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Abstract. Free trilateration networks in the 2D and 3D spaapging from a local to a global scale,
are continuously designed and established withde wariety of objectives such as: cartographic,
geodynamics, civil engineering, cadastral amongrasthusing- for example - the Global Positioning
System (GPS) among others Global Navigation SateflystemgGNSS) To evaluate the quality of
the adjustment of a free trilateration network sitviery useful to characterize properly the datum
definition involved. The geodetic datum definitios the set of all conventions, algorithms and
constants necessaries to define and realize thim,ooigentation, scale and their time evolutionaof
Geodetic Reference System (GRS), in such a waythiese attributes are accessible to the users
through occupation, direct or indirect observationthis work, we deal with the adjustment of a two
dimensional free trilateration network constitutgd physical pointswheredistances between these
points have been observed. For the network adjufrites used a coordinate based formulation in a
no stochastic linear model through a underdetemiicensistent system of indirect linear
observational equations. The network point positemsdefined in a Geodetic Reference System of
Cartesian Coordinate (x,y): GRS(x,y). The GRS(sywharacterized by : a) right-handed convention
is adopted for the axis; b) the origin is a poiot specified of the Earth ; c) the ox (+) and oydxjs

do not have specified orientations; d) the scalergth defined of the unit vectors along axd oyis

the meter (SI), and it is realized by the obserdistiances of the trilateration network. The lack of
definition in the origin and orientation of the GRRy) cause a datum defect and a rank-deficiemcy i
the design matrix. The solutiai the adjustment of the free trilateration netwoddled Minimum
Norm Solution with respect to the-Beminorm (R-MINOS) of the underdetermined conststgatem

of indirect linear observational equatioa®btained baseidh an optimum criterionpwhich resolves the
datum problemThe set of the physical points of the trilateratigith coordinates given by the R-
MINOS is the Geodetic Reference Frame of Cartesiand@ate (x,y) GRF(X,y){R-MINOS). In this
work, the GRF(X,yYR-MINOS) is characterized when iR the identity matrix (I) and wheR is a
positive semidefinite matrix. It is shown that, f@requal to I, the realizatioof the origin and
orientation of the GRS(x,y) is given through théillment of the conditions‘No Net Translation”
(NNT) and “No Net Rotation” (NNR) respectively. As a numerical example, the GRF{{Ry)
MINOS) is characterized in the adjustment of a twe-dimensional trilateration network with six
points when R is the identity matrix () and wheisR positive semidefinite matrix.
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l. INTRODUCTION

The geodetic datum definition is the set of all camions, algorithms and constant
necessaries to define and realize the origin, oriemtascale and their time evolution of a
Geodetic Reference System (GRS), in such a way teaethttributes be accessible to the
users through occupation, direct or indirect obsesaalVacaflor, p.2647, 2010).

In this work, we deal with the adjustment of a free -tlumensional trilateration network

constituted by “k” physical points P , where “n” distancess;\i<j,i=1.k,j=1.k

between these points have been observed. For thermkeadjustment , it is used a coordinate
based formulation in a no stochastic linear modebdugh the underdetermined consistent
system of indirect linear observational equationg ; =A x . , also known as “the first

problem of algebraic regression” (Grafarend, p.14, 2006) ; (Grafarend and Awange, p.23,
2012)ye R(A), r(A=q, q=rim, n= number of observed distances)= number of

unknown parameters =rank, m=2k, R(A)= column space ofA _, v.y=Vvector of
observations x ., =vector of unknown parameters.

We were motivated to study the solution of the abowentioned adjustment problem
known as R-MINOS (developed in the following sectioss)ce, for R=I, the Geodetic
Reference Frame of Cartesian Coordinate (x,y) with coambngiven by the solution I-

MINOS designated asGRP(X’ y)I—MINOE, fulfill two important conditions : “No Net
Translation” (NNT) and “No Net Rotation” (NNR) . Let us take into account here that the
NNR condition is used to provide orientation time ewioin in the International Terrestrial
Reference Frame (ITRF) datum definition (Petit and LuzptB4, 2010) In this sense,
investigations on the stability of a geodetic no+éation frame and its implication for the
International Terrestrial Reference Frame were recenilblighed (Kreemer et.al, 2006)
Moreover, the NNT and NNR conditions are involvedha definition of an ideal terrestrial
reference system (Kovalevsky and Mueller, p.7, 39&n the other hand, unlike to a
previous research (Vacaflor, 2010) where the NNT ahiRNonditions were studied ia
rank-deficient Singular Gauss-Markov Model (SGMMstochastidinear model -know we
consider here no stochasti@adjustmentinear model to study these conditions.

