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Abstract. Bone tissue mechanical properties and trabecular microarchitecture anaithfactors that
determine the biomechanical properties of cancellous bone. Artifieiatellous microstructures,
typically described by a reduced number of geometrical paramesamsbe designed to obtain a
mechanical behavior mimicking that of natural bone. In this work, we as$isesability of the
parameterized microstructure introduceddmywalczyk(P. Kowalczyk, Comput Meth Biomech Biomed
Eng 9:135-147, 2006)}0 mimic the &stic response of cancellous boAa.optimization approach is
devised to find the geometrical parameters of the artificial microstruttatr®etter mimics the elastic
response of target natural bone specimen. This iswdamd?attern Search algorithtinat minimizes the
difference between theymmetry class decompositions of the elastic ten3ties.performance of the
method is demonstrated via analyses for 146 bone samples.
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1 INTRODUCTION

Bones are hierarchical bmpmposite materials with a complexultiscale structural
geometry(Carretta et al. 20)3Bone tissue is arranged either in a compact pattern (cortical
bone) or a spongy pattern (cancellous bone). Cancellous bone can be found in vertebral bodies
and at the epiphyses of long bones. In the vertebral, iioidythe main load bearing structure,
whereas in the appendicular skeleton, it transfers mechanical loads fronictilarsstrface to
cortical bone. Cancellous bone can be assimilated to a nanocomposite matehednarthical
structure. In a botto-up description, the structure starts in the nanoscale (mineralized collagen
fibril) and moves up to the stricroscale (single lamella), the microscale (single trabecula),
and mesoscale (trabecular bone) levels. Trabeculae are organized into-dintlenseonal
lattice oriented mainly along the lines of stress, which forms a stiff and dsictiure that
provides the framework for the soft bone marrow filling the intertrabeculaespac

Different experiments have shown that linear elasticity can prabde behavior of
cancellous bongKeaveny et al. 1994 The trabecular architecture determines the elastic
anisotropy of cancellous bone, which can be described by a fourth rank elasticwémnsior
linearly relates stress and straifbe elastic tensor is determined in its most general form by
81 components. Cancellous bone is generally assumed to behave as an orthotropg istructur
the mesoscale, with three planes of symmetry, what requires of only ninesnddep
components to fully describe the elastic behavior of the structarey(et al., 1998

Largescale finiteelement(FE) homogenization analyseof microstructural models built
from micro-computed tomographic scans of real bone specimens faidhve computation of
the cancelloubone effective elastic properties. Finite element analyses solve some of th
drawbacks of the experimental techniques, since FE models can be subjected without
restrictions to the load conditions needed to evaluate the anisotropic behavior of the
microstructure. FEA has been applied to large sets of data to find the orthotropic cotspone
of cancellous bongKabel et al. 1999419991, which show that there are strong correlations
betweerthebone volume fractioand elastiand shear moduli, whereas this correlation is weak
for the Poisson'’s ratio.

Another approach is to use parametric models of trabecular bone, which consifitia art
microstructures formed by plates and rods. Artificial microstructuresomayiticizel for being
somewhat unrealistic, however, their main advantage is that the mesoscopiciggopert
characterizing such microstructures can be expressed as explicit contunuciiens of some
well-defined geometrical parameters. Moreover, it has been fibxahanodels based on local
morphometry, composed of individual rods and plates, help improving the understanding of
local structural changes in the determination of bone stiff(teissiber and Miller, 2006a
2006h. Explicit relations between geometrical parameters and mesoscopic E®@EHi
crucial for modeling the microstructure evolution at the large scale; theytallfmsmulate the
problem as merely the evolution of a set of scalar variables, which is much moenefh
terms of computational cost than the analysis of the geometdigtin of certain components
of micro-CT-based actual bone microstructurds example in this sense the artificial
trabeculae developed howalczyk (2006) which have been successfully employed in the
modeling of longterm changes in morphological and mechanical properties of trabecular bone
in the proximal femufKowalczyk 2010.

