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Abstract. Free trilateration networks in the 2D and 3D space, ranging from a local to a global scale, 
are continuously designed and established with a wide variety of objectives such as: cartographic, 
geodynamics, civil engineering, cadastral among others, using – for example - the Global Positioning 
System (GPS) among others Global Navigation Satellite Systems (GNSS). To evaluate the quality of 
the adjustment of a free trilateration network it is very useful to characterize properly the datum 
definition involved. The geodetic datum definition is the set of all conventions, algorithms and 
constants necessaries to define and realize the origin, orientation, scale and their time evolution of a 
Geodetic Reference System (GRS), in such a way that these attributes are accessible to the users 
through occupation, direct or indirect observation. In this work, we deal with the adjustment of a two-
dimensional free trilateration network constituted by physical points, where distances between these 
points have been observed. For the network adjustment, it is used a coordinate based formulation in a 
no stochastic linear model through a underdetermined consistent system of indirect linear 
observational equations. The network point positions are defined in a Geodetic Reference System of 
Cartesian Coordinate (x,y): GRS(x,y). The GRS(x,y) is characterized by : a) right-handed convention 
is adopted for the axis; b) the origin is a point not specified of the Earth ; c) the ox (+) and oy(+) axis 
do not have specified orientations; d) the scale or length defined of the unit vectors along ox and oy is 
the meter (SI), and it is realized by the observed distances of the trilateration network. The lack of 
definition in the origin and orientation of the GRS(x,y) cause a datum defect and a rank-deficiency  in 
the design matrix. The solution of the adjustment of the free trilateration network called Minimum 
Norm Solution with respect to the R–seminorm (R-MINOS) of the underdetermined consistent system 
of indirect linear observational equations is obtained based in an optimum criterion, which resolves the 
datum problem. The set of the physical points of the trilateration with coordinates given by the R-
MINOS is the Geodetic Reference Frame of Cartesian Coordinate (x,y): GRF(x,y)-(R-MINOS). In this 
work, the GRF(x,y)-(R-MINOS) is characterized when R is the identity matrix (I) and when R is a 
positive semidefinite matrix. It is shown that, for R equal to I, the realization of the origin and 
orientation of the GRS(x,y) is given through the fulfillment of the conditions “No Net Translation” 
(NNT) and “No Net Rotation” (NNR) respectively. As a numerical example, the GRF(x,y)-(R-
MINOS) is characterized in the adjustment of a free two-dimensional trilateration network with six 
points when R is the identity matrix (I) and when R is a positive semidefinite matrix. 
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I. INTRODUCTION 

The geodetic datum definition is the set of all conventions, algorithms and constants 
necessaries to define and realize the origin, orientation, scale and their time evolution of a 
Geodetic Reference System (GRS), in such a way that these attributes be accessible to the 
users through occupation, direct or indirect observation. (Vacaflor, p.2647, 2010). 

In this work, we deal with the adjustment of a free two-dimensional trilateration network 
constituted by “ k ” physical points iP  , where “n” distances o b s

i js , ji  , ki  ...1 , kj ...1   

between these points have been observed.  For the network adjustment , it is used a coordinate 
based formulation in a no stochastic linear model through the underdetermined consistent 
system of indirect linear observational equations : 11 mxnxmnx xAy   , also known as “the first 

problem of algebraic regression” (Grafarend, p.14, 2006) ; (Grafarend and Awange, p.23, 
2012),  ARy , qAr :)( , mnq  , n  number of observed distances; m number of 

unknown parameters r rank, km 2 , )(AR = column space of nxmA , 1n xy vector of 

observations , 1mxx vector of unknown parameters. 

We were motivated to study the solution of the above mentioned adjustment problem 
known as R-MINOS (developed in the following sections) since, for R=I, the Geodetic 
Reference Frame of Cartesian Coordinate (x,y) with coordinates given by the solution I-

MINOS designated as MINOSIyxGRF ),( , fulfill two important conditions : “No Net 
Translation” (NNT) and  “No Net Rotation” (NNR) . Let us take into account here that the 
NNR condition is used to provide orientation time evolution in the International Terrestrial 
Reference Frame (ITRF) datum definition (Petit and Luzum, p.34, 2010). In this sense, 
investigations on the stability of a geodetic no-net-rotation frame and its implication for the 
International Terrestrial Reference Frame were recently published (Kreemer et.al, 2006).  
Moreover, the NNT and NNR conditions are involved in the definition of an ideal terrestrial 
reference system (Kovalevsky and Mueller, p.7, 1989). On the other hand, unlike to a 
previous research (Vacaflor, 2010) where the NNT and NNR conditions were studied in a 
rank-deficient Singular Gauss-Markov Model (SGMM) – stochastic linear model -, know we 
consider here a no stochastic adjustment linear model to study these conditions. 