The network point positions are defined in a Gead&eference System of Cartesian
Coordinate (x,y): GRS(X,y).

The GRS(x,y) is characterized by : a) a right-handed spstem is adopte; b) the origin
“0” is a pointP nat specified of the Earth ; c) the first and second ragstheox andoy
positive axis respectively with not specified orieimtas; d) the unit of length is the meter (SI)
, and it is realized by the observed distancesefritateration network.

The lack of definition in the origin and orientatiof the GRS(x,y) cause a datum defect
and a rank-deficiencyn—q=3 in the design matrixA, , with d =m-q=3, d= number of

datum defect.

I[I.  SOLUTION R-MINOS OF THE ADJUSTMENT OF A FREE
TRILATERATION NETWORK

Let us consider a free two dimensional trilateration network constituted by “k” physical
points P with coordinategx,y), i=1.kin theGR§xYy), and related through “n”

observed distances, ambt being defined for any epoch, the position and orientation of
theGRYX y).
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Moreover, let us consider that the a priori coordin@t®s/’), i =1...k from the reference

frameGRH,, y,,) are known.
For the network adjustment, it is used a coordinatged formulation in a no stochastic

linear model through the underdetermined consistgstem of indirect linear observational
equations:

Yo =Pt + YERA), r(A=q, g=nm 1)

The lack of definition in the origin and orientatiof the GRS(x,y) cause a datum defect
and a rank-deficiency in (1).

with,

n=number of observationsn= number of unknown parameters.

r =rank; d = number of datum defect.

Yaa = Vector of observations (increments).

Yo =Y 1 =005 = S0, (505 ™= SPa)erer (S ° =S )rever (Sp0k — Sar )] |

s?:\/(Ax?)er(Ayi?)z Ji=lk, j=1.k,i<]j
0 0 o . 0_,,0 0

AX =X =X Ay =Y, Y,

A, = Designor coefficient matrix (“Jacobian”).

a2

Avn=| @i |+ @iy = [00=A —AYS o A, AYS . 0L ST)

| @k-1k |
R(A)= column space ofp, .

X =Vector of unknown parameters (coordinate increments).

X = Kipa — Xr?»a
X, =Vector of unknown coordinates of the poiRtsof the GRF(x,y) expressed in
theGR¥x y).

><m>a = [X:l’ Vi X yk]T

X2 =Vector of known coordinates ofP of the “a priori” or “approximated”
GRF>, Yo) -

X =160 V4 o X0 il
Xma =[0% dy .. dx dy]"; dx=x-x";dy=y -y, i=1k,m=2k

The solution to the adjustment problem in modelk{igwn asx, R-MINOS (Minimum
Norm Solution with respect to the-Beminorm) is obtained based in the optimum criterion
%l = x5 R%, < X"Rx=:| X[, , which resolves the datum problem, witk 2™ representing
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all other vectors solution ofy , =A x .. In this sense, the following definitions and
theorems are given here without demonstration (Gradbaed Schaffrin,p.11,1993).

Definition 1:
Xu . 1S R-MINOS (Minimum Norm Solution with respect tetR —seminorm) of:

Yoa = Aoeing + YERA), 1(A=q ) (2
When:

Yo = Aot ®3)
And with respect to the all other vectors solutioti of y =A% ., xe®™

[0 [ 2= 5 Rox X Rx= X (4)
Theorem 1
X, is R-MINOS if:

R A" || Xy 0
. = (5)
A 0|4, y
With the vector4,, of Lagrange multipliersy, always exists and itis unique if:

R A ]=m (6)
Or equivalently,R+ AT A is regular.
Theorem 2

X =LnaYas 18 R-MINOS of (2) vV yeR(A) when the matrix L, satisfies the
following two conditions:

ALA=A or L=A"; RLA=(RLA' )
A" :=generalized inverse oA .
In this case,Rx, = RLyis always unique.
Hence, using the Definition 1 in the modted. (1) for:

Ruen= e "A=0, q=rKm (8)

| ey = ldENtity matrix
We get the following:
Definition 2:
Xu_, 1S I-MINOS (Minimum Norm Solution with respect toeth—seminorm) of Eq.(1):