In this work the parameterized cancellous microstructure introduc&d\wgiczyk (2006)
is analyzed in terms ats ability to mimic the elastic response of natural cancellous bone.
Artificial microstructures are compared with actual bone samples in terms o$yhametry
classes and their elasticity matrices represented in terms of the deahpastrametersAn
optimizationscheme igproposedo determine the values of the parameters thattresthe
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microarchitecture that bestimics the elastic response of a target natural bone speciimen
optimization scheme uses a Patter Search algoribhmirtimize the difference between the
elasticsymmetry classs ofartificial and natural micrstructures

2 ELASTIC PROPERTIES OF CANCELLOUS BONE

2.1 Experimental data

The database biabel et al. (1999419991 provides the entire set of anisotropic elastic
constants of 141 human cancelldage specimens of vertebral body, calcaneus, proximal tibia
and distal femur. Specimen bone volutodotal volume ratios cover the rangéo <
BV/TV < 35%. The elastic constants are the results of finite element (FE) homogenization
analyses performed on computeconstructions of the specimen microarchitectures. Linear
elastic and isotropic material properties were specified for the bone, tigghea Young’'s
modulus ofE = 1 GPa and Poisson’s ratio = 0.3, so the homogenized results can be scaled
for any value ofhe tissue modulus. The specimen imaging and homogenization procedures are
fully described irKabel et al. (1999h)

2.2 Elastic symmetry analyses

Elasticity tensorscan bedecomposed into sums of orthogonal tensors belonging to the
different symmetry classes. We use for this purpose the meth&iomeaeys and Chevrot
(2004) This method relies on the following vectorial description of the elasticity tensor

X = (€11, Cz3, C33,V2C23,V2C13,V2C12, 2Cas, 2Cs5, 25, 2Cra, 2C25, 2Cs6, (1)
2C34,2C15, 2C6, 2Ca4, 2C35, 2C16, 2V2Cs6, 2V2C06, 2V 2Cs5),

where(C;; are the components of the elastic ter&Gan the Voigt notation. The normalization
factors in the above expression are included so that the Euclidean norrarbiteary elastic
tensorC and its associated elastic vecXoare identical.

The vector dagiption of the elastic tensor possesses the property that any symmedry clas
constitutes a subspace of a class of lower symmetry and an orthogonalig@rapecthis
subspace removes the lower symmetry part. Thus, when expressed ircétledssymmetry
Cartesian coordinate system ($eewvin and Mehrabadi, 198/7X can be decomposed by a
cascade of projections into a sum of vectors belonging to the symmetrgsctassinic,
monoclinic, orthorhombic, tetragonal, hexagonal and isotropic:

X = Xiri + Xonon + Xore + Xter + Xnex + Xiso- (2)

The different elastic symmetry parts can be presented as fractions of theéaBuabian of the
elasticity vectosuch that

Ciso T Chex t Ctet + Cort + Cmon + Ceri = 1. (3)

Computations for the determination of the symmetry Cartesian coordinatensybte
transformations into vector forms, the symmetry decompositionshamibrmalizations were
performed using the Matlab Seismic Anisotropy Toolkit (MSAT)Wwlker and Wookey
(2012)

Figure 1presents the results for the symmetry class decompositions of the 141 human bone
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samples irKabel et al. (1999419990). The cumulative decompositions(i8) are presented as
functions of the sampl8V /TV. Table3 summarizes the extreme values for the symmetry
classes. It is observed fraagure 1that the isotropic class accounts for the most significant
fraction of the elasticity matrices over the compl®®/TV range. Although its wide
dispersion, the mean value of the isotropic fraction increases linearlBWjthV/, fromc,, =

0.49 for BV /TV = 5% to ¢, = 0.69 for BV /TV = 35%. Its standard deviation &D;,, =
0.12. The second relevant fraction is for the hexagonal class. Conversely to tbeidsdgss,

the mean value of the hexagonal class decreases linearlyBWithiV. The isotropic and
hexagonal classes behave such that they add a comg@a#tc,., == 0.83, with a standard
deviationSD;,,+nex = 0.07. The tetragonal class fraction is marginal; around 1% for nearly
98% of the samples. The orthorhombic class presents a wide dispersion, but its mean val
nearly constant,,; = 0.10. The orthotropic symmetry,

Cortho = Cort T Ctet T Chex T+ Ciso» (4)

presents a constant average value C,,¢,, = 0.93 with SD,,t5, = 0.04. This last result is
consistent with the observation by Yang et al. (1998), who found that C matrices present
orthotropic symmetry with a 95% confidence level.
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Figurel: Symmetry class decomposition of the elasticity matrices of the 141nHoome specimens reported by
Kabel et al. (1999a19991). Error bars indicate the standard deviations from the interpolated miei@s.va
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Human Samples Parameterized
Symmetry class Kabel et al. (199949991 | Kowalczyk (2006)

