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Abstract. A spatially fourth order and temporally third order projection method is proposed for the
numerical solution of the variable-density low-Mach-number approximation of the Navier-stokes equa-
tions. The algorithm is non-dissipative and kinetic energy conserving. These two characteristics are
important in the simulation of turbulent flows, particularly turbulent reacting flows. Another important
feature is that the equation of state is enforced exactly while enforcing the mass conservation constraint.
The projection method requires that a variable coefficient Poisson equation has to be solved at every time
step. Results from model problems will show the spatial and temporal convergence and also the perfor-
mance of this algorithm in capturing the physics of the low Mach-number variable-density equations.
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1 INTRODUCTION

Conservation of kinetic energy in numerical methods has become an important issue in large
eddy simulation (LES) and direct numerical simulation (DNS) of turbulence. Kinetic energy
conservation in a finite difference formulation is not a consequence of discrete momentum and
discrete mass conservation, so conservation of kinetic energy has to be ensured through careful
design of the finite difference operators. It is known that dissipative numerical schemes (e.g.
up-winding) often introduce too much artificial damping for use in turbulence simulations, be-
cause the energy balance in turbulence is rather delicate. In the case of variable density flows,
not conserving the kinetic energy can also lead to erroneous temperature and density fields.
Much work has been done in the development of kinetic energy conservation algorithms for in-
compressible flows (see Vasilyev (2000); Gullbrand (2000); Morishini et al. (1998)), but there
has been less work on variable density or compressible flows (see Nicoud (2000)).

In low-speed turbulent combustion applications, the low Mach-number, variable-density ap-
proximation of the Navier-Stokes equations is a good basis for simulation, as it supports large
density variations while eliminating acoustic waves. This eliminates the need for extremely
small time steps driven by the acoustics. This paper is organized as follows. Section 2 shows
the equations that govern low Mach-number flows,and in section 3 some details of the numeri-
cal method and its implementation are shown. Finally, section 4 and 5 contain stability analysis
of the scheme, some numerical results and convergence analysis of the method.

2 GOVERNING EQUATIONS

The low Mach-number approximation of the Navier-stokes equations is obtained as the low
Mach-number asymptotic limit of the compressible Navier-Stokes equations in which temper-
ature fluctuations are assumed to be of order 1. In this analysis, the pressure is expanded as:

P (x, t; M) = P0(t) + M2P2(x, t) + O(M3) (1)

In this expansion, P0 is the spatially uniform thermodynamic pressure, and P2 is the hydrody-
namic pressure fluctuation. Details of the derivation of these equations can be found in Majda
and Sethian (1985); Rehm and Baum (1978); Muller (1999). The final results of this process
are the following equations (excluding the body forces):

Conservation of mass:

∂ρ

∂t
+

∂ρui

∂xi

= 0 (2)

Momentum equation:

∂ρui

∂t
+

∂ρuiuj

∂xj

= − ∂p

∂xi

+
1

Re

∂τij

∂xi

(3)

Conservation of energy

ρCp

(
∂T

∂t
+ uj

∂T

∂xj

)
=

1

RePr

∂qj

∂xj

+
γ

γ − 1

dP0

dt
(4)

Equation of state
P0 = ρT (5)
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In equations 3 and 4, Re and Pr are the Reynolds and Prandtl number respectively; τij and qj are
the viscous stress tensor and the heat flux vector respectively; and p = P2 is the hydrodynamic
pressure fluctuation. The low Mach-number both eliminates the acoustic waves and reduces the
number of dependent variables by one; this occurs because the energy equation reduces to a
constraint, which can be derived by combining equations 2, 3 and 5 yielding:

∂ui

∂xi

=
1

P0Cp

[
1

RePr

∂

∂xj

(
k

∂T

∂xj

)
+

(
γ − 1

γ
− Cp

)
dP0

dt

]
(6)

For an open system, the thermodynamic pressure (Po) does not change in time, but in a closed
system (sealed enclosure) the thermodynamic pressure can change in time. Notice that the
source terms from the energy equation impact the mass conservation equation through the con-
straint 6.