Yos = Aueina + YERA) , r(A:=q, g=rKm
WhenEq.(3):
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Yot = Pt
And with respect to the all other vectors solutiotl of y . =A X, xe®™
% |||2 =X, 1%y, < X' Ix=: ||x|||2 9)
In this case, exist a right inverseAof

A=A (AR (10)
With the property:  AA, =1, (12)
Therefore, from the Theorem 2 wily. (8) andEg. (12):

L=A, (12)

It is obtained a unique vector solutiag, I-MINOS (Minimum Norm Solution with
respect to thé —seminorm) ofq. (1) as:

X, =Ly=Ayy=A (A )"y (13)

With Eq. (9), [ = 5 16 X7 D=2

When R is a positive semidefinite matrix, the follagi condition are fulfilled
r{R ,AT]:m or equivalentlyR+ A" A is regular.

The general solution (Grafarend, E.W. y Schaffrin, B,399.10) X, is R-MINOS
(Minimum Norm Solution with respect to tfie—seminorm):

Xy =(R+ATATAT[AR+ATA) ATy (14)

TheEq (14) is independent of the g-inver§g(R+ A" A™A']", hencex, , R-MINOS,
can be obtained as:

Xy =(R+ATATATAR+ATA) Ay (15)

. THE GEODETIC REFERENCE FRAME OF R-MINOS. CHARACTERIZATI ON
OF THE ORIGIN AND ORIENTATION REALIZED OF THE GRS(x,y)

lI.1. To characterize the origin and orientation realizetheflGRS(x,y) by the Geodetic
Reference Frame of Cartesian Coordinate (x,y) with coaiergiven by the, I-MINOS

designated a&SRHX Y), wnee the following methodology is presented:

1) A matrix E, ,which spans the null space éfis introduced with the condition:
AE" =0, o(E) =dxm=3xm, r(E)=d=3 (16)

N R(AT)ci) R(ET) =R"™ (17)

For a free two-dimensional trilateration netwotk, , is (Vacaflor, 2010):
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1 0 .. 1 O

Esmn=| O 1 ... O 1 (18)
-y XX Ly X

2) Itis perfomed and analized the prodisg, as follows:

EpeXvme = EA (AA) 'y =0, , since EA' =0, due to Eq.(16)

Hence,

ESmeMm(l =04 (19)

If E,,is partitioned as:

EL,,
= 20
S [EZMJ (20)
with:
10 ..10
Elom '{o 1..0 1} (21)
E2m=[-% X -¥ % - - XI (22)
Substituting E,,,,of Eq. (20) in Eq. (19) leads to:
0
e
Zen O
= ElXu,, =02a (NNT) (24)
= E2,%., =0 (NNR) (25)
Hence, for R=I heGRAX Y), ynce Of the 1-MINOS (Minimum Norm Solution with
_ AT T Y1
respect to tal —seminorm, I:= identity matrix)x""m =A (AA ) Y fulfill the conditions :

“No Net Translation” (NNT) since EL,.X, =0,,and “No Net Rotation” (NNR) since
E2,. X, =0 respectively (Vacaflor, p.2652, 2010). Hence, theioriand orientation
realized of the GRS(x,y) by ti8RHX V), wnee 1S 9iven through the fulfillment of the
conditions

(i) The centre of gravityC, (X _wios Yi-minos)Of the network as defined by the adjusted
coordinates of th&GRH(X Y), e IS €dual to the centre of gravityg(xo, Y,) of the network
as defined by the approximate coordinates of  theGRHX,,Y,).
Cg(XI—MINOS yI—MINOS):Cg(meO)'

(i) The average orientation of the network as defingdh® approximate coordinates of
the GRH%,, y,) is maintained.
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[11.2 . To characterize the origin and orientation realiakithe GRS(X,y) by the Geodetic
Reference Frame of Cartesian Coordinate (x,y) with cocergiven by theq, —R-

MINOS designated a&SRR X V) unas WeN R is a positive semidefinite matrithe

following methodology is presented:
it is considered that:

R.=diagl 11 000 .. 00 0 (26)

and x, ,R-MINOS is obtained asx, , =(R+ ATA)TAT[AR+ATATA] My according
Eq (15).

