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Abstract. Bone tissue mechanical properties and trabecular microarchitecture are the main factors that 
determine the biomechanical properties of cancellous bone. Artificial cancellous microstructures, 
typically described by a reduced number of geometrical parameters, can be designed to obtain a 
mechanical behavior mimicking that of natural bone. In this work, we assess the ability of the 
parameterized microstructure introduced by Kowalczyk (P. Kowalczyk, Comput Meth Biomech Biomed 
Eng, 9:135–147, 2006) to mimic the elastic response of cancellous bone. An optimization approach is 
devised to find the geometrical parameters of the artificial microstructure that better mimics the elastic 
response of target natural bone specimen. This is done via a Pattern Search algorithm that minimizes the 
difference between the symmetry class decompositions of the elastic tensors. The performance of the 
method is demonstrated via analyses for 146 bone samples. 
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1 INTRODUCTION  

Bones are hierarchical bio-composite materials with a complex multiscale structural 
geometry (Carretta et al. 2013). Bone tissue is arranged either in a compact pattern (cortical 
bone) or a spongy pattern (cancellous bone). Cancellous bone can be found in vertebral bodies 
and at the epiphyses of long bones. In the vertebral body, it is the main load bearing structure, 
whereas in the appendicular skeleton, it transfers mechanical loads from the articular surface to 
cortical bone. Cancellous bone can be assimilated to a nanocomposite material with hierarchical 
structure. In a bottom-up description, the structure starts in the nanoscale (mineralized collagen 
fibril) and moves up to the sub-microscale (single lamella), the microscale (single trabecula), 
and mesoscale (trabecular bone) levels. Trabeculae are organized into a three-dimensional 
lattice oriented mainly along the lines of stress, which forms a stiff and ductile structure that 
provides the framework for the soft bone marrow filling the intertrabecular spaces. 

Different experiments have shown that linear elasticity can predict the behavior of 
cancellous bone (Keaveny et al. 1994). The trabecular architecture determines the elastic 
anisotropy of cancellous bone, which can be described by a fourth rank elastic tensor, which 
linearly relates stress and strains. The elastic tensor is determined in its most general form by 
81 components. Cancellous bone is generally assumed to behave as an orthotropic structure in 
the mesoscale, with three planes of symmetry, what requires of only nine independent 
components to fully describe the elastic behavior of the structure (Yang et al., 1998). 

Large-scale finite-element (FE) homogenization analyses of microstructural models built 
from micro-computed tomographic scans of real bone specimens allow for the computation of 
the cancellous-bone effective elastic properties. Finite element analyses solve some of the 
drawbacks of the experimental techniques, since FE models can be subjected without 
restrictions to the load conditions needed to evaluate the anisotropic behavior of the 
microstructure. FEA has been applied to large sets of data to find the orthotropic components 
of cancellous bone (Kabel et al. 1999a, 1999b), which show that there are strong correlations 
between the bone volume fraction and elastic and shear moduli, whereas this correlation is weak 
for the Poisson’s ratio.  

Another approach is to use parametric models of trabecular bone, which consist in artificial 
microstructures formed by plates and rods. Artificial microstructures may be criticized for being 
somewhat unrealistic, however, their main advantage is that the mesoscopic properties 
characterizing such microstructures can be expressed as explicit continuous functions of some 
well-defined geometrical parameters. Moreover, it has been found that models based on local 
morphometry, composed of individual rods and plates, help improving the understanding of 
local structural changes in the determination of bone stiffness (Stauber and Müller, 2006a, 
2006b). Explicit relations between geometrical parameters and mesoscopic properties are 
crucial for modeling the microstructure evolution at the large scale; they allow to formulate the 
problem as merely the evolution of a set of scalar variables, which is much more efficient in 
terms of computational cost than the analysis of the geometric evolution of certain components 
of micro-CT-based actual bone microstructures. An example in this sense is the artificial 
trabeculae developed by Kowalczyk (2006), which have been successfully employed in the 
modeling of long-term changes in morphological and mechanical properties of trabecular bone 
in the proximal femur (Kowalczyk, 2010).  

In this work the parameterized cancellous microstructure introduced by Kowalczyk (2006) 
is analyzed in terms of its ability to mimic the elastic response of natural cancellous bone. 
Artificial microstructures are compared with actual bone samples in terms of their symmetry 
classes and their elasticity matrices represented in terms of the geometrical parameters. An 
optimization scheme is proposed to determine the values of the parameters that result in the 
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microarchitecture that best mimics the elastic response of a target natural bone specimen. The 
optimization scheme uses a Patter Search algorithm to minimize the difference between the 
elastic symmetry classes of artificial and natural microstructures. 

2 ELASTIC PROPERTIES OF CANCELLOUS BONE 

2.1 Experimental data 

The database by Kabel et al. (1999a, 1999b) provides the entire set of anisotropic elastic 
constants of 141 human cancellous-bone specimens of vertebral body, calcaneus, proximal tibia 
and distal femur. Specimen bone volume-to-total volume ratios cover the range 5% ≤
BV/TV ≤ 35%. The elastic constants are the results of finite element (FE) homogenization 
analyses performed on computer reconstructions of the specimen microarchitectures. Linear 
elastic and isotropic material properties were specified for the bone tissue, with a Young’s 
modulus of E = 1 GPa and Poisson’s ratio ν = 0.3, so the homogenized results can be scaled 
for any value of the tissue modulus. The specimen imaging and homogenization procedures are 
fully described in Kabel et al. (1999b). 