3 NUMERICAL METHOD

Two general approaches to solving equations 2- 6 have appeared in the literature: the first
approach consists in solving equations 2, 3, 5 and 6 so that, the energy equation is never ex-
plicitly solved but is accounted for through the constraint on the velocity divergence 6. This
approach is used by McGrattan (2004) in the Fire Dynamic Simulator (FDS). The second and
more common approach is to solve equations 2, 3, and 4, but in this case the equation of state is
not satisfied exactly. This method has been used by Bell et al. (1998) and by Nicoud (2000).The
former approach is pursued here.

3.1 Temporal discretization

A three-step hybrid Runge-Kutta/Crank-Nicolson (RK-CN) scheme was implemented for
time advancement. This is essentially the scheme described in the Appendix of Moser et al.
(1991). It’s application to the low Mach-number equations is described here. In what follows,
we describe a single substep of the scheme, since each substep is identical, except for the value
of the coefficients. The superscript on the solution variables represents the subscript number
(substep 0 is the result of the previous time step). Likewise, αk, γk, ζk and βk (k=1,2,3) represent
the numerical parameters of the RK-CN scheme.

For each step, the conservation of mass equation (2) is advanced in time first as follows:

ρk = ρk−1 −∆tγk

(
∂ρui

∂xi

)k−1

−∆tζk

(
∂ρui

∂xi

)k−2

(7)

With ρk known, the temperature at the next sub-step, Tk can be determined from the equation
of state (5), and then the divergence of the velocity (∂ui/∂xi)

k is found from equation 6, to be
used in the projection step below.

Now the momentum equation 3 is advanced in time. As in Moser et al. (1991), the linear
terms are advanced implicitly while the non-linear terms are advanced explicitly:

ρkuk
i − ρk−1uk−1

i

∆t
= αk

(
−∂P

∂xi

+
∂τij

∂xj

)k−1

+ βk

(
−∂P

∂xi

+
∂τij

∂xj

)k

− · · ·

− γk

(
∂ρuiuj

∂xj

)k−1

− ζk

(
∂ρuiuj

∂xj

)k−2

(8)

Now, applying the projection method (see Chorin (1968)) on equation 8 leads to a decomposi-
tion (Hodge decomposition) of the velocity into a solenoidal field and the gradient of a scalar.
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Equation 9 show the result of this decomposition:

ρkûk
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i
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Where, the advancement substep has been split into two fractional steps. The intermediate
velocity (ûk

i ) is known from the first fractional step. Then to enforce the constraint on the
velocity divergence, a variable coefficient Poisson equation (equation 10) is solved every sub-
step, using the PETSc library (see Balay et al. (2001), Balay et al. (2004)).
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where ∂uk
j /∂xj is known from the constraint. The velocity is corrected using 9, and P k =

P k−1 + δP k, and the solution at the next time step is obtained after the third substep.

3.2 Spatial discretization

The spatial scheme is designed for use on a regular staggered Cartesian mesh. Several fourth-
order derivative and interpolation operators are needed, which are defined in terms of the simple
second order operators below (see Morishini et al. (1998) and Nicoud (2000) for more details):

φ
nxi

=
φ(xi + n∆xi/2) + φ(xi − n∆xi/2)

2
(11)

δnφ

δnxi

=
φ(xi + n∆xi/2)− φ(xi − n∆xi/2)

n∆xi

(12)

From these operators, the terms of the Navier-Stokes equations can be discretized (see Nicoud
(2000)). As an example, the convection term in the momentum equations is approximated:
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(13)

Where:
ρ(4j) = 9

8
ρ1xj − 1

8
ρ3xj is a fourth order interpolation of the density.

In the current paper, we consider only periodic boundary conditions, which require no special
discretization. For a discussion of wall boundary treatments in similar schemes, see Morishini
et al. (1998).
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4 STABILITY ANALYSIS

The time discretization used in this method reduces to a third order Runge-Kutta (RK3)
scheme for a pure convection problem. It is known that a RK3 scheme has a theoretical CFL
limit of

√
3 and the stability region shown in figure 1. But according to Moser et al. (1991) in

practice (for a RK/CN scheme) CFL can go up to 2 due to the help of viscous terms and the
intermittency of the high velocity conditions.
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Figure 1: Stability region for a pure convective problem

In order to get a better idea of the stability properties of the numerical scheme described
in section 3, a Von Neumann stability analyisis was performed on the linear 1D convection
diffusion equation.

