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Abstract. In this paper some results on the stability of the time integration when solving fluid/structure
interaction problems with strong coupling via fixed point iteration strategy are presented. The flow-
induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied.
The precision of different predictor schemes and the influence of the partitioned strong coupling on
stability is discussed.
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1 INTRODUCTION

Multidisciplinary and Multiphysics coupled problems represent nowadays a paradigm when
studying/analyzing even more complex phenomena that appear in nature and in new technolo-
gies. There exists a great number of problems where different physical processes (or models)
converge, interacting in a strong or weak fashion (e.g., Acoustics/Noise disturbances in flexi-
ble structures, Magneto-Hydrodynamics devices, Micro-Electro-Mechanical devices, Thermo-
Mechanical problems like continuous casting process, Fluid/Structure interaction like wing flut-
ter problem or flow-induced pipe vibrations). In the fluid/structure interaction area, the dynamic
interaction between an elastic structure and a compressible fluid has been the subject of inten-
sive investigations in the last years (see works byGnesin and Rzadkowski(2005); Piperno and
Farhat(2001); Lefrancois(2005)). This paper concerns with the numerical integration of this
type of problems when they are coupled in a loose or strong manner.

For simple structural problems (like hinged rigid rods with one or two vibrational degrees of
freedom) it is possible to combine into a single (simple) formulation the fluid and the structural
governing equations (seeDowell et al.(1995)). In those cases, a fully explicit or fully implicit
treatment of the coupled fluid/structure equations is attainable. Nevertheless, for complex/large
scale structural problems, the simultaneous solution of the fluid and structure equations using
a ‘monolithic’ scheme may be mathematically unmanageable or its implementation can be a
laborious task. Furthermore, the monolithic coupled formulation would change significantly if
different fluid and/or structure models were considered.

An efficient alternative is to solve each subproblem in a partitioned procedure where time
and space discretization methods could be different. Such a scheme simplifies explicit/implicit
integration and it is in favor of the use of different codes specialized on each sub-area. In this
work a staggered fluid/structure coupling algorithm is considered. A detailed description of
the ‘state of the art’ in the computational fluid/structure interaction area can be found in works
by Piperno and Farhat(2001); Felippa et al.(2001); Park and Felippa(2000); Dettmer and Peric
(2006) and the references therein.

Beyond the physical and engineering importance, this problem is interesting from the com-
putational point of view as a paradigm of multiphysics code implementation that reuses preexis-
tent fluid and elastic solvers. The partitioned algorithm is implemented in the PETSc-FEM code
(www.cimec.org.ar/petscfem ) which is a parallel multi-physics finite element program
based on the Message Passing Interface MPI and the Portable Extensible Toolkit for Scientific
Computations PETSc. Two instances of the PETSc-FEM code simulate each subproblem and
communicate interface forces and displacements via Standard CFIFO files or ‘pipes’. The key
point in the implementation of this partitioned scheme is the data exchange and synchronization
between both parallel processes. These tasks are made in a small external C++ routine.

2 STRONGLY COUPLED PARTITIONED ALGORITHM VIA FIXED POINT ITER-
ATION

The temporal algorithm that performs the coupling between the structure and the fluid codes
used is described inStorti et al.(2006). It is a fixed point iteration algorithm over the states
of both fluid and structure systems. The basic staggered algorithm considered in this work
proceeds as follows: (i) transfer the motion of the wet boundary of the solid to the fluid problem,
(ii) update the position of the fluid boundary and the bulk fluid mesh accordingly, (iii) advance
the fluid system and compute new pressures (and the stress field if compressible Navier-Stokes
model is adopted), (iv) convert the new fluid pressure (and stress field) into a structural load,
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and (v) advance the structural system under the flow loads. Such a staggered procedure, which
can be treated as a weakly coupled solution algorithm, can also be equipped with an outer loop
in order to assure the convergence of the interaction process.