Min Max Min Max

Ciso 0.24 0.84 0.36 1.00

Chex 0.02 0.65 0.00 0.49

Ciso + Chex 0.56 0.95 0.46 1.00

Ctet 0.00 0.05 0.00 0.15

Cort 0.00 0.33 0.00 0.50

Cortho 0.81 0.99 1.00 1.00
Crmon 0.00 0.08 - -
Ciri 0.01 0.19 - -

Tablel: Extreme values of the symmetry classes of the natural and parameterized drabe&roktructures.

3 A MIMETIC CANCELLOUS BONE MICROSTRUCTURE

Parameterized cellular
microstructure by
Kowalczyk (2006)

L 4 S

Elastic homogenization Computation of BV/TV
of the artificial trabecu- of the artificial trabecu-
la database la database

] |
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thermodynamic condition BV/TV>0
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Figure2: Workflow of the development of a mimetiancellous bone microstructure.

The workflow in Figure 2 depicts the procedure for the development of the mimetic
cancellous bone microstructure. Tirst step is the computation of the elasticity &id/TV
data of the parameterized cellular microarchitecture introducEdwylczyk (2006) on which
the development is based. The capabilities of the parameterized microsttactimic natural
bone is assessed through the camspa and correlation of the elastic aBd /TV data with
that of the natural specimens. Next, the elasticRifi(l'V data are interpolated as functions of
the geometrical parameters. These interpolations will play a key role in theneméion of
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the optimization algorithm. Finally, the polynomial interpolations are checkedfsistency.
The details of this procedure are given next.

W6 (unit)

L\
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Figure3: Geometry of a repeatable cell.

3.1 The parameterized cellular microstructure

The parameterized cellular microarchitecture introduceldwalczyk (2006)s shown in
Figure 3 It consists in a repeatable cell that is inscribed into a dpeg dodecahedronso it
can be arranged in rows and layers to completely fill tbespace. The geometry of the cell is
described by Bezier curves and corresponding surface patches. Surfa¢®nsabsitween
neighboring cells are smooth. Shaded areas denote trabsadéane while the hatched areas
are the crossections at which the cell is “stuck” to identical neighboring cells.

The repeatable geometry is described in terms of four geometrical parametgrandt,,
which define proportions between trabecular plate widths and thicknesses to produce
transversely isotropic microstructures in the— x, plane; andt,, which scales it in the,
direction to produce fully orthotropic microstructures. Parametgrs;, andt, are non
dimensional as they are understood as fractions of the corresponding celiiain®ansl may
take values betweef and 1. To produce feasible geometries, they must comply with the
restrictions

th>t, t,>t. (5)
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Parameter values can be set to produce microstructures with solid volunoa$racthe range
0 <BV/TV <100%.

3.2 Homogenization analysis and comparison with natural specimens

Kowalczyk (2006)used FE homogenization to compute the elasticity matrices for a broad
set of microstructuregiven by(t,, ty, ty, te) quadruplets on the domainse (0,1), ty, € [t., 1)
andt, € [t., 1) inincrements 00.05, t, € [0.6,1.4] in increments of 0.2, and elastic properties
E = 1 GPa andv = 0.3. From the comparison of tlebtaineceffective elastic constants to those
of the natural sampldsy Kabel et al. (19994.999h, he showed that individual ranges B,

G andv;; of the parameterized microstructures are always wider than those of thal natur
specimas for everyBV/TV value. This is justified since some combinations of parameters
(te th ty, te) may occur seldom in reality or be unrealistic at all.

In what follows, the above analysis is extended to assess the capdlbiigyparameterized
microstructire to mimic the natural elastic symmetries. To this end, the database of elastic
constants for the parameterized microstructure was refined, such that theedooetigc
parameters were varied in increments 05. The FE homogenization procedure of
Kowalczyk (2006)was used for theeomputation of the effective elastic constants. The
repeatable cells that results for each combination of the geometric paranerteiscretized
with 8-node linear brick elements and appropriate boundary conditions that ensure fitting of a
deformed eighboring cells to each other were specified. Six load cases were considered for
each cell: pure stretching in three orthogonal directigns,, x5 (see Figure 3 and pure shear
in three orthogonal planes (normal to the three directions), which were specifiedsrotehe
displacement fields. Reaction forces were measured for each case and useguie ¢be
elements of the elasticity matrix. Thubge construction of the database consisted of 41,990
homogenization analysis that involved the solution of approximately 250,000€ieitent
models altogether.