2.2 Elastic symmetry analyses 

Elasticity tensors can be decomposed into sums of orthogonal tensors belonging to the 
different symmetry classes. We use for this purpose the method by Browaeys and Chevrot 
(2004). This method relies on the following vectorial description of the elasticity tensor,  
 𝑿𝑿 = �𝐶𝐶11,𝐶𝐶22,𝐶𝐶33,√2𝐶𝐶23,√2𝐶𝐶13,√2𝐶𝐶12, 2C44, 2𝐶𝐶55, 2𝐶𝐶66, 2𝐶𝐶14, 2𝐶𝐶25, 2𝐶𝐶36, 

2𝐶𝐶34, 2𝐶𝐶15, 2𝐶𝐶26, 2𝐶𝐶24, 2𝐶𝐶35, 2𝐶𝐶16, 2√2𝐶𝐶56, 2√2𝐶𝐶46, 2√2𝐶𝐶45�, 
(1) 

 
where Cij are the components of the elastic tensor ℂ in the Voigt notation. The normalization 
factors in the above expression are included so that the Euclidean norm of an arbitrary elastic 
tensor ℂ and its associated elastic vector X are identical.  

The vector description of the elastic tensor possesses the property that any symmetry class 
constitutes a subspace of a class of lower symmetry and an orthogonal projection on this 
subspace removes the lower symmetry part. Thus, when expressed in the so-called symmetry 
Cartesian coordinate system (see Cowin and Mehrabadi, 1987), X can be decomposed by a 
cascade of projections into a sum of vectors belonging to the symmetry classes triclinic, 
monoclinic, orthorhombic, tetragonal, hexagonal and isotropic: 
 𝑿𝑿 = 𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑿𝑿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑿𝑿𝑚𝑚𝑡𝑡𝑡𝑡 + 𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑿𝑿ℎ𝑡𝑡𝑒𝑒 + 𝑿𝑿𝑡𝑡𝑖𝑖𝑚𝑚 .  (2) 

 
The different elastic symmetry parts can be presented as fractions of the Euclidian norm of the 
elasticity vector such that 
 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚 + 𝑐𝑐ℎ𝑡𝑡𝑒𝑒 + 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 1. (3) 

 
Computations for the determination of the symmetry Cartesian coordinate system, the 

transformations into vector forms, the symmetry decompositions and the normalizations were 
performed using the Matlab Seismic Anisotropy Toolkit (MSAT) by Walker and Wookey 
(2012). 

Figure 1 presents the results for the symmetry class decompositions of the 141 human bone 
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samples in Kabel et al. (1999a, 1999b). The cumulative decompositions in (3) are presented as 
functions of the sample 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵. Table 3 summarizes the extreme values for the symmetry 
classes.  It is observed from Figure 1 that the isotropic class accounts for the most significant 
fraction of the elasticity matrices over the complete 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵 range. Although its wide 
dispersion, the mean value of the isotropic fraction increases linearly with 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵, from 𝑐𝑐𝚤𝚤𝑖𝑖𝑚𝑚����� =

0.49 for 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵 = 5% to 𝑐𝑐𝚤𝚤𝑖𝑖𝑚𝑚����� = 0.69 for 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵 = 35%. Its standard deviation is 𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑚𝑚 =

0.12. The second relevant fraction is for the hexagonal class. Conversely to the isotropic class, 
the mean value of the hexagonal class decreases linearly with 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵. The isotropic and 
hexagonal classes behave such that they add a constant, 𝑐𝑐𝚤𝚤𝑖𝑖𝑚𝑚����� + 𝑐𝑐ℎ𝑡𝑡𝑒𝑒����� =≅ 0.83, with a standard 
deviation 𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑚𝑚+ℎ𝑡𝑡𝑒𝑒 = 0.07.  The tetragonal class fraction is marginal; around 1% for nearly 
98% of the samples. The orthorhombic class presents a wide dispersion, but its mean value is 
nearly constant 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡����� ≅ 0.10. The orthotropic symmetry, 
 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡ℎ𝑚𝑚 = 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐ℎ𝑡𝑡𝑒𝑒 + 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚 , (4) 

 
presents a constant average value  𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡ℎ𝑚𝑚�������� = 0.93 with 𝑆𝑆𝑆𝑆𝑚𝑚𝑡𝑡𝑡𝑡ℎ𝑚𝑚 = 0.04. This last result is 

consistent with the observation by Yang et al. (1998), who found that  ℂ matrices present 

orthotropic symmetry with a 95% confidence level. 