The network point positions are defined in a Geodetic Reference System of Cartesian 
Coordinate (x,y): GRS(x,y).  

The GRS(x,y) is characterized by : a) a right-handed axis system is adopted ; b) the origin 
“o” is a point P not specified of the Earth ; c) the first and second rays are the ox and oy 
positive axis respectively with not specified orientations; d) the unit of length is the meter (SI) 
, and it is realized by the observed distances of the trilateration network. 

The lack of definition in the origin and orientation of the GRS(x,y) cause a datum defect 
and a rank-deficiency 3qm  in the design matrix nxmA  with 3:  qmd , d  number of 

datum defect. 
 
II . SOLUTION R-MINOS OF THE ADJUSTMENT OF A FREE 

TRILATERATION NETWORK 

Let us consider a free two dimensional trilateration network constituted by “ k ” physical 
points iP  with coordinates ),( ii yx , ki  ...1 in the ),( yxGRS , and related through “ n” 
observed distances, and not being defined for any epoch, the position and orientation of 
the ),( yxGRS .  
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 Moreover, let us consider that the a priori coordinates ),( 00
ii yx , ki  ...1 from the reference 

frame ),( 00 yxGRF are known. 

For the network adjustment, it is used a coordinate based formulation in a no stochastic 
linear model through the underdetermined consistent system of indirect linear observational 
equations: 

11 mxnxmnx xAy    ,  ARy , qAr :)( , mnq                                     (1) 

The lack of definition in the origin and orientation of the GRS(x,y) cause a datum defect 
and  a rank-deficiency in (1).  

with,  
n number of observations; m number of unknown parameters. 
r rank; d  number of datum defect.  
1n xy vector of observations (increments). 

T
kk

obs
kkij

obs
ij

obsobs
ijnx ssssssssyy )](),...,(),...,(),[(][ 0

,1,1
00

1313
0
12121    

20200 )()( ijijij yxs  , ki ...1  , kj ...1  , ji   

000
iji j xxx   ; 000

iji j yyy   

n xmA Design or coefficient matrix (“Jacobian”). 
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

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 ; )/1].(0,...,,,...,,,...,0[ 00000
1 ijijijijijxmij syxyx   

)(AR = column space of nxmA  

 1mxx Vector of unknown parameters (coordinate increments). 
0

111 mxmxmx XXx                         

1mxX Vector of unknown coordinates of the pointsiP  of the GRF(x,y) expressed in   

the ),( yxGRS . 

T
kkmx yxyxX ], ...,[ 111   

0
1mxX Vector of known coordinates of iP  of the “a priori” or “approximated” 

),( 00 yxGRF . 

T
kkmx yxyxX ], ...,[ 000

1
0
1

0
1   

T
kkmx dydxdydxx ]...[ 111  ; 0

iii xxdx   ; 0
iii yydy  , ki ...1 , km 2  

The solution to the adjustment problem in model (1) known as 
1mxMx  R-MINOS (Minimum 

Norm Solution with respect to the R–seminorm) is obtained based in the optimum criterion 
22

::
R

T
M

T
MRM xRxxRxxx  , which resolves the datum problem, with mx   representing  
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all other vectors solution of 11 mxnxmnx xAy  . In this sense, the following definitions and 
theorems are given here without demonstration (Grafarend and Schaffrin,p.11,1993). 

Definition 1: 

1mxMx  is R-MINOS (Minimum Norm Solution with respect to the R –seminorm) of: 

11 mxnxmnx xAy    ,  ARy , qAr :)(                                                   (2)             

When:  

11 mxMnxmnx xAy                                                                                   (3) 

 And with respect to the all other vectors solution "" x  of 11 mxnxmnx xAy  , mx  : 

22
::

R

T
M

T
MRM xRxxRxxx                                                                (4) 

Theorem 1: 

1mxMx  is R-MINOS if: 


























y

x

A

AR

M

M
T 0

.
0 

                                                                       (5) 

With the vector 
1mxM of Lagrange multipliers,

1mxMx always exists and it is unique if: 

  mARr T ,                                                                                     (6) 

Or equivalently, AAR T  is regular.  

