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Abstract. Seismic methods of subsurface exploration are based on mechanicabreaagation and
the numerical modeling of these phenomena is a worthy tool that can be agplecbmplement. Since
small regions of Earth’s crust are studied, it is necessary to condiderkding boundary conditions for
solving the wave equations efficiently. Therefore, this work presengsigation of low-order absorbing
boundary conditions at the artificial boundaries of the computational dowitirthe purpose of mini-
mizing spurious reflections. Laboring on a surféGavhich separates disturbed and undisturbed regions
of the domain, the equations for the absorbing boundary conditons avedi&om kinematic condi-
tions, considering continuity of the displacements ac®ssd dynamic conditions, using momentum
equations of the wave fronts arriving normally$cand expressions for the strain energy density along
S. The arguments to obtain non-reflecting artificial boundaries are caniefdr the more general case,
through the generalized Hooke’s law. In this way, an isotropic medium isdedlun this derivation.
The performance of these absorbing boundary conditions is illustratetiffierent models of effective
anisotropy -vertically and tilted transversely isotropic media- and, obvipfiysotropic media. The
numerical simulations use these absorbing boundary conditions to ptepemzes in anisotropic media
using an iterative domain decomposition finite element procedure that is implehiem@chines with
parallel architecture.
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1 INTRODUCCION

The numerical simulation of the seismic wave propagati@naluable tool for understand-
ing geophysical phenomena and interpreting the field dadicplarly in hydrocarbon explo-
ration and production. The regions of study are small zoridheo Earth’s crust where the
computational domain has to behave as a unbounded areais c#nario, it is important to
solve the wave equation with absorbing boundary condit{&lC) in isotropic and anisotropic
media.

Classical procedure for the implementation of ABC is proposgdEngquist and Majda
(1977. However,they present problems in some anisotropic mdekafectly Matched Layer
(PML) is implemented byBérenger(1994 for electromagnetic waves and can be seen its
efficiency for elastic waves iollino and Tsogkg2001). It should be noted that when us-
ing PML the wave equation must be written as a first-orderesgsin velocity and stress.
Komatitsch and Trom§2003 reformulate the classical PML condition and solve thetelas
wave equation written as a second-order system in dispkaceamd using finite element tech-
nique.

The idea of using the information of the wavefronts in anigoic elastic media has been
presented bécache et a[2010 andSavadatti and Gudaif2012. Also, Boillot et al. (2015
use the information of wave-front sets following the sloaseurves (2-D) or slowness surfaces
(3-D) in tilted transverse isotropic media, deriving londer absorbing boundary conditions.

In this work, following the idea of.overa and Santogl 988, we present a development to
obtain low-order absorbing boundary conditions in thefiarél borders of the model that limit
the computational area. These conditions can be appliedlte slastic or viscoelastic wave
propagation written as a single second-order equationranebdia with any type of anisotropy.
We use an iterative domain decomposition finite elementqatore that is implemented in ma-
chines with parallel architecture imperative for thremensional problems.

2 FORMULATION OF THE ANISOTROPIC PROBLEM

Let 2 be an open bounded domaid, C R? with artificial boundaried". Let u(x,t) =
(u1(x,t),us(x,t), us(x,t)) be the displacement and ebe an external source. Wave propaga-
tion phenomena in the time-space domain are governed byjtragien

9%u(x, t)

p(x)T -V r(ux,t)=f, xeQ, t>0, (1)

wherep is the density and is the stress tensor.

We choose to work in the space-frequency domain becausthé isatural domain for deal-
ing with attenuation and dispersion phenomena. For exaniptepresence of fractures with
some preferential orientation induces this kind of effects

Taking Fourier transform in the time domain, the equatirbecomes

—p(x)wHi(x,w) — V- 7ru(x,w)) =f, x€Q (2)
The stress tensor, is related to the strain tensat,by the Hooke’s law

Tij(uvw) = Zpijkl(xaw)gkl(u)a (ivjy kal - 1a 2a 3)7 (3)
k,l

being p the fourth-rank stiffness tensor with symmetry propertlest are manifested in the
scalar strain-energy density given by (fe@dau and Lifshit£1959; Aki and Richard$1980)
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Figure 1: Surfac&' moving with velocity and separating disturbed zone of othetisturbed.

1 1
W = 5Tii€ij = 5Pijki€ijki 4)

To solve the differential equatio) it is necessary to establish boundary conditions.
3 ABSORBING BOUNDARY CONDITIONS
The ABC for the artificial boundary is given by

(=r(u(z,w)y v, —7(u(z,w))rv - X' —7(u(z,w)y - x?) (5)
= iwBy(u(r,w) - v,u(z,w) -y, ulr,w) x?), xel.