 

 

Figure 1: Symmetry class decomposition of the elasticity matrices of the 141 human-bone specimens reported by 
Kabel et al. (1999a, 1999b). Error bars indicate the standard deviations from the interpolated mean values. 
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Symmetry class 
Human Samples 

Kabel et al. (1999a, 1999b) 
Parameterized 

Kowalczyk (2006) 
Min Max Min Max 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚 0.24 0.84 0.36 1.00 𝑐𝑐ℎ𝑡𝑡𝑒𝑒 0.02 0.65 0.00 0.49 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚 + 𝑐𝑐ℎ𝑡𝑡𝑒𝑒 0.56 0.95 0.46 1.00 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 0.00 0.05 0.00 0.15 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡 0.00 0.33 0.00 0.50 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡ℎ𝑚𝑚 0.81 0.99 1.00 1.00 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 0.00 0.08 - - 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 0.01 0.19 - - 

Table 1: Extreme values of the symmetry classes of the natural and parameterized trabecular microstructures. 

3 A MIMETIC CANCELLOUS  BONE MICROSTRUCTURE  

 

 
Figure 2: Workflow of the development of a mimetic cancellous bone microstructure. 

The workflow in Figure 2 depicts the procedure for the development of the mimetic 
cancellous bone microstructure. The first step is the computation of the elasticity and 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵 
data of the parameterized cellular microarchitecture introduced by Kowalczyk (2006), on which 
the development is based. The capabilities of the parameterized microstructure to mimic natural 
bone is assessed through the comparison and correlation of the elastic and 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵 data with 
that of the natural specimens. Next, the elastic and 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵 data are interpolated as functions of 
the geometrical parameters. These interpolations will play a key role in the implementation of 
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the optimization algorithm. Finally, the polynomial interpolations are checked for consistency. 
The details of this procedure are given next. 

 

 

Figure 3: Geometry of a repeatable cell. 

3.1 The parameterized cellular microstructure  

The parameterized cellular microarchitecture introduced by Kowalczyk (2006) is shown in 
Figure 3. It consists in a repeatable cell that is inscribed into a space-filling dodecahedron, so it 
can be arranged in rows and layers to completely fill the 3-D space. The geometry of the cell is 
described by Bezier curves and corresponding surface patches. Surface transitions between 
neighboring cells are smooth. Shaded areas denote trabecular surface while the hatched areas 
are the cross-sections at which the cell is “stuck” to identical neighboring cells. 

The repeatable geometry is described in terms of four geometrical parameters: 𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ and 𝑡𝑡𝑣𝑣, 
which define proportions between trabecular plate widths and thicknesses to produce 
transversely isotropic microstructures in the 𝑥𝑥1 − 𝑥𝑥2 plane; and 𝑡𝑡𝑡𝑡, which scales it in the 𝑥𝑥1 
direction to produce fully orthotropic microstructures. Parameters 𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ and 𝑡𝑡𝑣𝑣 are non-
dimensional as they are understood as fractions of the corresponding cell dimensions and may 
take values between 0 and 1. To produce feasible geometries, they must comply with the 
restrictions 

 𝑡𝑡ℎ ≥ 𝑡𝑡𝑐𝑐, 𝑡𝑡𝑣𝑣 ≥ 𝑡𝑡𝑐𝑐. (5) 
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Parameter values can be set to produce microstructures with solid volume fractions in the range 
0 < 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ < 100%. 

3.2 Homogenization analysis and comparison with natural specimens 

Kowalczyk (2006) used FE homogenization to compute the elasticity matrices for a broad 
set of microstructures given by (tc, th, tv, te) quadruplets on the domains tc ∈ (0,1), th ∈ [tc, 1) 
and tv ∈ [tc, 1) in increments of 0.05, te ∈ [0.6,1.4] in increments of 0.2, and elastic properties 
E = 1 GPa and ν = 0.3. From the comparison of the obtained effective elastic constants to those 
of the natural samples by Kabel et al. (1999a, 1999b), he showed that individual ranges of  Eij, 
Gij and νij of the parameterized microstructures are always wider than those of the natural 
specimens for every BV/TV value. This is justified since some combinations of parameters 
(tc, th, tv, te) may occur seldom in reality or be unrealistic at all. 

In what follows, the above analysis is extended to assess the capability of the parameterized 
microstructure to mimic the natural elastic symmetries. To this end, the database of elastic 
constants for the parameterized microstructure was refined, such that the four geometric 
parameters were varied in increments of 0.05. The FE homogenization procedure of  
Kowalczyk (2006) was used for the computation of the effective elastic constants. The 
repeatable cells that results for each combination of the geometric parameters were discretized 
with 8-node linear brick elements and appropriate boundary conditions that ensure fitting of all 
deformed neighboring cells to each other were specified. Six load cases were considered for 
each cell: pure stretching in three orthogonal directions x1, x2, x3 (see  Figure 3) and pure shear 
in three orthogonal planes (normal to the three directions), which were specified in terms of the 
displacement fields. Reaction forces were measured for each case and used to compute the 
elements of the elasticity matrix. Thus, the construction of the database consisted of 41,990 
homogenization analysis that involved the solution of approximately 250,000 finite-element 
models altogether. 