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
(14)

Using the fourth order operators described in section 3.2, it is possible to derive equation 15
for the error (ε) at the first substep of the RK/CN scheme

ε =
Foα1

288
(−730 + 783 cos (ωh)− 54 cos (2ωh) + cos (3ωh))− iγ1CFL

24
(27 sin 3ωh− sin ωh)

1− Foβ1

288
(−730 + 783 cos (ωh)− 54 cos (2ωh) + cos (3ωh))

(15)
Where:
h is the grid spacing i.e. ∆x
CFL is the Courant-Freidricks-Levy number defined as c∆t

h

Fo is the Fourier number defined as ν∆t
h2
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The locus of ε for different values of CFL with Fo=0.1 is shown in figure 2. For pure diffusion
problems the scheme is unconditionally stable, but for pure convective problems is condition-
ally unstable. As it is known this stability is determined by the CFL number which it was found
to be critical at 1.6.
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Figure 2: Locus of ε for Fo=0.1

5 NUMERICAL RESULTS

Three numerical experiments were performed in order to test the numerical scheme and its
implementation. First, a 1D convection-diffusion problem was set to test spatial and temporal
convergence in a variable density case. Second, a 2D inviscid solenoidal velocity field was used
to test kinetic energy conservation. Finally, a 2D constant and variable density problem was
used to test spatial and temporal convergence.

5.1 Spatial and temporal convergence in 1D

The test problem for this experiment is a temperature profile that will be convected in the
x-direction. For simplicity the flow was assumed to be inviscid and the domain was the interval
[0,1]. The initial temperature profile is a Gaussian given by equation 16.

T (K) = 293 + 50 exp

[
−
(

x− 0.5

0.05

)2
]

(16)

The velocity in the x-direction (u) was set equal to 1, the hydrodynamic pressure was set to 0 Pa
and the thermodynamic pressure was set to 1. The working fluid was assumed to be air so that
its thermal conductivity (k) could be estimated from polynomial correlations. Since the thermal
diffusivity of air is O(1×10−5), the global Peclet number is very high O(1×105). For the spatial
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convergence the grid was changed from 100, 200, 400 to 800 nodes while the time step was held
in 0.00125 so that the CFL number changed from 0.125 to 1. For the temporal convergence the
mesh was held in 100 grid points and the time was change from 0.005 to 0.000625 so that the
CFL number changed from 0.5 to 0.0625. Figure 3. shows the profile of velocity at t=1 for four
different time steps. The velocity induced by the diffusion process was of the order 1 × 10−6.
The shape of the u-velocity profile is in agreement with the theory and what is expected from
equation 6. Table 1 summarizes the numerical results from this experiment.
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Figure 3: u velocity profile

u v T
Spatial 3.971 3.954 3.881

Temporal 2.967 2.942 2.977

Table 1: Spatial and temporal convergence rates

5.2 Kinetic energy conservation

For this numerical experiment a 2-dimensional rectangular domain [0,1]x[0,1] is used, with
an initial steady state solenoidal velocity field given by equation 17

u(x, y) = − cos(2πx) sin(2πy)

v(x, y) = sin(2πx) cos(2πy)
(17)

The temperature field was set as a Gaussian random field with a mean value of 397 K and a
root mean square fluctuation of 57 K. The density field can be computed from the equation of
state. Using equation 17 and the initial random density field, the initial kinetic energy can be
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computed (KEo = 0.2274J). A mesh of 24×24 points was used, so that ∆x = ∆y = 4.2e−2.
According to Nicoud (2000), the integration time for this numerical experiment is given by
equation 18

t =
0.125L√

KEo

= 0.3125s (18)

Table 2 and figure 4 show the results for this experiment. It is evident that the scheme conserves
global kinetic energy, so that the divergence-free constraint is recovered in the inviscid limit.