3 DESCRIPTION OF TEST CASE

The flutter of a flat solid plate aligned with a gas flow at supersonic Mach numbers (see
Figure1) is studied. A uniform fluid at state(ρ∞, U∞, p∞) flows over an horizontal rigid wall
y = 0 parallel to it. This test case has been studied also inPiperno and Farhat(2001).
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Figure 1: Description of test

In a certain region of the wall (0 ≤ x ≤ L) the wall deforms elastically following thin plate
theory, i.e.

mü+D
∂4u

∂x4
= −(p− p∞) + f(x, t), (1)

wherem is the mass of the plate per unit area inKg/m2, D = Et3/12(1 − ν2) the bending
rigidity of the plate module inNm,E is the Young modulus inPa, t the plate thickness inm, ν
the Poisson modulus,u the normal deflection of the plate inm, defined on the region0 ≤ x ≤ L
and null outside this region,p the pressure exerted by the fluid on the plate inPa, f is an external
force inN and will be described later. The plate is clamped at both ends, i.e.u = (∂u/∂x) = 0
at x = 0, L. For the sake of simplicity the fluid occupying the regiony > 0 is inviscid. The
compressible Euler model with SUPG stabilization and ‘anisotropic shock-capturing’ method
is considered inTezduyar and Senga(2004)). A slip condition is assumed

(v − vstr) · n̂ = 0 (2)

on the (curved) wally = u(x), where

vstr = (0, u̇),

n̂ ∝ (−∂u
∂x
, 1)

(3)

are the velocity of the plate and its unit normal. Finally, initial conditions for both the fluid and
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the plate are taken as

u(x, t = 0) = u0(x),

u̇(x, t = 0) = u̇0(x),

(ρ,v, p)x,t=0 = (ρ,v, p)0, for y ≥ u0(x).

(4)

Note that for the fluid pressure load on the plate the free stream fluid pressure is subtracted
so that in the absence of any external perturbation (f ≡ 0) the undisturbed flow(ρ,v, p)x,t ≡
(ρ,v, p)∞ is a solution of the problem for the initial conditions

u ≡ 0,

u̇ ≡ 0,

(ρ,v, p)x,t=0 ≡ (ρ,v, p)∞.

(5)

3.1 Dimensionless parameters

As the fluid is inviscid, it is determined by the‘adiabatic index’ γ = Cp/Cv = 1.4 for air,
and the Mach numberM∞ = U∞/c∞, wherec∞ is the speed of soundc =

√
γp/ρ for the

undisturbed state.
Another dimensionless parameter can be built by taking the ratio between the characteris-

tic time of the structure which isTstr =
√
mL4/D, and the characteristic time of the fluid

Tfl = L/U∞. Then, the dimensionless numberNT is defined as the square of the ratio of both
characteristic times

NT =

(
Tfl

Tstr

)2

=
D

mL2U∞
2 . (6)

Finally, a (dimensionless) number can be formed by taking the ratio between the mass of the
fluid being displaced by the structure and the structure mass

NM =
ρ∞L

3

mL2
=
ρ∞L

m
. (7)

The same parameters as reported inPiperno and Farhat(2001) are considered. In this contri-
bution, flutter was studied near the pointM∞ = 2.27,NT = 4.3438×10−5 andNM = 0.054667.
The flutter region was studied by varying theM∞ value while keepingρ∞ and the structure pa-
rameters (m, L,D) constant (so thatNM constant andNT ∝ M∞

−2), and the same approach is
taken here. The dimensionless parameters are obtained by choosing the following dimensional
values

ρ∞ = 1 Kg/m3,

p∞ = 1/γ = 0.71429 Pa,

U∞ = M∞, (sincec∞ =
√
γp∞/ρ∞ = 1 m/sec),

D = 0.031611 Nm,

m = 36.585 Kg/m2,

L = 2 m.

(8)
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3.2 Houbolt’s model

In this section the linear flutter instability by means of the modal analysis is studied. First,
the‘Houbolt approximation’ (seeHoubolt(1958)) is assumed for the fluid,

p− p∞ = Cx
∂u

∂x
+ Ct

∂u

∂t
,

Cx =
ρ∞U∞

2√
M∞

2 − 1
,

Ct =
ρ∞U∞ (M∞

2 − 2)

(M∞
2 − 1)3/2

.

(9)

With this approximation the governing equation for plate deflection (1) becomes

mü+D
∂4u

∂x4
= −Cx

∂u

∂x
− Ct

∂u

∂t
. (10)

3.2.1 Plane wave analysis

If an infinite plate is considered, a plane wave analysis may shed some light on the mecha-
nism that leads to a flutter behavior. Then, let consider plane waves of the form

u(x, t) = Re
{
û ei(kx−ωt)

}
. (11)

Replacing (11) in (10) an implicit “dispersion law” ω = ω(k) it is obtained

−ω2m+Dk4 = iCtω − ikCx. (12)