Theorem 2 : 

11 nxmxnM yLx
mx
  is R-MINOS of (2)   ARy  when the matrix mxnL satisfies the 

following two conditions: 

AALA  or  AL ;  TRLARLA                                                     (7) 

 :A generalized inverse of A . 

In this case, RLyRxM  is always unique. 

Hence, using the Definition 1 in the model Eq. (1) for: 

mxmmxm IR  ,  qAr :)( , mnq                                                            (8) 

mxmI Identity matrix 

We get the following: 

Definition 2: 

1mxMx  is I-MINOS (Minimum Norm Solution with respect to the I  –seminorm) of Eq.(1): 

11 mxnxmnx xAy    ,  ARy  , qAr :)( , mnq                                                 

When Eq.(3):  
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11 mxMnxmnx xAy                                                                                     

 And with respect to the all other vectors solution "" x  of 11 mxnxmnx xAy  , mx  : 

22
::

I

T
M

T
MIM xIxxIxxx                                                                   (9) 

  In this case, exist a right inverse ofA : 

1)(:   TT
RI AAAA                                                                               (10)  

With the property:       nRI IAA                                                                                        (11)                          

Therefore, from the Theorem 2 with Eq. (8) and Eq. (12): 

                          RIAL:                                                                                               (12)                        

It is obtained a unique vector solution 
1mxMx  I-MINOS (Minimum Norm Solution with 

respect to the I  –seminorm) of Eq. (1) as:  

  yAAAyALyx TT
RIMmx

1

1

                                                           (13) 

With Eq. (9),                             
22

::
I

T
M

T
MIM xIxxIxxx                    

 
When R is a positive semidefinite matrix, the following condition are fulfilled 
  mARr T ,  or equivalently AAR T   is regular.  

 
The general solution (Grafarend, E.W. y Schaffrin, B, 1993, p.10) 

1mxMx  is R-MINOS 

(Minimum Norm Solution with respect to the R –seminorm): 

yAAARAAAARx TTTT
M mx

  ])([)( 11

1
                                           (14) 

The Eq. (14) is independent of the g-inverse  ])([ 1 TT AAARA , hence,
1mxMx , R-MINOS,  

can be obtained as: 

                      yAAARAAAARx TTTT
M mx

111 ])([)(
1

                                     (15) 

III.  THE GEODETIC REFERENCE FRAME OF R-MINOS. CHARACTERIZATI ON 
OF THE ORIGIN AND ORIENTATION REALIZED OF THE GRS(x,y) 
 
III.1. To characterize the origin and orientation realized of the GRS(x,y) by the Geodetic 
Reference Frame of Cartesian Coordinate (x,y) with coordinates given by the 

1mxMx  I-MINOS 

designated as MINOSIyxGRF ),( , the following methodology is presented: 

1) A matrix xmE3 which spans the null space of A is introduced with the condition: 

0TAE  , xmdxmEo 3)(   , 3)( dEr                                     (16)                         

                     mTT ERAR 


)()(                                                                          (17) 

For a free two-dimensional trilateration network, xmE3  is (Vacaflor, 2010): 
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2) It is perfomed and analized the product MEx as follows: 

13
1

13 0)( x
TT

mxMxm yAAEAxE    , since 0TEA , due to Eq.(16) 

Hence,  

133 0
1 xMxm mx

xE                                                                                   (19) 

If xmE3 is partitioned as: 











xm

xm
xm E

E
E

1

2
3 2

1
:                                                                                  (20) 

with: 











10...10

01...01
:12xmE                                                                   (21) 

]...[:2 000
2

0
2

0
1

0
11 kkxm xyxyxyE                                (22)   

Substituting xmE3 of Eq. (20) in Eq. (19) leads to: 



















11

12

1

2

0

0

2

1
1

x

x
M

xm

xm

mx
x

E

E
                                                                        (23) 

        122 0.1
1 xMxm mx

xE    (NNT)                                                                  (24)    

         111 02
1 xMxm mx

xE     (NNR)                                                                  (25) 

Hence, for R=I  the MINOSIyxGRF ),(  of the  I-MINOS (Minimum Norm Solution with 

respect to the I  –seminorm, I:= identity matrix) 
  yAAAx TT

Mmx

1

1




   fulfill the conditions : 
“No Net Translation” (NNT) since 122 0.1

1 xMxm mx
xE  and  “No Net Rotation” (NNR) since 

111 02
1 xMxm mx

xE   respectively (Vacaflor, p.2652, 2010). Hence, the origin and orientation 

realized of the GRS(x,y) by the MINOSIyxGRF ),(  is given through the fulfillment of the 
conditions:  

(i) The centre of gravity  MINOSIMINOSIg yxC  , of the network as defined by the adjusted 

coordinates of the MINOSIyxGRF ),(  is equal to the centre of gravity  00, yxCg  of the network 

as defined by the approximate coordinates of the ),( 00 yxGRF , 

 M INOSIM INOSIg yxC  , =  00, yxCg . 