Stiffness matrices of the parameterized microstructures are decompogéeimsymmetry
classes using the same procedure introduced earlier for the natural specineeagtr@ime
values attained by the symmetry classes are reported in Taldleid found that the
parameterized microstructure covers the complete extents of the tettaretiorthorhombic
classes of the natural specimens. On the other hand, it fails to cover the lowaioesof the
isotropic class(.24 < c;5, < 0.36, and the uppermost values of the hexagonal dle43,>
Chex = 0.65 for the human specimens. However, it is worth noting that only a few samples lie
within the excluded ranges: 5 samples hgyg< 0.36 and 2 samples hawg., > 0.49, i.e.,
less tharb% of the 141 samips in the database. Symmetry classes of the bovine samples lie
always within the extents of the parameterized microstructure.

The capability of the parameterized microstructure to mimic the elastic behaWinther
assessed in terms &V /TV. Figure 4shows the symmetry classes of the parameterized
microstructures for the range BV /TV of the natural samples; these are 17,522 data points (to
keep the figure clear not all data points were plot). Results are presentgd, f@ts, + Cpex
andc, o 1N subfigures (a), (b) and (c), respectively. The corresponding data for thd natura
samples are also shown in the figures: gray areas indicate the dtdadiation of the human
samples (seEigure ) while the square marks are the values of the bovine sampldadeee
1). Figure 4a) shows that with the only exception of the lowermost values, i.e., for
5% < BV/TV < 7%, the parameterized microstructure can mimic the isotropic class of the
natural trabeculae. Regarding, + chex, Figure 4(b) shows that the parameterized
microstructure completely encompasses the data of the natural samptgaytheea is hardly
visible behind the symbols). Finally, the results for the ortipi¢t symmetry inFigure 4c)
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show that, consistently with its geometric definition, the parameterized tnicrtose shows
Cortho = 1 Over the completBV/TV range, which results in a consistent overestimation of the
orthotropic symmetry by the parameterized microstructure, the mean valustandard
deviation of which i$6.6 + 3.8% with respect to the human samples. Regarding the bovine
samples, the ovestimation ranges fro®s to 19%.

3.3 Polynomial interpolation

The discrete elasticonstant and symmetglass data of the parameterized microstructures
were examined to investigate their functionalities with the geometric parameters

It was observed that cffieients of the stiffness tensd@rbehave as continuous and smooth
functions oft, ¢y, t, andt, over the complete range, and that in generalCthase with the
increment of the geometrical parameters. As examipigsre 5Sillustrates the behaviors 6f;
andcC;, as functions of, andt, for t;, = 0.6 andt, = 1.2.

On the other hand, symmetry classes showed to be, in some cases, discontinuous functions
of the geometric parametef&gure 6depicts the changes of the symmetry classes associated
to the variation of the elasticity coefficients giverFigure 5 It can be observed that, ladugh
C coefficients have a continuous variation, the hexagonal, tetragonal and orthorhombic
symmetries present discontinuities.

Based on the above observations, the discrete etasigtant data was used to interpolate
an analytical expression f@x(t., t;, t,, t.). The nine nofeero coefficients(;;, C,,, Cs3, C12,

Ci3, Cy3, C4q, Css andCye, Were interpolated polynomially by means of lesmtare fitting.
Polynomials of order 5 to 12 were used; the quality of the interpolations wasealsésrms

of the coefficient of determination (R2), the reoeansquare error (RMSE) and the residual
sum of squares (SSres).

Since the (;; were interpolated separately, the thermodynamic requirement for
C(t,, tp, t,, t,) was checked. The thermodymic requirement (positive definiteness of strain
energy) enforces the condition that the invariants of the elasticttyxrsbhould be positive, or
in other words, that bothC(t,,ty, t,,t.) and its inverse must be positive definite. These
conditionswere verified for the interpolate@(t,, t,, t,, t.) for quadruplets in the intervals
t. € [0.05,0.95], t;, € [t., 0.95], t, € [t., 0.95] andt, € [0.6,1.4] in increments 00.01. The
thermodynamic requirement was found valid on most of the interpolation range. Palynomi
fittings of order 10 are selected, since they produce accurate and valid intengoteter a
wide range of the parameter values that allows for solid voluawtidns1% < BV /TV <
99%.
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4 OPTIMIZATION
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Optimum (tc,th,tv,te) of
the mimetic micro-
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Figure7: Workflow of the optimization analysis.

