
DETERMINING THERMAL CONDUCTIVITY FOR BIOLOGICAL 
MATERIALS IN A DRYING PROCESS 

Mariângela Amendolaa  and  Haroldo F. de Campos Velhob 

aFaculdade de Engenharia Agrícola, Universidade Estadual de Campinas,FEAGRI-UNICAMP, 
Cidade Universitário Zeferino Vaz, P.O. Box 6011, 13083-875, Campinas (SP), 

Brazil,amendola@uol.com.br, http://www.unicamp.br 
bLaboratório Associado de Computação e Matemática Aplicada, Instituto Nacional de Pesquisas 

Espaciais, LAC-INPE, P.O. Box 515, 12245-970, São José dos Campos (SP), Brazil, 
haroldo@lac.inpe.br, http://www.lac.inpe.br/~haroldo/  

Keywords: Thermal conductivity, finite difference method, inverse problem methodology. 

Abstract. It is key issue for the Agricultural Engineering to identify thermo physical properties of 
biological materials. There is a special interest in the thermal conductivity and diffusivity coefficient 
estimation, which can be performed by comparing data obtained from a specific experimental 
procedure and theoretical data obtained from some mathematical model – capable for simulating the 
referred procedure. The experimental data of temperature were previously obtained from one thermal 
measuring system consisting of concentric cylinders to hold the biological material (a soybean sample 
in this study), with a heat source placed at the central axis and keeping the cylindrical, as well the 
circular cross sectional outer surfaces insulated . In such a procedure, only radial heat transfer is 
effective, minimizing the heat flux in the axial direction. Simulated data of temperature are obtained 
by using the mathematical model based on the Fourier’s law with initial and boundary conditions 
according to the experimental procedure, which requires estimative of one the thermal conductivity 
value. The direct problem is solved by using an implicit forward time and centered space finite 
difference scheme, with Neumann boundary at the center and the outer surface. Results show a 
dependency of the thermal conductivity with radial component. The thermal property is estimated by 
computing the value having the best agreement. 
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1 INTRODUCTION 

 
 The knowledge of the thermal process can work as a support to the decision of choosing 
strategies to be implemented in order to improve the storage time of the agriculture products, 
task which also depends on the thermo physical properties of each product.  
 From this consideration, there are many research efforts developed in the Agriculture 
Engineering College (FEAGRI: Faculdade de Engenharia Agrícola) of the State University of 
Campinas (UNICAMP: Universidade Estadual de Campinas), most of them experimental 
ones. Part of this research is focused on the development of mathematical models.  
 The first research paper on this subject related to drying process is (Ito et al., 2002). The 
mathematical model is based on the heat conduction equation, in cylindrical coordinate with angular 
symmetry, and the algorithm based on an explicit scheme of finite difference method is used to 
simulate temperature data. This paper reinforced the research line on this subject, where the 
computer code for the numerical simulation is available for different but with the same nature 
products when submitted to the same particular drying process (Bossarino et al., 2005). The 
goal is to identify thermal parameters of biological material.  
 Basically, the approach used to this identification is based on considering acceptable interval 
values for this parameter, according to the literature, and then compute the value of the thermal 
conductivity by least square difference between the experimental data and simulated data. 
 Another algorithm including this approach but based on an implicit forward time and centered 
space finite difference scheme, as suggested (Amendola, 2005), is applied here, but we point out that 
the focused thermal parameter could have a dependency related to the space variable. Therefore, some 
identification strategies are suggested as an alternative approach to estimate the thermal parameters.  
 