(ii) The average orientation of the network as defined by the approximate coordinates of 
the ),( 00 yxGRF is maintained. 

.  
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III.2 . To characterize the origin and orientation realized of the GRS(x,y) by the Geodetic 
Reference Frame of Cartesian Coordinate (x,y) with coordinates given by the 

1mxMx  R-

MINOS designated as MINOSRyxGRF ),(  when R is a positive semidefinite matrix , the 

following methodology is presented: 
it is considered that: 
 

)000...000111(: diagRmxm                           (26) 

 
and 

1mxMx ,R-MINOS is obtained as yAAARAAAARx TTTT
M mx

111 ])([)(
1

   according 

Eq. (15). 

Using Eq. (26) and Eq.(15) it is obtained the coordinates of the Geodetic Reference Frame 
of R-MINOS: MINOSRyxGRF ),( :  

]000[
6655443321 MMMMMMMMMM dydxdydxdydxdydxdyx

mx
      (27) 

Hence, the origin and orientation realized of the GRS(x,y) by the MINOSRyxGRF ),(  when  

)000...000111(: diagRmxm   is given through the fulfillment of the 
conditions:  

a) 0
1

0
1 111

0 xxxxdx MMM     

b) 0
1

0
1 111

0 yyyydy MMM                                                                                     (28) 

c) 0
2

0
2 222

0 xxxxdx MMM   

Since the MINOSIyxGRF ),(  fulfill the NNT and NNR conditions, then, we consider the I-

MINOS solution more advantageous than the R-MINOS - R according to (26) - for the two-
epoch geodetic deformation analysis using free trilateration networks. 

IV . EXAMPLE. ADJUSTMENT OF A FREE TRILATERATION NETWORK (k=6, 
n=9). THE GRF(x,y) OF R-MINOS. CHARACTERIZATION OF THE ORIGIN  AND 
ORIENTATION REALIZED OF THE GRS(x,y). 

Let us consider a free two-dimensional trilateration constituted by “ k =6”  physical points 

iP  with coordinates ),( ii yx , 6 ...1i  in the ),( yxGRS , and the points related through “ n=9” 
observed distances o b s

ijs (between iP  and jP , see Table 1), and not  being defined for any 

epoch, the position and  orientation of the ),( yxGRS .  

 Moreover, let us consider that the a priori coordinates ),( 00
ii yx , 6 ...1i  of the reference 

frame ),( 00 yxGRF  are available (see Table 2).  
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o b s
ijs

 
Distance (m) 

o b s
ijs

 
Distance (m) 

1 2s  3899.4269 3 4s  3298.1854 

15s  3805.8666 4 5s  2813.9446 

16s  4891.0000 4 6s  4203.1897 

2 3s
 

3107.9294 5 6s  4113.1502 

2 5s
 

2079.9391   

Table 1: Observed distances in a two-dimensional trilateration with six points. 

Pto.         )(0 mx        )(0 my  
  1          0         0 
  2         275     3900 
  3        2250     6300 
  4        4800     4200 
  5         2200     3100 
  6        4900        0 

Table 2: Coordinates of iP  of a two-dimensional 

trilateration from the ),( 00 yxGRF . 

To perform the adjustment it is used a coordinate based formulation in a no stochastic 
linear model through the underdetermined consistent system of indirect linear observational 
equations from Eq. (1), with n 9, and 12m : 

                   11212919 xxx xAy    ,   ARy  , 9:)( qAr , mnq                             (29)                     

r rank; 3:  qmd = number of datum defect. 

19xy vector of observations (increments) 

To b s
ij

o b s
ij

o b so b s
ijx ssssssssyy )](),...,(),...,(),[(][ 0

5 65 6
00

1 51 5
0
1 21 219   

20200 )()( ijijij yxs  , 

000
iji j xxx   ; 000

iji j yyy   

129xA Design or coefficient matrix (“Jacobian”) 

























4 6

1 2

1 29

...