4.1 Problem statement

The optimization problem is to find the parameterized microstructure that better mimics the
elastic response of a target natural bone specimen. The elastic equivalence laeong t
microstructures is posed in terms of the symmetry classes.

The workflow is illustrated ifrigure 7 The analysis starts with the elastic homogenization
of the target bone sample; the resultant elasticity matrix is decomposed into syclasses.

The triclinic and monoclinic classes are suppressed to obtain the targeitglastrix. Thus,
the resiltant C''8t has orthotropic symmetry, and it is compatible with the artificial
microstructure.

The problem consists in finding the quadruplet,, t, andt, that minimizes the overall
difference between the symmetry class decompositions:
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(Ctarget _ Ciso)z n (Ctarget _ Chex)z

R = min iso ) hex . (6)
target target
+(Ctetg - Ctef) + (Cortg - CO?‘t)

target target target target

whereci.,° ) Cow » Cret. » Cort.  @NACiso, Chex» Ctets Cort are the normalized symmetry

classes of the target and the parameterized microstructures, respeGty,eysx, Cret ANACy ¢
are functions of, t;,, t, andt,.

Geometric parameters are subjected to the inequality restrictions in eq@atom at the
same time, they must comply with the restriction imposed by the bone vtdetom@l volume
ratio of the target microstructure,

BV/TV (t,, ty, t, t,) = BV TV 9¢, )

Alternatively, the restriction of the bone volustgetotal volume ratio might be relaxed, such
as

BV/TVtarget (1 — BV/TVtol) < BV/TV (t; ty, ty, te) 8)
< BV/TV'*9% (1 + BV/TV ),

whereBV/TV, , is a prescribed tolerance that could take any value in the inférval

4.2 Algorithm

The optimization problem is solved using the derivatree constrained direct search solver
pattern searcPS) of the Matlab Global Optimization Toolbox. The iBSelected because
beingderivativefree, it can deal with the discontinuous functionalities between the symmetry
classes and the geometrical parameters, see SetBompatter nsear ch computes a
sequence of points that approach an optimal of

Ceq(x) =0
Cineq(x) <0
Aineq (x)x < bineq

k blow <x= bup

min f(x) such that
X

©)

wherex = [t,, tp, t,, te] T and the objective function f§x) = R(t., ty, ty, te). At each step, the
algorithm searches a set of points, called a mesh, around the current poinéshhe farmed
by adding the current point to a scalar multiple of a set of vectors calltean. If the pattern
search algorithm finds a point in the mesh that improves the objective functioncat et
point, the new point becomes the current point at the next step of the algorithm.

The constrain functions are used for the restrictioBW/TV. In the case of a prescribed
targetBV/TV, the equality function constrair.,(x) = 0, is

BV/TV (t,, ty, t,, t,) — BV /TV 9" = 0, (10)

while if BV/TV is defined as in equatidB), two cjneq(x) < 0 are specified:
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BV/TV (tc, ty, ty, te) — BV/TV 9 (1 + BV/TV,,)) < 0 (11)

and
BV/TV™9¢ (1= BV/TV,,)) = BV/TV (t, tp, ty, te) < 0. (12)

Inequality constrains are the restrictions on the geometric parameteaygaitioa (5). Thus,
Aineq(X) X< bineq is

t.
tr o [i:}s[m- 0
t,

Finally, inequality constrainb,,,, < x < b, are used to set the validity intervals for the
polynomial interpolations in Section 3’ Phese are

0.06 0.95
0.06 0.95
biow = 0 06 and by, = 0 95 (19

Stopping criteria involves tolerances feunct i onTol er ance, the difference between
the function value at the previous best point and function value at the current best point
MeshTol er ance, the minimum size for the search mesh; &tkpTol er ance, the
minimum distance from the previous best point to the curresitdmnt. The three tolerances
were set with the default values 1.