 
2 MATHEMATICAL FORMULATION FOR THE DIRECT MODEL  
 
  
   The mathematical model starts from the Fourier’s law for the heat conduction transfer, 
using the cylindrical coordinates with angular symmetry, and considering concentric 
cylinders. The equation for the temperature field T = T(r, t) under this assumption can be 
expressed as: 
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where T is the biological material temperature [ºC], t is time [s], r is the space variable [m], k: 
the thermal conductivity [W / m*°C], ρ is the material density [kg / m3], Cp is the heat 
capacity [J / kg*°C], and R1, R2 are the inner and outer cylinder radii [m], respectively. The 
initial condition is given by  
                                                      T(r, 0) = Ti ;        R1 < r < R2                                              (2) 
 
being Ti [ºC] the environmental temperature, and the boundary conditions are:  
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with fq  is the source heat flux in the experiment, for the internal cylinder, and for the outer 
surface the condition is expressed by 
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Amendola (2006) has discussed about the application on the implicit versus explicit 
schemes for time integration for this problem, and she has concluded that implicit approach 
could be more efficient from computational point of view. An implicit scheme for equation 
(1) can be written as: 
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where n

jT  = T( n*∆t , j*∆r), with n = 1, ..., Nt;  j = 1, ..., Nr, ∆t is the time-step; r∆  is the space 
discretization, r(j) = j*∆r; and  fo is the  Fourier number 
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The discretized initial and boundary conditions become 

 
                                                             TiT j =

1  ,   j = 1, ... , Nr                                                  (7) 
 

                                                           bTT nn += 21 ,  n= 2, ... , Nt                                                 (8) 
 
being 
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To carry out the numerical simulation, the user should supply the following data set from 

the experimental procedure (1 up to 9) and literature (10): 
 

1) the inner radius (R1) [m]; 
2) the outer radius (R2) [m]; 
3) heat flux (qf) [W/m2]; 
4) density of the biological material (ρ) [kg / m3]; 
5) heat capacity of the biological material (Cp) [J / kg*K]; 
6) time period of the experiment (te) [s]; 
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7)  number of time-steps (Nt) (assuming that the time-step is known); 
8) file with: Nt  rows × 1 column (for the MatLab instruction: load <file_name>.m); 
9) initial temperature for the biological material (Ti) [ºC]; 
10) two numerical values for thermal conductivity: kmin and kmax [W / m*C], and the size of 

the path ∆k; 
 
From this information, the computer code performs the numerical simulation, for several 

values of thermal conductivity km, where km = k1+ (m-1)∆k - where k1 = kmin. The effective 
thermal conductivity is determined from the value km with the smallest square difference 
between the simulated temperature and the measured temperature.  
 
3 NUMERICAL RESULTS 
 

Indeed, the estimation strategy for thermal properties for the biological material is a nice 
way to combine experimental data and theoretical data from a mathematical model. The 
worked example in this paper is focused on the soybean grains. 

The experimental device to carry out the experimental procedure is shown in Figure 1 (from 
Ito (2003)).  

The soybean grains are released in a cylindrical container – two concentric cylinders,  with 
a thermal source coming from the inner cylinder, and keeping the cylindrical, as well the circular 
cross sectional outer surfaces insulated, with four thermo-couple placed in different positions 
along the radii (see figure 1b for details)-. This equipment produces a dataset of time-series 
for temperature for several points.  
 

  
(a)                                                                          (b) 

 
Figure 1: Experimental devices for thermal process for soybean grains: (a) assembled 
equipment, (b) experimental device with more details (from Ito (2003)). 
      

Here, we are considering part of the same temperature dataset for the soybean used by Ito 
(2003). 

 
The referred container is defined between two cylinders with radii R1 = 0.013 [m] and R2 = 

0.0.049[m], subject to a heat source, qf = 393.7 [W/m2], placed at its central axis, where, for a certain 
height of the equipment and at four positions along the radii of the spatial domain the values of 
soybean temperature, T [°C], were recorded along the time, t [s], approximately at each 100s during 
6000s.  
     The following fixed parameters of the process or product were considered: initial  
temperature T0 = 23.7 [°C], density ρ = 1180 [kg/m3] and heat capacity Cp = 1970 [J/kg°C].  
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  In this example, the thermal conductivity ranges from kmin=0.1 Wm-1C-1 up to kmax=0.5 
Wm-1C-1, and ∆k=0.001 Wm-1C-1. The computational code associated to the established 
algorithm is executed for all of these km (m=1, …, 400) values, where k1= kmin and k400= kmax. 
Therefore, it is possible to compare the measured temperature against the simulated 
temperature using each of all these k values, at each time-step. 