Let’s suppose that a surfatemoves with velocityc and separates one disturbed zone of
another undisturbed as shown in Figtrd_et u® be the displacement vector, thafi# 0 in the
disturbed region and® = 0 in the undisturbed region. On the surface, the followingdittons
must be satisfied.

3.1 Kinematic conditions

The displacement is continuous across the surface sathatt) = 0 onT". Therefore,

c
ous

al‘ ul X
andv is normal toI'. So that
out
Vu; =y, Vu; -v=y-v=v and = 4
ov
Hence
oul ou§ Ou§ ous ( )
= s\, V9,
8I17 8@’ 81'3 81/ b F2 s
and

ouf  Oui  Ouf
ouy _ Oz _ Oxy _ Ous (6)

ov 1 Vg Vs

Note that also must be met

ul(xy 4 cdtvy, g + cotvg, T3 + cotvs, t + 0t)
uzc ouf
8J}j I/jCét -+ Wét = 0

— uq?(x17'r27x37t> +
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Figure 2: The volume of the prismatic element with unit ndrmand area elements is given bydT'cdt.

Thus, on the surface

oui  Oui  Oug c
5 + 5% = ot +cVu;-v=0 on I. (7)

From 6) and (/) we obtain the expressions

C

ouf ouf ouf
low  Gm 10w g 10w

ox1 ox3 _

v, cOt vy ¢t vy Ot

(8)

3.2 Dynamic conditions

The dynamic conditions are obtained by applying the law afmaotum conservation. Figure
2 shows a prismatic element whose volumé&’js= 6I'cit and its unit normal ig. According
to the expression of momentum written byeve (1944

d
L pacav, = / F, T
dt Jy, 5S

Asuf =0onI'=S

fﬁét (% st pudes> dt = p (W§(x1, o, x3,t + 6t) — uS (21, T2, T3,1)) Vi
= pu§(xq, x9, x3,t + 0t)cdtol
t+0t
= [ ([f5g Feudl) dt.
Then, the change of momentum is equal to the integral of tintleeatraction acting through the
surfacel’. The traction is
Foi=—Ti v

wherer; ; is given by @).
Therefore,

t+4t
P (21, T2, 23,1 + 9t)cotol = / / (—7,v;)dl = (—7; jv)0téT.
¢ ss

Forét anddT" tending to zero,

e ow
Cu; = —T; jVj = =V
pCu; 1,7V Oe; J
In vector notation the previous equation oms
pcu’ = —1v = —F.

Projecting on the local coordinate system, we obtain

pct’ v =—1v-v, pca®-x'=—1v-x!, pca®-x?=—1v-%° (9)
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and we definer® = (vf, v, v5)" being

1 1 1 1 1 1
v = —0 v = iy, v =t xt = Salyg,  vs = —ul eyt = —ad (20)
c c c c c c
The equations9) in function of the new variables become
v = —1U -1, Epus = —1v -, Apvs = —1v -2 (11)

To also write the equatiorl{) as a function obf, v5 y v5. OnI the strains can be expressed
o _ Lo 0
Eij(u ) N 5(81'] * 3.71:1)

1 1 1
Ei]’(uc) = —5 (l/j—ﬂg + I/lgu;> . (12)

C

and using §) we obtain

3.3 Anisotropic form of the ABC

The four subscripts of the stiffness tensor are reducedadaowing Voigt’s notation and
the stresses and strains are written as

T11 pii pi2 piz 0O 0 0 €11
T2 Pa1 pa2 p23 0 0 0 €92
733 | _ | s ops2 psz 0 0 0 €33
To3 0 0 0 Daa 0 0 2623
T13 0 0 0 0 P55 0 2613
T12 0 0 0 0 0 Pe6 2612

There are nine independent constants for the more genénaklbombic symmetry.
Then,r;; can be expressed dependingspiuc), for instance,

To3 = 2Paa€23 = 2Pay (—% (V:a%?lg + 7/2%715,))

Now, let's look at a side of the cube whose local coordinatesaer = (0,0,1), x! =
(1,0,0) andy? = (0, 1, 0). The equation¥0) determines the components

1 1 1 1 1 1
c - C . -c. 1 . cc. 2 e
Vi = U V; = —Uu Vg = —U; X; — —U Vg = —U; X; = —Us.
1 c 7 c 3 2 1AL c 1 3 T A c 2

The equationX2) determines the strains

1. .
enn(u®) =0, epn(u’) =0, e3u)= — g = vy,
11, 1, o111, )
ea(U) =~ = —S0f, en(u) = —5—if = —Jus, en(u) =0,
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In this case, the stress-strain relations are