4.3 Verification and tuning

The optimization procedureas verified, tested and tuned by assessing its effectiveness to
identify microstructures among those of the database used fdasgtieig-matrix polynomial
fitting (see SectioB.3). To this end, 100 parameterized microstructures were randomly selected
from the database torse as target microstructuréoblems were solved f&V/TV, ; = 1%
and5%. Since the thermodynamic requirement was checked only for discrete coorsnati
(te th, ty, te) In Section3.3, there is no guarantee that all possible combinations will satisfy it.
Therefore, the thermodynamic requirementdor,, t;,, t,, t.) was checked at the end of each
optimization procedure.

Preliminary tests had shown that the performasfddealgorithmwassensitive to the initial
values (seeds) of the geometric parameters. Thus, each probleomi@s times for different
sets of random seeds and the best result reported.

Table 2reports the mean values of the residuals and the mean values and standard deviations
of the relative errors of the geometric parameters and the symmetry clasees.fd& the
geometric parameters are

target target
_ tc. —t, _ th — t,, 1
€t = target €ty = target ( 5)

t

c

Copyright © 2017 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



342 L. COLABELLA, A.P. CISILINO, G. HAIAT, P. KOWALCZYK

otarget target
t,—t, 9 te—t, 9
€, = ttarget and €te = ttarget

v e

Besides, errors for the symmetry classes are relative to the corresporetimgeavalue of
the 100 target microstructures. This approach avoids the occurrence of boundless and

misleading large errors for the target microstructures with zero oyrzesd symmetry classes.
Thus, the errors for the symmetry classes are defined as follows

target target
e _ CiSO - C[so e _ Chex - Chex
Ciso target ! Chex target !
1so hex
16
target target ( )
Ctet — Ctet Cort — Cort
e, K =————and e,  =——=—o——
tet target ort target
tet ort

target _target _target

target
wherec, ., 7", ¢, .7 Crer andc,,,

for the target microstructures.

are the mean values of the symmetry class fractions

BV{;)I]/W Residual Error geo[C;o.] parameters Symmetryclass errors x I
te th ty te Ciso Chex Ctet Cort

o uwar | G5 % | An [ reaw| 05 | 15
L sean 2 L S0 ]
s owav | 52 | 4 55| 9% | hn | 2 [r0sss

Table2: Mean values of the residuals and errors for the geometric parameters andrtredrgyclasses.

Table 2shows thatesults are accurate for the symmetry classes, with maximum errors of a
few percent foree;. Errore. diminishes from 8% to 3% with the incrementB¥/TV .
However, this is niothe case for all the symmetry classes; notedhatande, .. present their
minima forBV/TV , = 1%. Maximum standard deviations are alsodgy, and they reduce
from 50% to 17% with the increment &V /TV . The largest error in the geometric
paramegrs is fort., which diminishes from7% to 5% as the tolerance for the bone volume
fraction is relaxed fromBV/TV, , = 0toBV/TV, ; = 5%. In contrast, minimum errors fa,,

t, andt, are forBV/TV,, = 0, and they deteriorate witBV/TV, ,; in any case, maximum
errors are of a few percent. The standard deviations for the geometric parameteos ar
sensitive taBV/TV, , and they are from 25% to 40%.

The meanBV/TV of the optimal microstructures are very close the target values; mean

values for the relative error

BV/TV — BV /Ty'%9¢t
BV/TVtarget

(17)

€gv/Tv =

areegy,rv = 7+ 10~* and—5- 1073 for BV/TV,, = 1% and 5%, respectively.
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5 APPLICATION TO NATURAL TRABECULAR SAMPLE S

5.1 Human specimens

Elasticity matrices of the 141 human bone samples were filtered to retrieverthetropic
parts. To do so, componertls,, C;s, C1¢, C24, Ca5, Co6, C34, C35, C34, Cus, Co @andCse Were set
equal to zero for the elastic tensors oriented in the symr@aitgsian coordinate system and
their symmetry class decompositions computed suchcfBht ooy + coo) + co) = 1. The
resultant data was used as target valueshi®pptimization procedure. Optimizations were
performed foBV/TV, , = 0%, 1%, 5% and 10%.