Stiffness matrices of the parameterized microstructures are decomposed into their symmetry 
classes using the same procedure introduced earlier for the natural specimens. The extreme 
values attained by the symmetry classes are reported in Table 1. It is found that the 
parameterized microstructure covers the complete extents of the tetrahedral and orthorhombic 
classes of the natural specimens. On the other hand, it fails to cover the lowermost values of the 
isotropic class, 0.24 ≤ ciso < 0.36, and the uppermost values of the hexagonal class, 0.49 >

chex ≥ 0.65 for the human specimens. However, it is worth noting that only a few samples lie 
within the excluded ranges: 5 samples have ciso < 0.36 and 2 samples have chex > 0.49, i.e., 
less than 5% of the 141 samples in the database. Symmetry classes of the bovine samples lie 
always within the extents of the parameterized microstructure. 

The capability of the parameterized microstructure to mimic the elastic behavior is further 
assessed in terms of BV/TV. Figure 4 shows the symmetry classes of the parameterized 
microstructures for the range of BV/TV of the natural samples; these are 17,522 data points (to 
keep the figure clear not all data points were plot). Results are presented for ciso,  ciso + chex 
and cortho in subfigures (a), (b) and (c), respectively. The corresponding data for the natural 
samples are also shown in the figures: gray areas indicate the standard deviation of the human 
samples (see Figure 1) while the square marks are the values of the bovine samples (see Figure 
1). Figure 4(a) shows that with the only exception of the lowermost values, i.e., for 
5%≲ BV TV⁄ ≲ 7%, the parameterized microstructure can mimic the isotropic class of the 
natural trabeculae. Regarding ciso + chex, Figure 4(b) shows that the parameterized 
microstructure completely encompasses the data of the natural samples (the gray area is hardly 
visible behind the symbols). Finally, the results for the orthotropic symmetry in Figure 4(c) 
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show that, consistently with its geometric definition, the parameterized microstructure shows 
cortho = 1 over the complete BV/TV range, which results in a consistent overestimation of the 
orthotropic symmetry by the parameterized microstructure, the mean value and standard 
deviation of which is 6.6 ± 3.8% with respect to the human samples. Regarding the bovine 
samples, the overestimation ranges from 9% to 19%. 

3.3 Polynomial interpolation 

The discrete elastic-constant and symmetry-class data of the parameterized microstructures 
were examined to investigate their functionalities with the geometric parameters. 

It was observed that coefficients of the stiffness tensor ℂ behave as continuous and smooth 
functions of 𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣 and 𝑡𝑡𝑡𝑡 over the complete range, and that in general, the 𝐶𝐶𝑡𝑡𝑖𝑖 rise with the 
increment of the geometrical parameters. As examples, Figure 5 illustrates the behaviors of 𝐶𝐶11 
and 𝐶𝐶12 as functions of 𝑡𝑡𝑣𝑣 and 𝑡𝑡𝑐𝑐 for 𝑡𝑡ℎ = 0.6 and 𝑡𝑡𝑡𝑡 = 1.2. 

On the other hand, symmetry classes showed to be, in some cases, discontinuous functions 
of the geometric parameters. Figure 6 depicts the changes of the symmetry classes associated 
to the variation of the elasticity coefficients given in Figure 5. It can be observed that, although ℂ coefficients have a continuous variation, the hexagonal, tetragonal and orthorhombic 
symmetries present discontinuities. 

Based on the above observations, the discrete elastic-constant data was used to interpolate 
an analytical expression for ℂ(𝑡𝑡𝑐𝑐, tℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡). The nine non-zero coefficients, 𝐶𝐶11, 𝐶𝐶22, 𝐶𝐶33, 𝐶𝐶12, 𝐶𝐶13, 𝐶𝐶23, 𝐶𝐶44, 𝐶𝐶55 and 𝐶𝐶66, were interpolated polynomially by means of least-square fitting. 
Polynomials of order 5 to 12 were used; the quality of the interpolations was assessed in terms 
of the coefficient of determination (R2), the root-mean-square error (RMSE) and the residual 
sum of squares (SSres).   

Since the 𝐶𝐶𝑡𝑡𝑖𝑖 were interpolated separately, the thermodynamic requirement for ℂ(𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡) was checked. The thermodynamic requirement (positive definiteness of strain 
energy) enforces the condition that the invariants of the elasticity matrix should be positive, or 
in other words, that both, ℂ(𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡) and its inverse must be positive definite. These 
conditions were verified for the interpolated ℂ(𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡)  for  quadruplets in the intervals 𝑡𝑡𝑐𝑐 ∈ [0.05, 0.95], 𝑡𝑡ℎ ∈ [𝑡𝑡𝑐𝑐, 0.95], 𝑡𝑡𝑣𝑣 ∈ [𝑡𝑡𝑐𝑐, 0.95] and 𝑡𝑡𝑡𝑡 ∈ [0.6,1.4] in increments of 0.01. The 
thermodynamic requirement was found valid on most of the interpolation range. Polynomial 
fittings of order 10 are selected, since they produce accurate and valid interpolations over a 
wide range of the parameter values that allows for solid volume fractions 1% ≤ 𝐵𝐵𝐵𝐵/𝑇𝑇𝐵𝐵 ≤
99%. 
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Figure 4: Comparison of elastic symmetry classes of the natural and the parameterized trabecular 
microstructures: (a) isotropic class, (b) isotropic + hexagonal classes, (c) orthotropy. 
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Figure 5: Parameterized-microstructure elasticity coefficients C11 and C12 as functions of tc and tv for th = 0.6 
and te = 1.2. 

