which is reflected on Bf8NRvalues shown on Tabl2
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: Anisotropic
Isotropic T1 CDD TLTV
PSNR 29.127 29.952 30.868

Table 2:PSNRvalues for grayscale image (Figuse

Figure 7: (a) Occluded noisy image; (b) Isotropic T1 inpaigt (c) CDD inpainting; (d) Anisotropic T1-TV
inpainting.

Next we show an example of the performance of our method orica toage. In this case,
the inpainting process was performed separately over thegreen and blue layers of3a0 x
300 pixel image. Here again, a %2 Gaussian white noise was aad#gk toccluded image.
Figure7 shows the occluded noisy image, along with the CDD, isotrdfiiand the anisotropic
T1-TV inpainted images. A close look at Figuréc) shows that CDD inpainting tends to
produce artificial edges, which are not produced by the coethil 1-TV method. Note also
that although no artificial borders are generated with ttiedanethod, significantly better edge
preservation properties are achieved with respect to the pli method. Tabl@& shows the
obtainedPSNRvalues for the three inpainting methods.
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: Anisotropic
Isotropic T1 CDD TLTV
PSNR 20.568 21.360 22.112

Table 3:PSNRvalues for color image (Figurd.

5 CONCLUSIONS

In this article we developed a two-step method for imageimtpay. The first step consists
of implementing a Curvature-Driven Diffusion process, @fhserves to obtain a good approxi-
mation of the gradient of the image inside the occlusion hSucapproximation is then used to
construct an appropriate weighting function and an areggtinducing matrix field. The sec-
ond step consists of using these functions to build a mix&tdnov-Total Variation spatially
varying anisotropic functional, whose global minimizefides the final inpainting.

The use of a CDD inpainting process in the construction ofitbgghting function and the
anisotropy matrix field results in the fact that the well kmowbject-connectivity property of
this method is incorporated into the mixed T1-TV model. Thisng with the spatial adaptivity
and anisotropy features of the mixed T1-TV method resulnimpainting model having both
good object-connectivity and edge preservation progedsgewell as high-quality inpainting
performance over smooth regions.

The performance of the method was shown through severalmgamn which it produced
better results than the CDD and T1 models. Furthermore, @uigh analysis of the color
examples shows that while the CDD inpainting seems to somestproduce little artifacts near
edges inside the occlusions, such artifacts do not appeam wsing our two-step method.

Finally, it is appropriate to mention that there is room farther improvements. For in-
stance, other means of constructing the weighting fundli@md the matrix fieldA can be
explored. Also, if there is adequate availabteriori information about the “expected” image,
that information could be embebed into the model througtithetionsf and A.
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