Symmetry classes for the obtained effective elastic properties are asseststbimto the

mean values of their extreme fractions for the human microstructures in T ikei4:

target target
_ Ciso — Cigo o _ Chex = Cpeyx
Ciso — ’ c - ’
tso 1 (Cmax + Cmin hex 1 (Cmax + Cmin)
2 \Ziso iso 2 \“hex hex 18
__ target __ target ( )
e’ Ctet Ctet and e’ _ COTt Cort
Ctet ~— 1 , Cort ~ 1 N
> (cted + el 5 (e + et

Resultsshowed naignificant improvements with the relaxation of B/TV, , constrain,

so only the results foBV/TV, , = 1% are presented next. Mean errors for 141 samples are

€., = 0.07, &, =—0.09,¢;_ = —0.03 ande; = —0.02.
Figure 8presents the results iarms of th& relative error for the elasticity matrices,
lICll — [[crroery]
Cllcn = [|Ctarget|| (19

It can be observed thag ¢ and its dispersion diminish wiBV/TV, from 0.3 < e < 4 for
BV/TV < 10% t0 0.2 < e ¢ < 0.8 for BV/TV > 32%. At the same time, it is interesting to
note that, with only a few exceptior¢ > 0, what implies that the optimized parameterized
microstructures are, in general, stiffer than the target natural ones. Itheigihgued that the
parameterized microstrugtes make, in terms of stiffness, a more efficient use of the material
than natural microstructures, being this greater efficiency more notceatbwBV/TV.

The solutios can be improved foe¢; by doing a convenient selection of the Young's

modulus of the artificial microstructure material. If the artificial microstructurenstoacted
”(Ctarget”

el
e = 0. Clearly, thisscaling of the Young’s modulus does not affect the elastic symmetries.

The above analysis was performed for the 141 samples. The average scalinfpfatter
Young's modulus was found’/E = 0.55 with and standard deviatioSDg,/;z = 0.20.

Resultant mean errors and standard deviations for the elasticity coédfiarenreported in
Table 3. Errors are reported relative to the individual elasticity coeftsgien

using a material with Young’s moduld$ = E, the error for the elastic matrix norm

c_Ci
ij = target (20)
Cij

target
_Ci' g
]
e
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and relative to the elasticity matrix norm

__ ptarget
nen _ G~ G (21
ijoo ”Ctarget”'

3.5

X
BT/TV,,
30 ] m 0
o 1%
25 | o = X 5%
< @]
20
_ %
= O3 ® o X
15|
® OgOX ﬁggx g‘ 9 O >Q<
10 | 'b%], s OQ .&
- X o%g Cmq % @3
of RLESEEL LSt
| Es e Tk K
0.0 | (a) §!%>§o
L ] " 1 N 1 " 1 | 1 1 L ]
0 5 10 15 20 25 30 35 40
BV/TV

Figure8: PS optimization of the human samples: stiffa@sgrix error as function @V / TV.

It is observed that coefficients,, C;3 andC;; have the maximum individual relative errors,
which range fronB0% to 210%; however, when evaluated relative |62 8¢t||, maximum
errors do not exceetD%.

Relative errors for elasticity matrix coefficients
Ciq Cy C33 Cy3 Ciz Ciz Cag Css Cee
¢ | mean| 0.80|-0.04|-0.24| 0.34]| 0.86| 2.15| -0.28| 0.05] -0.21
Y | sD [1.06] 0.34]| 0.26 | 0.66| 0.83| 1.49| 0.38 | 0.54| 0.81
lci | mean| 0.10| -0.02| -0.11| 0.01| 0.04 | 0.08 | -0.04| 0.00| -0.01
b SD |0.13]0.08 | 0.14 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04

Table3: Relative errors for the elasticity matrix after the PS optimization.

Error

5.2 Bovine specimens

The optimization was performed for the orthotropic part of the stiffness emwicthe 5
bovine specimenfrom Colabella et al. (204). Tolerance for the volume fraction was set
BV/TV,,, = 1%. The optimized microstructures are shownFigure 9together with their
corresponding target natural sampl€able 5andTable 6report the errors for the symmetry
classes and the elasticity coefficients, respectively. Error for the syylasses are in
relation to the ranges of the extreme fractions for the bovine microstsigtirable 1as in
equation (18).

Table 5shows that, with the only exception of the tetragonal symmetry, errors for the
symmetry classes are very low. The large relative errors for the tetragomalety are
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explained due to its small relative contribution to the elasticity math& worst pedrmance
is for Sample #2, which has the particularity of having the lowest isotropgcaniasthe highest
orthorhombic class fractions,s, = 0.54 andc,, = 0.27, respectively.