Regarding the last equation instability (flutter) occurs wheneverIm {ω} > 0. Note that lowering
the mass ratio parameterNM while keepingNT andM∞ constant, it is equivalent to scaling the
fluid terms on the the right hand side of equation (9) by this factor. When there is no fluid
(NM → 0) the dispersion law simply reduces to

ω0 = ±
√
D

m
k2. (13)

As expected, the eigenvalues are real, meaning neither damping nor amplification of the waves.
The positive (negative) sign corresponds to right-going (left-going) waves, i.e. waves that run
in the same (opposed) direction as the fluid. The subscript 0 indicates that this dispersion law
is valid in the absence of fluid. Now assume thatNM is small enough so that the right hand
side of equation (12) is a small perturbation to the terms in the left hand side. Then a first order
expansion of the left hand side with respect toω aroundω0 can be done

−2mω0 δω = iCtω0 − ikCx, (14)

so that

ω ≈ ω0 − i
Ct

2m
± i

Cx

2k
√
mD

. (15)

From this equation it is clear that the temporal term (the second one in the Houbolt approxima-
tion (9)) has a stabilizing effect (negative imaginary part), while the spatial term has a damping
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effect for left-going waves and destabilizing effect for right-going ones, i.e. for those that run
in the same direction as the fluid. Flutter occurs when the destabilizing term is strong enough
so as to overcome the stabilizing temporal term.

More physical insight is obtained analyzing the work that is done by the fluid onto the plate.
If a plane wave given by equation (11) is considered in its equivalent real form

u(x, t) = |û| cos(kx− ωt+ ϕ), (16)

with û = |û|eiϕ, then the instantaneous vertical velocity and pressure are

v =
∂u

∂t
= ω|û| sin(kx− ωt+ ϕ),

p− p∞ = (−Cxk + Ctω) |û| sin(kx− ωt+ ϕ).
(17)

The instantaneous work done by the fluid onto the plate, averaged on a wave lengthλ = 2π/k
is

Ẇ = −
∫ λ

0

pv dx,

= ω(Cxk − Ctω) |û|2λ
2
.

(18)

A positive work means that the structure is absorbing energy from the fluid, and then has a
destabilizing effect while the opposite means dissipation of the structural wave energy into the
fluid. It can be seen (again) from equation (18) that the temporal term has always a stabilizing
effect, while the spatial term has a destabilizing effect whensign(ω) sign(k) > 0, i.e. for
right-going waves (traveling in the same sense of the fluid).

Note that at the basis of the destabilizing effect is the fact that the spatial term in the Houbolt
approximation produces a pressure perturbation field that is non-symmetric with respect to the
crest of the waves, i.e. before the crest ((du/dx) > 0) p − pref > 0 whereas after the crest
((du/dx) < 0) p− pref < 0. In inviscid subsonic flow the pressure perturbation field would be
symmetric.

3.2.2 Galerkin model for the finite length plate

The plate normal displacement is expanded in a global basis using

u(x) =
N∑

k=1

akψk(x),

ψk(x) =
4x(L− x)

L2
sin(kπx/L).

(19)

These basis functions satisfy the essential boundary conditions for the plate equationu =
(∂u/∂x) = 0 atx = 0, L. Replacing the Houbolt approximation in equation (1), using Galerkin
method and integrating by parts as needed, the following matrix equation is obtained

Mä + Ka + Hxa + Htȧ = 0, (20)
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where

Mjk =

∫ L

0

mψj(x)ψk(x) dx,

Kjk =

∫ L

0

Dψ′′j (x)ψ
′′
k(x) dx,

Hx,jk =

∫ L

0

Cx ψj(x)ψ
′
k(x) dx,

Ht,jk =

∫ L

0

Ct ψj(x)ψk(x) dx.

(21)

Solution of these system of ODE’s can be found by standard operational methods by replacing
a(t) by theansatz

a(t) = âeλt (22)

leading to the eigenvalue equation(
λ2M + λHt + K + Hx

)
â = 0. (23)

Flutter is detected whenever some eigenvalueλ has a positive real part.

3.2.3 Numerical solution details

• The series (19) are truncated at a certain number of termsN . UsuallyN = 10 or 20.
• Matrix entries forM, K, Ht andHx are computed by approximating derivatives with

second order finite differences and integrating with a second order rule.
• The quadratic eigenvalue problem of sizeN is solved by converting it to a linear eigen-

value problem of size2N (and then finding eigenvalues and eigenvectors).