∆t CFL KEo KEf ERROR
0.04166 1 0.2274 0.226879 2.59× 10−3

0.02083 0.5 0.2274 0.226891 2.54× 10−3

0.004166 0.1 0.2274 0.226918 2.42× 10−3

0.002083 0.05 0.2274 0.226921 2.40× 10−3

0.0004166 0.01 0.2274 0.226927 2.38× 10−3

Table 2: Numerical results from KE conservation.
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Figure 4: Error of the KE as a function of CFL

The error in table 1 was calculated using the ratio between the difference in the initial and final
kinetic energy i.e.

ERROR =
KEo −KEf

KEo

(19)

5.3 Spatial and temporal convergence in 2D

The primary objective of this experiment is to test the fourth order convergence in space and
the third order convergence in time. There are two different study cases: the constant density
case and the variable density case.
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5.3.1 Constant density

In this test, we evaluate the solution of the Euler equations as a first approximation of the
Navier-Stokes equations. This can be done by assuming a constant density field and a solenoidal
velocity field in a 2π × 2π domain as follows:

u(x, y, t = 0) = 1− 2 cos x sin y

v(x, y, t = 0) = 1 + 2 sin x cos y
(20)

This initial condition has an exact solution that corresponds to diagonally translating vortices
which is given by equation 21:

u(x, y, t) = 1− 2 cos (x− t) sin (y − t)

v(x, y, t) = 1 + 2 sin (x− t) cos (y − t)

P (x, y, t) = − cos (2(x− t))− cos (2(y − t))

(21)

Four different meshes were used (12 × 12, 24 × 24, 48 × 48 and 96 × 96) to study the spatial
convergence. Table 3 shows the result from these numerical experiments. As one can see, the
method is fourth order in space for both velocity and pressure. For the temporal convergence,
a 24 × 24 mesh was used and the time step was changed from 0.01 to 0.00125 meaning CFL
number between 0.72 and 0.18. Table 3 and figure 5 show the results from this study, it is
noticed that the scheme is third order in time for the velocity but the numerical results showed
that for the pressure, first order accuracy was achieved. This is expected, and is a consequence of
the operator splitting performed in the projection method (see Perot (1993) and Chorin (1969)).
Figure 6 shows the u velocity contours (numerical solution) at t=1 s.
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Figure 5: Temporal convergence (2D constant density case).
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Figure 6: Contour plot of u at t=1 s

u v p
Spatial 3.956 3.978 3.879

Temporal 2.949 2.967 0.998

Table 3: Spatial and temporal convergence rates

5.3.2 Variable density

The initial condition for this numerical test is given by equation 22, assuming that the thermal
conductivity (K) is constant.

u(x, y, t = 0) = − cos x sin y +
100KR

CpP0

sin x cos y

v(x, y, t = 0) = − cos y sin x +
100KR

CpP0

sin y cos x

T (x, y, t = 0) = 293− 100 cos x sin y

(22)

Notice that the constraint on the velocity field (equation 6) is satisfied by this initial condition.
The configuration used to test the spatial and temporal accuracy was exactly the same as that
used in the previous section (see section 4.3.1). Results are summarized in table 4

u v p T ρ

Spatial 3.956 3.978 3.879 3.921 3.913
Temporal 2.949 2.967 0.998 2.956 2.944

Table 4: Spatial and temporal convergence rates (variable density case)
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6 CONCLUSIONS

Higher-order schemes, as proposed by Morishini et al. (1998), can be extended to low Mach-
number variable density flows while preserving their conservative properties. Using the con-
straint on the velocity divergence, instead of advancing the energy equation, is an attractive
numerical technique for solving the low Mach-number approximation since it allows exact sat-
isfaction of the equation of state. As pointed out by Nicoud, the variable coefficient Poisson
equation plays an important role in the numerical scheme for the solution of low Mach-number
flows, since it ensures the correct constraint in the velocity field. Though in the examples shown
in this paper, P0 was always a constant this algorithm can be extended to problems in which P0

depends on time, by integrating the equation of state.
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