Error for the elasticity coefficients are Trable 6 Theywere computed after the scaling of
the Young’s modulus to makejc; = 0. The resultant scaling factors ran@etl <

E'/E < 0.72 with a mean value df’ /E = 0.55, which coincides with that of the human sample
analysis in the previous section. It is observed that as for the human sdinpfeesents the
highest mean error level (aroufiéh); maximum errors are of aroudd% for C;; andC,, of
Sample #5.

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5

v -
A

Figure9: Natural bovine specimens and their mimetic parameterized microstructures.

Sample ’ Errors ff)r symme’try class?s
Ciso echex ectet ecort

1 0.002 | 0.011 | -0.076 | 0.018

2 0.024 | 0.166 | 0.332 | -0.696

3 0.001 | 0.006 | -0.049 | 0.013

4 -0.002 | -0.010 | 0.074 | -0.019

5 -0.001 | -0.006 | 0.039 | -0.004

Table4: Errors for the symmetry classes of the mimetic bovine samples.

Relative errors for elasticity matrix coefficients
C1a Ca2 C33 Ca3 Ci3 Ci2 Caa Css Cee
1 0.034 | 0.016 | -0.008 | -0.039 | -0.047 | 0.118 | -0.028 | -0.082 | -0.032
0.060 | -0.016 | -0.018 | 0.007 | 0.012 | 0.065 | -0.007 | 0.015 | -0.072
-0.004 | 0.041 | -0.035 | 0.005 | 0.003 | 0.048 | -0.016 | 0.009 | -0.054
0.020 | 0.034 | -0.048 | 0.029 | 0.014 | 0.087 | -0.023 | -0.001 | -0.092
0.167 | -0.168 | -0.039 | -0.101 | 0.047 | 0.143 | -0.062 | 0.003 | -0.009

Table5: Relative errors for the elasticity matrix of the mimetic bovine samples.

Sample

Ul W N

6 CONCLUSIONS

This work introduces a procedure for the design of artificial parameterimedstnuctures
that mimic the elastic response of cancellous bone. The procedure is baseparartieterized
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microstructure byKowalczyk (2006) the geometric parameters of which are optimized to
minimize the differences between the symmetry classes of the target andifibelar
microstructure elastic tensor.

Symmetry class analyses of experimental data fk@bel et al. (1999a1999h) and of
specimens processed as part of this work show that elastic symmetries redatdd to the
specimenBV/TV. The isotropic symmetry class constitutes the main fraction of the elastic
tensor; it increases linearly with the specimen bone volume fradtiom around50% for
BV/TV =5% to 70% for BV/TV = 35%. The isotropic and hexagonal classes add to a
constant, such that they account for aro82% of the elastic tensor over the compIB¥&/TV
range. The orthotropic symmetry, given by the addition of the isotropic, hexagtaajotal
and orthorhombic classes, constitute aro@Beéhb of the elastic tensor, independently of the
BV/TV.

The parameterized artificial microstructure is orthotropic by construdtimshown in this
work that it has the capalhyl to combine the isotropic, hexagonal, tetragonal and orthorhombic
symmetry classes in the proportions present in the cancellous bone. Analytieskexs for
the elastic matrix in terms of the microstructure geometrical parameters adegdro

An optimization strategy is proposed to find the parameterized microstructure that bette
mimics the elastic response of a target natural bone specimen. The stratespdi®on Pattern
Search algorithm that uses the geometrical parameters as design vaoabiegmize the
difference between the elastic symmetry classes of artificial and natior@structuresThe
analyses of 146 natural cancellous bone specimens resulted in mimetic onituossr whose
symmetry class decompositions differ on averégewith respect to the target values.

The results for the elasticity matrix error allows to observe that the optimizeastnimtures
are in general stiffer than their natural counterparts; this behavior is wkiceable for low
BV/TV. This deviation can be compensated by selecting the Young’s modulus for the optimized
microstructure material such that norm of the difference between elastatiiges of the target
and optimized microstructure vanishes. Clearly, the Young's modulus scaling doegctot aff
the elastic symmetries. The mean value for such scaling factor was found e@.34l, tice.,
the parameterized microstructure material should have, in average, halfffttesstof the
trabecular bone tissue. After scaling, average errors between thé&egtand target elasticity
matrix coefficients do not exced®% relative to the matrix norm.
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