Tll(uc) = P13 (—;ugi) = p13(—71f)>
T2o(U%) = pog (—245) = pas(—0f),
T33(u) = pa3 (—14§) = pas(—vf),
To3(U) = pag (—205) = pas(—0§),
T13(u®) = ps5 (—24§) = pss(—v5),
T12(u®) = 0.
Analyzing the projections oh we get
—TV -V = —TjjViVj = —T33 = P33y,
—TV - X~ — TiViX; = —T13 = P55V,
—TUV X2 = _TijViX? = —T23 = P44U§~

Taking into account the expressicf) on the surface
2W = 1565 = 2713613 + 2To3€03 + T33€33,

and consequently,
2W = 211(v©) = pas(vf)? + pss(v5)” + pas()”.
The last expression can be erttenéagg ) i.e.,

1 pss 0 0 v§
(v = 5( vf v v§) 0 pss O v§
0 0 pu v§
In addition,
CQ'UC _ _8_1_[ _ v C2UC _ _a_l_‘[ _ e CQ’UC _ _aH _ e
pc v = 81)%_ P33vy, pPC Uy = (91)5_ Ps5Ug,  pPC U3 = 0v§_ P44V5
whose matrix form is oI
Apve = = —F,=E&V-. (13)
ove

With the purpose of relating the expressidg)(with the velocities of the modes of propaga-
tion, we write
C2p1/2vc = 1/25p 1/2 1/2 c (14)

Definingve = p'/?v¢ andS = p~'/2£p~1/2, the equation4) can be written as
Ve = SV (15)
The three positive wave speeds,), <;<3, that verify (L5) are solutions of

det(S — c¢*I) = 0.

Thene, = 1222 ¢, = /2 ande, = |, /24
p V o p
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-6.67e-07
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-1.00e-06

Figure 3: 3D VTl wave fronts. Snapshot of displacement miagiei at 200 ms.

The strain energy density on the surfdte terms ofv® is

() = TI(v") %(vcysvc
1 — — c 1—c —c
= Sl P 1T S pT A (! Pve) = SV SV

Finally, the first order absorbing boundary conditionlois of the form
_-Fs = _(TV' V7_TV'X1?_TV'X2) = B(u V,I:I'XI,I:I'XQ), (16)

beingB = pS'/? positive definite. Therefore, the equatidé) allows to know the ABC given
in (5).

4 RESULTS

To show the performance of the ABC we consider a Transverselydpic medium with
Vertical symmetry axis (VTI). The curvature of the waveftoare a measure of the degree of
the anisotropy of the medium. The computational domain ists®f a cube of side length
1500 m being its partition 200200x 200 cubic cells. The source is compressional and located
at the center of the domain. Its central frequency is 30 Hz taedsolution was computed
for 160 frequencies in the range 0-80 Hz. The FigBiie a snapshot of the magnitude of the
displacement at 200 ms. In correspondence with a VTI medgfrgnd gSV waves propagate
in vertical anisotropic planes. The gP-wavefront is trengeffastest and is highly attenuated
in the vertical direction. A P-wavefront is propagating e thorizontal isotropic plane. The
slow qSV-wavefront is clearly seen. At this time, no wave &as/ed to the boundaries of the
domain.

Snapshot of the magnitude of the displacement at 350 msvasind-igure4. The behaviour
of the ABC is illustrated for P-wavefront, no spurious refiess from the artificial boundaries
are observed.

In the next simulation, the propagation of waves takes plaeeTitled Transverse Isotropic
(TTI) medium (VTI is rotated 39. Figure5 shows snapshots of the magnitude of the displace-
ment at different times. We only focus what happens on thettaties of the domain. At 233
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Step: Step-1  Frame: 3
Total Time: 0.300000
Vel, Magnitude
(Avg: 75%)
+2.69e-06
+1.00e-06
+8.33e-07
+6.67e-07
+5.00e-07
+3.33e-07
+1.67e-07
+0.00e+00
-1.67e-07
-3.33e-07
-5.00e-07
-6.67e-07
-8.33e-07
-1.00e-06

Figure 4: 3D VTI wave fronts. Snapshot of displacement miagie at 350 ms to show how are working the ABC.

ms, the gP-wavefront is arriving to the boundaries of the @omWith the passage of time, at
266 ms and 300 ms, these boundaries behave like artificialdaoies by the application of the
ABC.

The boundaries are also virtually transparent to the qS¥éWwants that still have not arrived
to them at the times of the figures.

5 CONCLUSION

We deduce a low-order ABC for the tridimensional wave equatithe equations for these
ABC are derived from kinematic conditions, considering aauty of the displacements across
the boundary, from dynamic conditions, using momentum gopsof the wave fronts arriving
normally to the boundary and expressions for the strainggnéensity along it.

We highlight that these ABC can be applied to any type of aropgtand they are an alter-
native to the PMLs for three-dimensional wave propagation.
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Figure 5: Displacement magnitude at different times in a M€dium.
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