...







i jxA  ; )/1].(0,...,,,...,,,...,0[ 00000

121 ijijijijijxij syxyx   

 112xx Vector of unknown parameters (coordinate increments). 
0

112112112 xxx XXx                         

J.L. VACAFLOR3402

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

112xX Vector of unknown coordinates of the pointsiP  of the GRF(x,y) expressed in the 

),( yxGRS . 

T
x yxyxX ], ...,[ 6611112   

0
11 2xX Vector of known coordinates of iP  of the “a priori” or “approximated” 

),( 00 yxGRF . 

T
x yxyxX ], ...,[ 0

6
0
6

0
1

0
1

0
112   

T
x dydxdydxx ]...[ 6611112  ; 0

iii xxdx   ; 0
iii yydy  , 6...1i , 122  km  

The 
112xMx   I-MINOS (Minimum Norm Solution with respect to the I  –seminorm) of Eq. 

(29) is according to Eq. (13): 

  yAAAyALyx TT
RIM x

1

112

                                                        (30) 

                                       mx
xM


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




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
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



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


















5228.1

4463.5

1246.9

4452.3

5382.0

8837.2

9059.4

6023.0

7009.6

9333.1

4669.3

5537.3

112
   

Following the methodology presented in III.1 to characterize the origin and orientation 
realized of the GRS(x,y) by the Geodetic Reference Frame of Cartesian Coordinate (x,y) with 
coordinates given by the 

1mxMx  I-MINOS designated as MINOSIyxGRF ),( , it is observed that 

  yAAAx TT
M x

1

112


    fulfill the conditions : “No Net Translation” (NNT) since:  

 12122 0.1
112 xMx x

xE   (NNT) , 11121 02
112 xMx x

xE   (NNR)                          (31) 

With: 











10...10

01...01
:1 1 22xE                                                                   (32) 

]...[:2 0
6

0
6

0
2

0
2

0
1

0
1121 xyxyxyE x                                (33)   
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From  (9):  
2

112
22

:4321.233:
112 Ix

T
M

T
MIM xIxxmIxxx

x
 . 

Hence, the origin and orientation realized of the GRS(x,y) by the MINOSIyxGRF ),(  is given 
through the fulfillment of the conditions:  

(i) The centre of gravity  MINOSIMINOSIg yxC  , of the network as defined by the adjusted 

coordinates of the MINOSIyxGRF ),(  is equal to the centre of gravity  00, yxCg  of the network 

as defined by the approximate coordinates of the ),( 00 yxGRF , 

 M INOSIM INOSIg yxC  , =  00, yxCg . 

(ii) Maintains the average orientation of the network as defined by the approximate 
coordinates of the ),( 00 yxGRF . 

To characterize the origin and orientation realized of the GRS(x,y) by the Geodetic 
Reference Frame of Cartesian Coordinate (x,y) given by the 

1mxMx  R-MINOS designated as 

MINOSRyxGRF ),(  when R is a positive semidefinite matrix , the following methodology is 
presented: 

it is considered that: 

)000...000111(:1212 diagR x                           (34) 

And according to Eq. (15)
112xMx ,R-MINOS is obtained as: 

                       yAAARAAAARx TTTT
M x

111 ])([)(
112

                                    (35) 

 mx
xM
























































0255.7

0000.9

7436.4

1794.1

9230.4

6924.4

3077.9

5385.1

2821.10

0

0

0

112
 

Hence, the origin and orientation realized of the GRS(x,y) by the MINOSRyxGRF ),(  when 

)000...000111(:1212 diagR x  , is given through the fulfillment of the 
conditions:  

a) mxxxxdx MMM 00 0
1

0
1 111

    

b) myyyydy MMM 00 0
1

0
1 111

                                                             (36) 
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c) mxxxxdx MMM 2750 0
2

0
2 222

  

From the applications point of view, the example shows that the solution R-MINOS can be 
easily implemented - when the conditions of model (29) are satisfied - in the adjustment of a 
two-dimensional free GPS vector networks, constituted by “ k ”  physical points related 
through “ n” observed baselines. This type of network ranging from a local to a global scale, 
are continuously designed and established with a wide variety of objectives such as: 
cartographic, geodynamics, civil engineering, cadastral among others. 