 

 

 

 

Figure 6: Parameterized-microstructure symmetry classes as functions of tv and tc for  th = 0.6 and te = 1.2. 
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4 OPTIMIZATION  

 

Figure 7: Workflow of the optimization analysis. 

4.1 Problem statement 

The optimization problem is to find the parameterized microstructure that better mimics the 
elastic response of a target natural bone specimen. The elastic equivalence among the 
microstructures is posed in terms of the symmetry classes. 

The workflow is illustrated in Figure 7. The analysis starts with the elastic homogenization 
of the target bone sample; the resultant elasticity matrix is decomposed into symmetry classes. 
The triclinic and monoclinic classes are suppressed to obtain the target elasticity matrix. Thus, 
the resultant  ℂtarget has orthotropic symmetry, and it is compatible with the artificial 
microstructure.  

The problem consists in finding the quadruplet tc, th, tv and te that minimizes the overall 
difference between the symmetry class decompositions: 

 

Mecánica Computacional Vol XXXV, págs. 329-347 (2017) 339

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



ℛ = min� �𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚�2 + �𝑐𝑐ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐ℎ𝑡𝑡𝑒𝑒�2
+�𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡�2 + �𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡�2  , (6) 

 

where cisotarget, chextarget, ctettarget, corttarget and ciso, chex, ctet, cort are the normalized symmetry 
classes of the target and the parameterized microstructures, respectively; ciso, chex, ctet and cort 
are functions of tc, th, tv and te. 

Geometric parameters are subjected to the inequality restrictions in equation (5) and at the 
same time, they must comply with the restriction imposed by the bone volume-to-total volume 
ratio of the target microstructure, 

 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ (𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡) = 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
, (7) 

 
Alternatively, the restriction of the bone volume-to-total volume ratio might be relaxed, such 

as 
 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �1 − 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑚𝑚𝑡𝑡� ≤ 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ (𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡)≤ 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �1 + 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑚𝑚𝑡𝑡�, 

(8) 

 
where BV TV⁄ tol is a prescribed tolerance that could take any value in the interval [0,1]. 

4.2 Algorithm 

The optimization problem is solved using the derivative-free constrained direct search solver 
pattern search (PS) of the Matlab Global Optimization Toolbox. The PS is selected because 
being derivative-free, it can deal with the discontinuous functionalities between the symmetry 
classes and the geometrical parameters, see Section 3.3. patternsearch computes a 
sequence of points that approach an optimal of 
 

min𝑒𝑒 𝑓𝑓(𝑥𝑥)  such that ⎩⎪⎨
⎪⎧ 𝑐𝑐𝑡𝑡𝑒𝑒(𝑥𝑥) = 0𝑐𝑐𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒(𝑥𝑥) ≤ 0𝐴𝐴𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒(𝑥𝑥) ∙ 𝑥𝑥 ≤ 𝑏𝑏𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒𝑏𝑏𝑡𝑡𝑚𝑚𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑏𝑏𝑢𝑢𝑢𝑢  (9) 

 

where x = [tc, th, tv, te]T and the objective function is f(x) = ℛ(tc, th, tv, te). At each step, the 
algorithm searches a set of points, called a mesh, around the current point. The mesh is formed 
by adding the current point to a scalar multiple of a set of vectors called a pattern. If the pattern 
search algorithm finds a point in the mesh that improves the objective function at the current 
point, the new point becomes the current point at the next step of the algorithm.  

The constrain functions are used for the restriction on BV/TV. In the case of a prescribed 
target BV/TV, the equality function constrain,  ceq(x) = 0, is 

 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ (𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡) − 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
= 0, (10) 

 
while if BV/TV is defined as in equation (8), two cineq(x) ≤ 0 are specified: 
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𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ (𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡)− 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(1 + 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑚𝑚𝑡𝑡) ≤ 0 (11) 

and 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(1− 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑚𝑚𝑡𝑡) − 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ (𝑡𝑡𝑐𝑐, 𝑡𝑡ℎ, 𝑡𝑡𝑣𝑣, 𝑡𝑡𝑡𝑡) ≤ 0. (12) 

 
Inequality constrains are the restrictions on the geometric parameters in equation (5). Thus, 
Aineq(x) ∙ x ≤ bineq is 
 �1 −1 0 0

1 0 −1 0
� �𝑡𝑡𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡� ≤ �0

0
�. (13) 

 
Finally, inequality constrains blow ≤ x ≤ bup are used to set the validity intervals for the 

polynomial interpolations in Section 3.2. These are 
 𝑏𝑏𝑡𝑡𝑚𝑚𝑙𝑙 = �0.06

0.06

0.06

0.6

�   and 𝑏𝑏𝑢𝑢𝑢𝑢 = �0.95

0.95

0.95

1.4

�. (14) 

 
Stopping criteria involves tolerances for FunctionTolerance, the difference between 

the function value at the previous best point and function value at the current best point; 
MeshTolerance, the minimum size for the search mesh; and StepTolerance, the 
minimum distance from the previous best point to the current best point. The three tolerances 
were set with the default values of 10−6. 
4.3 Verification and tuning 

The optimization procedure was verified, tested and tuned by assessing its effectiveness to 
identify microstructures among those of the database used for the elasticity-matrix polynomial 
fitting (see Section 3.3). To this end, 100 parameterized microstructures were randomly selected 
from the database to serve as target microstructures. Problems were solved for BV TV⁄ tol = 1% 
and 5%. Since the thermodynamic requirement was checked only for discrete combinations 
(tc, th, tv, te) in Section 3.3, there is no guarantee that all possible combinations will satisfy it. 
Therefore, the thermodynamic requirement for ℂ(tc, th, tv, te) was checked at the end of each 
optimization procedure. 