3.2.4 Results

Using for instance the values described in (8) withN = 20 terms in the series and 5000 inter-
vals for computing the matrix coefficients integrals, and varying Mach from 1.8 to 3 the results
shown in Figure2 are obtained. ForM∞ < Mcr = 2.265, all the eigenvalues have negative
real part being stable. ForM∞ > Mcr = 2.265 there are two complex conjugate roots with
positive real part. In Figure2 the real and imaginary part of the unstable mode are plotted. For
M∞ < Mcr = 2.265 the eigenvalue with the lower frequency was taken as a continuation of the
flutter mode. It was checked that forM∞ < Mcr = 2.265 the plate does positive power on the
fluid whereas forM∞ > Mcr = 2.265 the converse is true. The instantaneous power done by
the plate on the fluid is

P =

∫ L

x=0

pu̇ dx. (24)

In Figures3 to 5 the form of the plate deflection of the flutter mode for Mach 2.22, 2.27 and
2.35 is observed. For each Mach: plate deflection, fluid pressure on the plate and power that is
being done by the plate on the fluid (pu̇) are shown.
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Figure 2: Lowest frequency mode for test case.

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Figure 3: Mach 2.2, phase 0. Black= plate deflection, blue=pressure, green=power. Quantities normalized (not to
scale).

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Figure 4: Mach 2.27, phase 0

R.R. PAZ, L. DALCIN, M.A. STORTI, N.M. NIGRO836

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Figure 5: Mach 2.35, phase 0

3.2.5 Flutter region

A large number of flutter computations in the spaceNM , NT ,M∞ were performed in order
to determine the flutter region. A grid of20 × 20 points in the region[0.001 ≤ NM ≤ 0.1] ×
[10−5 ≤ NT M∞

2 ≤ 10−3] was scanned. For each point in the grid instability is scanned in the
Mach region1.8 ≤ M∞ ≤ 3. The flutter region has the following form:

NM

NT M∞
2 < 200 no flutter for any Mach number,

NM

NT M∞
2 > 300 flutter for the lowest Mach number considered (M∞ ≥ 1.8).

(25)

In the intermediate region flutter is produced. This suggests that flutter is highly correlated to
quantity

NM

NtM∞
2 =

ρ∞L
3c∞
D

(26)

which happens to be independent of the density of the plate.
A simple model presented inDowell et al.(1995) draws a similar conclusion. The expla-

nation is as follows. In that reference, the term proportional to(∂u/∂t) is neglected. This
is true if the characteristic times of the structure are much lower than those of the fluid, i.e.
NT � 1. This is a valid assumption because of all points in the grid located in the region
NT < 10−3 are considered. But if the temporal term in the Houbolt approximation is neglected
the characteristic equation can be written in the form

det(λ̄2M̄ + K + Hx) = 0 (27)

where
λ̄ =

√
mλ,

M̄ =
1√
m

M.
(28)

As now the coefficients in̄M, K, Hx do not depend onm, neither do the eigenvalues of equa-
tion (27), and then by (28) theλ eigenvalues are of the form

λj =
λ̄j√
m
, (29)

with λ̄ not depending onm. This means that the sign of the real part of theλ is independent of
m.
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3.3 FSI code results

The aeroelastic problem defined above was modeled with the strongly coupled partitioned
algorithm described in section§2 with a mesh of 12800 quadrilateral elements for the fluid and
5120 for the plate. As the flow is supersonic only a small entry section of1/8L upstream the plate
and1/3L downstream is considered. The vertical size of the computational domain was chosen
as0.8L. It is assured that no reflection from the upper boundary affects the plate itself when
considering these sizes for the fluid domain.

3.3.1 Determination of flutter region

This section presents some results obtained with PETSc-FEM code using the weak coupling
between fluid and structure, i.e.nstage = 1. The physical characteristics of the plate are the same
as in previous section. In order to find (numerically) thecritical Mach number for this problem
a sweep in the Mach number in the range of 1.8 to 3.2 was done. Results for some Mach
numbers can be seen in Figures6 to 11. In these plots the time evolution of displacements of
several points distributed along the skin plate are shown. The fluid density field and the structure
displacement at Mach=3.2 (flutter region) for a given time step is shown in Figures12and13.
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Figure 6: Plate deflection in distributed points along plate at M=1.8