Using Eq. (26 and Eq.(1%it is obtained the coordinates of the Geodetic Reteréframe
of R-MINOS: GRH X Y) mimnes:

mez[O 00 dwz d)gv,3 dx,,g dm dx,,A d)gv,s dws d)g\,,6 dx,,e] (27)

Hence, the origin and orientation realized of the GR& by theGRRX Y)x vinos WhEN

R.,=diagl 1 1 O O O .. O O O is given through the fulfillment of the
conditions

a)dx,, =Xy, =X =0=x, =X
D) AW, = Y, ~ VW =0= Yy, =¥/ (28)
) Ay, =Xy, =% =0= X%y, =X

Since theGRH(X ¥), wnee fUlfill the NNT and NNR conditions, then, we considhe |-

MINOS solution more advantageous than the R-MINOS eé€vmaling to (26) - for the two-
epoch geodetic deformation analysis using freetériddion networks.

IV. EXAMPLE. ADJUSTMENT OF A FREE TRILATERATION NETWORK (k=6,
n=9). THE GRF(x,y) OF R-MINOS. CHARACTERIZATION OF THE ORIGIN AND
ORIENTATION REALIZED OF THE GRS(x,y).

Let us consider a free two-dimensional tritatin constituted by “ k=6 physical points
P with coordinategx,y), i = 1..6 in the GREx Yy), and the points related through “n=9”

observed distances‘j’bs(betweenR and P,, see Table 1), andot being definedfor any
epoch, the position and orientation of IGRIX Y).

Moreover, let us consider that the a priori coordis@te y°), i = 1..6 of the reference
frameGRF,, y,) are available (see Table 2).

Copyright © 2016 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



3402 J.L. VACAFLOR

obs obs

j Distance (m) j Distance (m)
S, 3899.4269 S 3298.1854
S.| 3805.8666 .| 2813.9446
Se| 4891.0000 S, | 4203.1897
>3] 3107.9294 Se | 4113.1502
=5 | 2079.9391

Table 1: Observed distances in a two-dimensional trilateration with six points.

Pto. W) y’(m
1 0 0

2 275 3900
3 2250 6300
4 4800 4200
5 2200 3100
6 4900 0

Table 2: Coordinates ofP of a two-dimensional

trilateration from theGRF(X,, Y,) -

To perform the adjustment it is used a coordinateethaformulation in a no stochastic
linear model through the underdetermined consistgstem of indirect linear observational
equations from Eqg. (1), with=9,and m=12:

Yoa =AaXisa » YERA) , r(A:=q=9, g=nkm (29)

r =rank; d = m-q=3= number of datum defect.
Yo =Vector of observations (increments)

Youa =LY;]1= [(ngs_ sz)1(sfgs_ 3?5),---, (S?bs— 3?)’---1 (Sggs_ Sge)]T

= /(M) +(ay))?,

A =X} =X 5 Ayp=y] -y

A, ,=Design or coefficient matrix (“Jacobian”)

Qyy

Aar=| |3 = [0 =D =AY} ooy A, AYY ..., 01U/ )

Qg |

X, »q = Vector of unknown parameters (coordinate increments).
Xi2a = Xiza — sza
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X,,q =Vector of unknown coordinates of the poiRtsof the GRF(x,y) expressed in the
GRIX Y)-

Xiaa = [X0 Vi X6, Yol

Xi» =Vector of known coordinates ofP of the “a priori” or “approximated”
GRF>, Yo) -

Xaa =[X0 Y7 X6, Yol

Xoq=[d% dy .. dx dy]';dx=x-x;dy=y -y’ i=1.6,m=2k=12

The Xy 1-MINOS (Minimum Norm Solution with respect to tthe-seminorm) of Eq.
(29) is according to Eq. (13):
x, =Ly=A,y=A (A )y (30)
[ 35537
34669
19333
-6.7009
-0.6023
- 49059
X =| 883 ™
05382
34452
9.1246
-54463
| -1.5228§

Following the methodology presented in Ill.1 to chasdge the origin and orientation
realized of the GRS(x,y) by the Geodetic Reference ErainCartesian Coordinate (x,y) with
coordinates given by the, I-MINOS designated a&SRR(X Y), ynee it iS Observed that

Ry = A (AAT )ly fulfill the conditions : “No Net Translation” (NNT) since:

EI'lezlem =0,4 (NNT), EzbazXM12xl =0, (NNR) (31)
With:

S 10 ..10 (32)