Preliminary tests had shown that the performance of the algorithm was sensitive to the initial 
values (seeds) of the geometric parameters. Thus, each problem was run four times for different 
sets of random seeds and the best result reported. 

Table 2 reports the mean values of the residuals and the mean values and standard deviations 
of the relative errors of the geometric parameters and the symmetry classes. Errors for the 
geometric parameters are 

 𝑒𝑒𝑡𝑡𝑐𝑐 =
𝑡𝑡𝑐𝑐 − 𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑒𝑒𝑡𝑡ℎ =

𝑡𝑡ℎ − 𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , (15) 
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𝑒𝑒𝑡𝑡𝑣𝑣 =
𝑡𝑡𝑣𝑣 − 𝑡𝑡𝑣𝑣𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   and  𝑒𝑒𝑡𝑡𝑒𝑒 =

𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 

 
Besides, errors for the symmetry classes are relative to the corresponding average value of 

the 100 target microstructures. This approach avoids the occurrence of boundless and 
misleading large errors for the target microstructures with zero or nearly zero symmetry classes. 
Thus, the errors for the symmetry classes are defined as follows 

 𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚 − 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝚤𝚤𝑖𝑖𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡��������� , 𝑒𝑒𝑐𝑐ℎ𝑒𝑒𝑒𝑒 =

𝑐𝑐ℎ𝑡𝑡𝑒𝑒 − 𝑐𝑐ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡��������� , 

𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡 =
𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡���������  and   𝑒𝑒𝑐𝑐𝑖𝑖𝑜𝑜𝑡𝑡 =

𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡��������� , 

(16) 

 

where  𝑐𝑐𝚤𝚤𝑖𝑖𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡���������
, 𝑐𝑐ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡���������

, 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡��������� and 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡��������� are the mean values of the symmetry class fractions 
for the target microstructures. 
 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑚𝑚𝑡𝑡   

[%] 
Residual 

Error geom. parameters 
[%] 

Symmetry-class errors x 10-3 𝑡𝑡𝑐𝑐 𝑡𝑡ℎ 𝑡𝑡𝑣𝑣 𝑡𝑡𝑡𝑡 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚 𝑐𝑐ℎ𝑡𝑡𝑒𝑒 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡 
0 1.4×10-2 17 ± 

41 
-0 ± 
38 

0 ± 
33 

2 ± 
31 

-4.8 ± 
18.3 

7 ± 237 
80 ± 
502 

14 ± 
137 

1 5.6×10-3 12 ± 
33 

1 ± 
34 

-5 ± 
18 

4 ± 
25 

0.7 ± 
11.7 

18 ± 
168 

-33 ± 
262 

-0.4 ± 
47.9 

5 3.1×10-3 5 ± 
37 

4 ± 
36 

6 ± 
36 

5 ± 
26 

-0.8 ± 
4.2 

-1.4 ± 
88.9 

27 ± 
175 

10 ± 66 

Table 2: Mean values of the residuals and errors for the geometric parameters and the symmetry classes. 

Table 2 shows that results are accurate for the symmetry classes, with maximum errors of a 
few percent for etet. Error etet diminishes from 8% to 3% with the increment of BV TV⁄ tol. 
However, this is not the case for all the symmetry classes; note that ehex and eort  present their 
minima for BV TV⁄ tol = 1%. Maximum standard deviations are also for etet, and they reduce 
from 50% to 17% with the increment of BV TV⁄ tol.  The largest error in the geometric 
parameters is for tc, which diminishes from 17% to 5% as the tolerance for the bone volume 
fraction is relaxed from BV TV⁄ tol = 0 to BV TV⁄ tol = 5%. In contrast, minimum errors for  th, 
tv and te are for BV TV⁄ tol = 0, and they deteriorate with BV TV⁄ tol; in any case, maximum 
errors are of a few percent. The standard deviations for the geometric parameters are not 
sensitive to BV TV⁄ tol and they are from 25% to 40%.  

The mean BV TV⁄  of the optimal microstructures are very close the target values; mean 
values for the relative error 
 𝑒𝑒𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ =

𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ − 𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵 𝑇𝑇𝐵𝐵⁄ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (17) 

 
are eBV TV⁄��������� = 7 ∙ 10−4 and −5 ∙ 10−3 for BV TV⁄ tol = 1% and 5%, respectively. 
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5 APPLICATION TO NATURAL TRABECULAR SAMPLE S 

5.1 Human specimens 

Elasticity matrices of the 141 human bone samples were filtered to retrieve their orthotropic 
parts. To do so, components C14, C15, C16, C24, C25, C26, C34, C35, C36, C45, C46 and C56  were set 
equal to zero for the elastic tensors oriented in the symmetry Cartesian coordinate system and 
their symmetry class decompositions computed such that cortobj

+ ctetobj + chexobj
+ cisoobj = 1. The 

resultant data was used as target values for the optimization procedure. Optimizations were 
performed for BV TV⁄ tol = 0%, 1%, 5% and 10%. 