For Mach numbers below theMcr, Figures6 to (8), the maximum plate displacement grows
until the forces exerted by the fluid dump the plate displacements. The time needed to reduce
the response a given factor (30% for instance) grows with the Mach number. For Mach numbers
near theMcr, Figure9, the maximum amplitude grows slightly. The flutter mode is triggered
at this point. For Mach numbers above theMcr, Figures10, 11, 12 and13, the fluid forces
cannot damp the structure response and displacements grow without limit in a unstable fashion
according to the theory.
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Figure 7: Plate deflection in distributed points along plate at M=2.225
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Figure 8: Plate deflection in distributed points along plate at M=2.25
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Figure 9: Plate deflection in distributed points along plate at M=2.275
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Figure 10: Plate deflection in distributed points along plate at M=2.3
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Figure 11: Plate deflection in distributed points along plate at M=3.2

Figure 12: Fluid and structure fields at M=3.2
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Figure 13: Fluid and structure fields at M=3.2

3.3.2 Time accuracy

If the stage loop converges, i.e.(u,w)n+1,i → (u,w)n+1,∗, then it can be shown that the
limit states(u,w)n+1,∗ satisfy the fully implicit, strong coupled equations. The main effect
of the staged algorithm is to have a strong coupling and then, enhanced stability, regardless
the time accuracy, i.e., second or higher order temporal schemes can be achieved with a non-
staged weak algorithm, while a strong coupled staged algorithm not necessarily have high order
accuracy. In Figure14 the error obtained after the simulation of a certain fixed amount of
time t0 and increasing time refinement is shown. The exact solution is estimated through a
Richardson extrapolation with the two more refined simulations for the more accurate scheme
(α = 0.5). The error att0 is evaluated for a certain number of different∆t values. It can
be see that forα = 0.6 (the parameter of the trapezoidal rule in both the structure and the
fluid) the convergence curve has initially second order slope, but for∆t small enough this order
is lost. This is typical when the error has mixed first and second order terms, for instance
E ∝ c∆t + c′∆t2. For high∆t the second order term rules and a second order convergence is
perceived. However, as the time step is diminished, at a certain point the first term rules and the
slope switches to first order. Forα = 0.5 the curve isO(∆t2) on the whole studied range of∆t.
When usingα = 0.5 with no predictor (seeStorti et al.(2006)), a second order convergence is
still obtained, but the convergence slightly slows down in the very last segment. Note that in this
case the scheme is second order,except for the fluid-structure interaction. As the interaction is
weak, perhaps the first order convergence can be observed for smaller time steps.
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3.3.3 Convergence of stage loop

The convergence of the stage loops has been assessed by running the test case over 20 time
steps and performing 10 stages at each time step. In Figure15 the convergence of the fluid
state (i.e.‖un+1,i+1 − un+1,i‖) for all the time steps (convergence curves of the time steps are
concatenated) is shown. Analogously, the convergence of the structure is plotted in Figure16.
The average convergence is one order of magnitude per stage or higher, suggesting that for such
a situation a smallnstage (2 or 3) would be enough.
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Figure 14: Experimentally determined order of convergence with∆t for the uncoupled algorithm with fourth order
predictor.

3.3.4 Stability of the staged algorithm

The following numerical test allows to evaluate the stability of the staged algorithm pre-
sented in section§2. The example is similar to the aeroelastic test case presented in section§3
with some different parameters for the plate in order to produce larger plate deformations and
stronger instabilities. Some parameters are similar to those presented in equation (8). Here, only
the parameters that have been modified and the dimensionless parameters that may be obtained
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Figure 15: Convergence of fluid state in stage loop.
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Figure 16: Convergence of structure state in stage loop.
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with them are included.
U∞ = M∞ = 2

t = 0.06

ν = 0.33

m = 0.002

E = 39.6

D = 8.010−4

NT =
D

mL2U∞
2 = 0.025

NM =
ρ∞L

m
= 1000.0

(30)

Therefore according to the section§3.2.5

NM

NT M∞
2 = 10000 > 300 (31)

implies that the flow is inside the flutter region.
The following figures shows results obtained with both strategies, the staged and non-staged

algorithms. In order to compare both results in terms of the computational cost, for the non-
staged algorithmic, a time step reduced by the number of stages used for the staged algorithm.
So, the cost is similar for each one of them.