V.CONCLUSION 

In dealing with the adjustment of a two-dimensional free trilateration network constituted 
by the physical points iP , ki ...1 , where distances between these points have been observed , 

it is shown the solution 
1mxMx ,R-MINOS (Minimum Norm Solution with respect to the R –

seminorm, R is a positive semidefinite matrix) using a coordinate based formulation in a non 
stochastic linear model through the underdetermined consistent system of indirect linear 

observational equations 11 mxnxmnx xAy   ,  ARy , qAr :)( , mnq  , obtained based in the 

optimal criterion, which resolves the datum problem : 
22

::
R

T
M

T
MRM xRxxRxxx  , 

mx  , where "" x  are all other vectors solution of 11 mxnxmnx xAy  . It is shown that, for R=I 
the coordinates of the MINOSIyxGRF ),(   given by the  I-MINOS (Minimum Norm Solution 

with respect to the I  –seminorm, I:= identity matrix) :   yAAAx TT
Mmx

1

1


  fulfill the 

conditions : “No Net Translation” (NNT) since 122 0.1
1 xMxm mx

xE  and  “No Net Rotation” 
(NNR) since 111 02

1 xMxm mx
xE   respectively . Hence, the origin and orientation realized of the 

GRS(x,y) by the MINOSIyxGRF ),(  is given through the fulfillment of the conditions : (i) The 

centre of gravity  MINOSIMINOSIg yxC  , of the network as defined by the adjusted coordinates 

of the MINOSIyxGRF ),(  is equal to the centre of gravity  00, yxCg  of the network as defined 

by the approximate coordinates of the ),( 00 yxGRF ,  MINOSIMINOSIg yxC  , =  00, yxCg  ; (ii) 

Maintains the average orientation of the network as defined by the approximate coordinates of 
the ),( 00 yxGRF . It is also shown that, when 

)000...000111(: diagRmxm  ,
1mxMx ,R-MINOS can be obtained as 

yAAARAAAARx TTTT
M mx

111 ])([)(
1

   , where the origin and orientation realized of the 

GRS(x,y) by the MINOSRyxGRF ),(  is given through the fulfillment of the conditions: 

a) 0
1

0
1 111

0 xxxxdx MMM  ;b) 0
1

0
1 111

0 yyyydy MMM  and 

c) 0
2

0
2 222

0 xxxxdx MMM  . 

 
 
 

 

 

Mecánica Computacional Vol XXXIV, págs. 3395-3406 (2016) 3405

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

VI. REFERENCES 

- Grafarend, W.E. and Schaffrin, B. (1993): Ausgleichungsrechnung in linearen Modellen. 
Mannheim; Leipzig; Wien; Zürich: BI-Wiss.-Verl. ISBN: 3-411-16381-X, 483p. 

- Grafarend, W.E. (2006): Linear and nonlinear models: fixed effects, random effects, and mixed 
models. Hubert & Co. GmbH & Co. Kg, Göttingen. Walter de Gruyter GmbH & Co. KG, 10785 
Berlin. ISBN-13: 978-3-11-016216-5, 773p. 

- Grafarend, W.E. and Awange, J.L. (2012): Applications of Linear and Nonlinear Models. Fixed 
Effects, Random Effects, and Total Least Squares. Springer. Heidelberg. New York. 
Dordrecht.London. ISBN 978-3-642-22240-5,1027p. 

- Kovalevsky, J., Mueller, I.I. and Kolaczek, B. (1989): Reference Frames in Astronomy and 
Geophysics. Dordrecht, The Netherlands. Kluwer Academic Publishers. ISBN-13: 978-94-010-6909-0, 
469p. 

- Kreemer, C., Lavallée, D.A., Blewitt, G. and Holt, W.E. (2006): On the stability of a geodetic no-
net-rotation frame and its implication for the International Terrestrial Reference Frame. Geophysical 
Research Letters, Vol. 33,pp.1-5. 

- Petit, G. and Luzum, B. (2010):  IERS Conventions (2010). IERS Technical Note No.36.  Verlag 
des Bundesants fur katographie und Geodasie. Frankfurt and Maim. ISSN: 1019-4568.179p. 

- Vacaflor, J. L. (2010): Geodetic datum and No Net Translation (NNT), No Net Rotation (NNR) 
conditions from transformation parameters, a reference frame and a selection matrix. Mecánica 
Computacional, Vol. XXIX, Eduardo N. Dvorkin, Marcela B. Golschmit y Mario A. Storti (Eds). 
Asociación Argentina de Mecánica Computacional. Editorial: Imprenta Macagno S.R.L. Santa Fe. 
ISSN: 1666-6070, pp. 2647-2653. 

J.L. VACAFLOR3406

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