Symmetry classes for the obtained effective elastic properties are assessed in relation to the 
mean values of their extreme fractions for the human microstructures in Table 1, this is: 

 𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖,
=

𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚 − 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
1
2
�𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒 + 𝑐𝑐𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚� , 𝑒𝑒𝑐𝑐ℎ𝑒𝑒𝑒𝑒,

=
𝑐𝑐ℎ𝑡𝑡𝑒𝑒 − 𝑐𝑐ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

1
2
�𝑐𝑐ℎ𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡𝑒𝑒 + 𝑐𝑐ℎ𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡𝑚𝑚�, 

𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡,
=

𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
1
2
�𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 + 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑚𝑚�  and   𝑒𝑒𝑐𝑐𝑖𝑖𝑜𝑜𝑡𝑡,

=
𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

1
2
�𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 + 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑚𝑚�. 

(18) 

 
Results showed no significant improvements with the relaxation of the BV TV⁄ tol constrain, 

so only the results for BV TV⁄ tol = 1% are presented next. Mean errors for 141 samples are 
ecıso,������ = 0.07,  echex,������ = −0.09, ectet,������ = −0.03 and ecort,������ = −0.02.  

Figure 8 presents the results in terms of their relative error for the elasticity matrices, 
 𝑒𝑒‖ℂ‖ =

‖ℂ‖ − ‖ℂ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖‖ℂ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖ . (19) 

 
It can be observed that  e‖ℂ‖����� and its dispersion diminish with BV/TV, from 0.3 ≲ e‖ℂ‖ ≲ 4 for 
BV/TV < 10% to 0.2 ≲ e‖ℂ‖ ≲ 0.8 for BV/TV > 32%. At the same time, it is interesting to 
note that, with only a few exceptions, e‖ℂ‖ > 0, what implies that the optimized parameterized 
microstructures are, in general, stiffer than the target natural ones. It might be argued that the 
parameterized microstructures make, in terms of stiffness, a more efficient use of the material 
than natural microstructures, being this greater efficiency more noticeable for low BV TV⁄ .  

The solutions can be improved for e‖ℂ‖ by doing a convenient selection of the Young’s 
modulus of the artificial microstructure material. If the artificial microstructure is constructed 

using a material with Young´s modulus E′ =
�ℂtarget�‖ℂ‖ E, the error for the elastic matrix norm 

e‖ℂ‖ = 0. Clearly, this scaling of the Young´s modulus does not affect the elastic symmetries. 
The above analysis was performed for the 141 samples. The average scaling factor for the 
Young´s modulus was found E′ E⁄������ = 0.55 with and standard deviation SDE′ E⁄ = 0.20. 
Resultant mean errors and standard deviations for the elasticity coefficients are reported in 
Table 3. Errors are reported relative to the individual elasticity coefficients,   

 𝑒𝑒𝑡𝑡𝑖𝑖𝐶𝐶 =
𝐶𝐶𝑡𝑡𝑖𝑖 − 𝐶𝐶𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , (20) 
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and relative to the elasticity matrix norm 
 𝑒𝑒𝑡𝑡𝑖𝑖‖𝐶𝐶‖ =

𝐶𝐶𝑡𝑡𝑖𝑖 − 𝐶𝐶𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖ℂ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖ . (21) 

 

 

Figure 8: PS optimization of the human samples: stiffness-matrix error as function of BV ⁄ TV. 

It is observed that coefficients C12, C13 and C11 have the maximum individual relative errors, 
which range from 80% to 210%; however, when evaluated relative to ‖ℂtarget‖, maximum 
errors do not exceed 10%. 
 

Error 
Relative errors for elasticity matrix coefficients 𝐶𝐶11 𝐶𝐶22 𝐶𝐶33 𝐶𝐶23 𝐶𝐶13 𝐶𝐶12 𝐶𝐶44 𝐶𝐶55 𝐶𝐶66 𝑒𝑒𝑡𝑡𝑖𝑖𝐶𝐶  mean 0.80 -0.04 -0.24 0.34 0.86 2.15 -0.28 0.05 -0.21 

SD 1.06 0.34 0.26 0.66 0.83 1.49 0.38 0.54 0.81 𝑒𝑒𝑡𝑡𝑖𝑖‖𝐶𝐶‖ mean 0.10 -0.02 -0.11 0.01 0.04 0.08 -0.04 0.00 -0.01 
SD 0.13 0.08 0.14 0.03 0.03 0.03 0.04 0.03 0.04 

Table 3: Relative errors for the elasticity matrix after the PS optimization. 

5.2 Bovine specimens 

The optimization was performed for the orthotropic part of the stiffness matrices of the 5 
bovine specimens from Colabella et al. (2017). Tolerance for the volume fraction was set 
BV TV⁄ tol = 1%. The optimized microstructures are shown in Figure 9 together with their 
corresponding target natural samples. Table 5 and Table 6 report the errors for the symmetry 
classes and the elasticity coefficients, respectively. Error for the symmetry classes are in 
relation to the ranges of the extreme fractions for the bovine microstructures in Table 1 as in 
equation (18). 