Figure 2 shows the square difference between the simulated and measured temperatures for 
each thermo-couple position. The arrow in the figure is pointing to the minimum square 
difference, associated to the effective value (minimum difference) for thermal conductivity. 

 
(a) (b) 

 
 

(c)                                                                       (d) 
Figure 2: Square difference between experimental and computed temperatures in the 

interval k = [0.1, 0.5] for four different positions of thermo-couples: (a) position 1 – close to 
the inner surface, (b) position 2 – between the position-1 and the central point of the 
cylinders, (c) position 3 – between position-2 and position-4, (c) position 4: close to the outer 
surface. 

 
The minimum difference between simulated and measured values is used to identify the 

effective thermal conductivity for each of the referred four positions along the equipment. 
The computed values for thermal conductivity are: k1 = 0.211 Wm-1C-1 (square difference = 
0.3479), k2 = 0.1640 Wm-1C-1 (square difference = 0.0800), k3 = 0.21460 Wm-1C-1 (square 
difference = 0.1391), and k4 = 0.337 Wm-1C-1 (square difference = 0.0732). This is semi-
automatic method for determining the thermal conductivity, but it is simple and efficient.  

Mecánica Computacional Vol XXV, pp. 1139-1146 (2006) 1143

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0 1000 2000 3000 4000 5000 6000 7000
20

25

30

35

40

45

50

55

Time(s)

Te
m

pe
ra

tu
re

 (C
)

1 

3 

2 

4 

 
Figure 2: Numerical simulation (green) and experimental measurements (cross points). 
 
Figure 3 displays the simulation of the temperature along the time according to the 

thermal conductivity mentioned before. The simulated curve (continuous line) is compared 
with the measured temperature (represented by the cross points). There is some disagreement 
between the simulated and the experimental values. As noticed in the previous and related 
works, the disagreement is more for the position-1. This behavior is expected, because the 
real situation is more complex than that described by the simple model used. However, the 
mathematical model’s answer is close to the experimental results, indicating an effective 
modeling. One important issue to mention is the methodology employed here for the 
identification of the physical property. 

 

 
    Figure 3: Thermal conductivity values (k) as a function of the grid points related to the four 
thermo-couples positions, and a quadratic fitting curve considering these four points. 
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3 FINAL REMARKS 
 
      This paper has shown a simple mathematical model to perform the numerical simulation 
of a drying thermal process specific carried out for biological material. The model is an 
important tool not only for the understanding of the process itself, but also because it can be 
used to enhance our understanding of similar processes such as drying, cooling, etc, for food 
processing. In addition, the model can be employed in the identification of some physical 
properties. The identification procedure was illustrated for estimating the thermal 
conductivity of the soybean. The thermal conductivity k was estimated from the least square 
difference between simulated data and measured data.  
      With four measured positions, one can compute the thermal conductivity for these 
temperature time-series. Figure 3 shows the estimated k=k(r) according to the four sensor 
positions. The continuous curve represents a fitting curve by a quadratic function from this 
four estimated thermal conductivities. 
      The results are indicating that the thermal conductivity k(r) could have a space 
dependency (radial variable). Under this condition, more sophisticated inverse problem 
technique can also be employed, for example inverse regularized solutions (Tikhonov and 
Arsenin, 1977). For this approach the inverse problem is formulated as a non-linear 
optimization problem, being the objective function given by: 
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where Ω[.] is the regularization operator, and α is the regularization parameter. In this 
formulation two strategies can be employed (Campos Velho et al., 2002): parameter 
estimation and function estimation. 
(i) parameter estimation: 
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where cj are the unknowns and Np is the number of expansion terms. 
 
(ii) function estimation, considering a sampled function: 
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The regularization process is more effective when function estimation is considered. 
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