Ln2= 01 . 01

E2.=[-Y) X -Y, X . —VYo %I (33)
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2

From (9): HXM X\ 1%, =2334324F < X' Ix= ||x13(1|||2

12x1 |||

Hence, the origin and orientation realized of theSBRy) by theaGRR(X ), ynee IS given
through the fulfillment of the conditions

(i) The centre of gravitng(x,_M,Nos, Y, wmos)Of the network as defined by the adjusted
coordinates of the&GRHX y), \,n IS €qual to the centre of gravityg()%, y,) of the network
as  defined by the approximate  coordinates of  theGRHX,,Y,):

Cg (XI—MINOS vanNos): Cg (XO’ yo)-

(i) Maintains the average orientation of the network defined by the approximate
coordinates of th&SRFx, ;) -

To characterize the origin and orientation realizedthef GRS(x,y) by the Geodetic
Reference Frame of Cartesian Coordinate (x,y) given byxthe R-MINOS designated as

GRRX Y): mncs When R is a positive semidefinite matrix , the falilog methodology is
presented:

it is considered that:
Ry,=dagl 11 0 00 .. 000 (34)
And according to Eq. (15}, ,R-MINOS is obtained as:

Xy, = (R+ ATATATTAR+ ATA Ay (35)

0

0

0
-102821
-1.5385
X, = —93077“m
w1 —4.6924
-4.9230
11794
47436
-9.0000

~7.0255

Hence, the origin and orientation realized of the GR&(RY theGRHX Y)x yinos WhEN

Ro,=diagl 1 1 0 0 O .. O O O, is given through the fulfilment of the
conditions

a)dx, =Xy —X =0=x, =X =0m

b)dW, = Yy, — ¥ =0= Yy, =Yy, =0m (36)
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C) Ay, =Xy, =X =0= X, =X; =275

From the applications point of view, the examplevghithat the solution R-MINOS can be
easily implemented - when the conditions of mod8) @e satisfied - in the adjustmentaof
two-dimensional free GPS vector networksenstituted by “k” physical points related
through “n” observed baselines. This type of network ranging from a local to a globedle,
are continuously designed and established with ae widriety of objectives such as:
cartographic, geodynamics, civil engineering, cadaatraing others.

V.CONCLUSION

In dealing with the adjustment of a two-dimensiofmak trilateration network constituted
by the physical pointf?,i = 1.k, wheredistances between these points have been observed ,

it is shown the solutiorx, ,R-MINOS (Minimum Norm Solution with respect toghR —

seminorm, R is a positive semidefinite matrix) usingpardinate based formulation in a non
stochastic linear model through the underdetermin@usistent system of indirect linear

observational equation¥ht = hatma | Y€ R(A) ((A=d q=rXM ghtained based in the
optimal criterion, which resolves the datum problem|x;, ||i = Xy R, < X" Rx=: ||X||i

xeR™ \where" X' are all other vectors solution Ot = a1t is shown that, for R=l
the coordinates of ttGRHX V), ynae 9iven by the I-MINOS (Minimum Norm Solution

_ AT 7)1
with respect to the —seminorm, I:= identity matrix): me—A(AA) Y fulfill the
conditions : “No Net Translation” (NNT) since EL.X, =0,5and “No Net Rotation”

(NNR) since E2,, %, =0, respectively . Hence, the origin and orientationizedl of the
GRS(x,y) by the&GRHX ¥), \inee 1S 9iven through the fulfillment of the conditiongi) The
centre of gravitng(x,,M,Nos, y,,M,NOS)of the network as defined by the adjusted coordmate
of the GRR(X ), _unce IS €ual to the centre of gravig, (X, ¥,) of the network as defined
by the approximate coordinates of tBRFX,,5): Cy(X_mmos Yimmos)=Cy(Xo: Yo) 5 (ii)

Maintains the average orientation of the network diseby the approximate coordinates of
theGRRx,, Y,) - It IS also shown that, when

Rm=diagl 1 1 0 0 O .. 0 0 O,%, ,RMINOS can be obtained as
Xy, =(R+ ATATAT[AR+AA) A"y , where the origin and orientation realized of the
GRS(x,y) by théSRAXY): wnos IS diven through the fulfilment of the conditians
a)dx,, =Xy, =X =0=X,, =X ;b)dy, =y, — ¥ =0=y,, = y/and

c)dx,, = Xy, -x3=0= Xy, =X,
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