Table 5 shows that, with the only exception of the tetragonal symmetry, errors for the 
symmetry classes are very low. The large relative errors for the tetragonal symmetry are 
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explained due to its small relative contribution to the elasticity matrix. The worst performance 
is for Sample #2, which has the particularity of having the lowest isotropic class and the highest 
orthorhombic class fractions, ciso = 0.54 and cort = 0.27, respectively.  

Error for the elasticity coefficients are in Table 6. They were computed after the scaling of 
the Young´s modulus to make e‖ℂ‖ = 0. The resultant scaling factors range 0.41 <

E′ E < 0.72⁄  with a mean value of E′ E⁄������ = 0.55, which coincides with that of the human sample 
analysis in the previous section. It is observed that as for the human samples, C12 presents the 
highest mean error level (around 9%); maximum errors are of around 17% for C11 and C22 of 
Sample #5. 

Figure 9: Natural bovine specimens and their mimetic parameterized microstructures. 

Sample 
Errors for symmetry classes 𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖,  𝑒𝑒𝑐𝑐ℎ𝑒𝑒𝑒𝑒,  𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡,  𝑒𝑒𝑐𝑐𝑖𝑖𝑜𝑜𝑡𝑡,  

1 0.002 0.011 -0.076 0.018 
2 0.024 0.166 0.332 -0.696 
3 0.001 0.006 -0.049 0.013 
4 -0.002 -0.010 0.074 -0.019 
5 -0.001 -0.006 0.039 -0.004 

Table 4: Errors for the symmetry classes of the mimetic bovine samples. 

Sample 
Relative errors for elasticity matrix coefficients 𝐶𝐶11 𝐶𝐶22 𝐶𝐶33 𝐶𝐶23 𝐶𝐶13 𝐶𝐶12 𝐶𝐶44 𝐶𝐶55 𝐶𝐶66 

1 0.034 0.016 -0.008 -0.039 -0.047 0.118 -0.028 -0.082 -0.032 

2 0.060 -0.016 -0.018 0.007 0.012 0.065 -0.007 0.015 -0.072 

3 -0.004 0.041 -0.035 0.005 0.003 0.048 -0.016 0.009 -0.054 

4 0.020 0.034 -0.048 0.029 0.014 0.087 -0.023 -0.001 -0.092 

5 0.167 -0.168 -0.039 -0.101 0.047 0.143 -0.062 0.003 -0.009 

Table 5: Relative errors for the elasticity matrix of the mimetic bovine samples. 

6 CONCLUSIONS 

This work introduces a procedure for the design of artificial parameterized microstructures 
that mimic the elastic response of cancellous bone. The procedure is based on the parameterized 
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microstructure by Kowalczyk (2006), the geometric parameters of which are optimized to 
minimize the differences between the symmetry classes of the target and the artificial 
microstructure elastic tensor.  

Symmetry class analyses of experimental data from Kabel et al. (1999a, 1999b) and of 
specimens processed as part of this work show that elastic symmetries can be related to the 
specimen BV/TV. The isotropic symmetry class constitutes the main fraction of the elastic 
tensor; it increases linearly with the specimen bone volume fraction, from around 50% for 
BV/TV = 5% to 70% for BV/TV = 35%. The isotropic and hexagonal classes add to a 
constant, such that they account for around 82% of the elastic tensor over the complete BV/TV 
range. The orthotropic symmetry, given by the addition of the isotropic, hexagonal, tetragonal 
and orthorhombic classes, constitute around 93% of the elastic tensor, independently of the 
BV/TV.  

The parameterized artificial microstructure is orthotropic by construction. It is shown in this 
work that it has the capability to combine the isotropic, hexagonal, tetragonal and orthorhombic 
symmetry classes in the proportions present in the cancellous bone. Analytical expressions for 
the elastic matrix in terms of the microstructure geometrical parameters are provided.  

An optimization strategy is proposed to find the parameterized microstructure that better 
mimics the elastic response of a target natural bone specimen. The strategy is based on Pattern 
Search algorithm that uses the geometrical parameters as design variables to minimize the 
difference between the elastic symmetry classes of artificial and natural microstructures. The 
analyses of 146 natural cancellous bone specimens resulted in mimetic microstructures whose 
symmetry class decompositions differ on average 6% with respect to the target values. 

The results for the elasticity matrix error allows to observe that the optimized microstructures 
are in general stiffer than their natural counterparts; this behavior is more noticeable for low 
BV/TV. This deviation can be compensated by selecting the Young’s modulus for the optimized 
microstructure material such that norm of the difference between elasticity matrices of the target 
and optimized microstructure vanishes. Clearly, the Young´s modulus scaling does not affect 
the elastic symmetries. The mean value for such scaling factor was found equal to 0.55, i.e., 
the parameterized microstructure material should have, in average, half the stiffness of the 
trabecular bone tissue. After scaling, average errors between the optimized and target elasticity 
matrix coefficients do not exceed 10% relative to the matrix norm. 
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