The vertical displacements on some points of the plate for the staged algorithm usingnstage =
5 after approximately 1300 time steps are shown in Figure17. The results for the non-staged
algorithm diverge at 40 time steps and are shown in Figure18.
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Figure 17: Stability analysis - Staged algorithm withnstage = 5. Vertical displacements of the plate vs time

Even though the staged algorithmic shows an extra stability compared with the non-staged
one, the conclusions about this numerical experiment are not obvious because the flow regime
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Figure 18: Stability analysis - Non-staged algorithm. Vertical displacements of the plate vs time

is in a flutter condition. Further work needs to be done towards the understanding about how
the staged algorithmic improves the stability of the whole coupled problem.

4 STABILITY OF THE WEAK/STRONG STAGED COUPLING OUTSIDE THE FLUT-
TER REGION

This section describes the stability properties of the weak coupling when the free stream
conditions and plate parameters are such that the oscillations due to flutter do not appear. The
flutter region can be characterized by the dimensionless numberFL = NM/NTM

2
∞ (see the

previous section). Therefore, in order to study the stability behavior of the weak/strong algo-
rithms (nstage = 1 andnstage > 1, respectively) intrinsic to the physical coupling, the region
FL � 200 is studied, particularlyFL = 12 is chosen. This non-dimensional number does
not depend on the plate densitym then a sweep can be on this variable in a wide range avoid-
ing triggering flutter. The idea is to find a value for this variable in which the weak coupling
algorithms becomes unstable while the strong coupling and the uncoupled problems remain
stable (i.e., fluid pressures are not transferred to the structure). To accomplish convergence in
the nonlinear loop for the fluid problem 2 Newton iterations (typically for this problem, 3-5
orders of magnitude are lowered in the residual in 2 Newton loops) are adopted. The mesh is
the same as in the previous simulations and the Courant number isCFL = 0.5. The plate mass
varies in the rangem = 35 andm = 0.0001. It was found that the value ofm where instabil-
ities appear relies in the neighbor ofm = 0.65. Above this value the weakly coupling scheme
is stable, below this, the weakly coupling algorithm is unstable meanwhile each sub-problem
(fluid and structure) are stable when considering no coupling. Instabilities disappear when the
strong coupling scheme withnstage = 2 is considered. Moreover, even when a lower value of
m is used, i.e.m = 0.0135 andCFL = 1, only 2 stages are enough to achieve convergence
of the strong coupling algorithm. Obviously, at this point each detached problem is still stable
(see Figures19 and20). In the case ofm = 0.0001 a smallerCFL number is needed (e.g.
CFL = 0.5) in order to have at least 15 time steps in one period (recall that the plate frequency

R.R. PAZ, L. DALCIN, M.A. STORTI, N.M. NIGRO846

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



depends on the plate density).

Figure 19: Unstable weak coupling form = 0.0135 andCFL = 0.5

Even though the convergence of the coupled problem is not affected when considering a
very small plate density and a strong partitioned scheme, it is necessary to refine the fluid
mesh in the normal direction to the plate in order to have a better definition of the problem
in that direction, i.e. a wave train is propagated in the fluid with the plate frequency (recall
that the plate frequency grows as the plate density decrease,ωstr = 2π/Tstr = [mL4/D]−1/2).
In the coupled simulation the interaction may produce the amplification of the pressures and
plate displacements. This fact can be shown in Figures21 and22. Figure21 shows the plate
deflection whenm = 0.00135 and mesh size of the fluid mesh near the plate ishy = 0.018808 m
andhx = 0.035625 m. Figure22 shows the same results when considering an homogeneous
refinement (i.e.,hy = 0.00932 m andhx = 0.01781 m). The coarse mesh exhibit a spurious
vibration mode similar to a flutter mode that is corrected in the finer mesh.

5 CONCLUSIONS

Stability is enhanced through a strong coupling scheme and it shows to be necessary for sit-
uations where the structural response is fast. Partitioned schemes using staged strong coupling
shows to be very efficient avoiding the tedious and problem dependent task of building a mono-
lithic coupling formulation. For the benchmark considered in this work two stages were enough
for having the same behavior of the monolithic scheme. Furthermore, the staged strategy pro-
vides a smooth blending between weak coupling and strong coupling, i.e. moderately coupled
problems that can not be treated with the pure weak coupling approach, can be solved with the
staged algorithm using few stages per time step.

Time-accuracy shows to be in agreement with the accuracy of the underlying fluid and struc-
ture solvers, if an accurate enough predictor is used. Second order accuracy can be obtained
with second order fluid and structure solvers, and one stage coupling with a high order predictor,
as already reported inPiperno and Farhat(2001).
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Figure 20: Stable staged coupling form = 0.0135, CFL = 1 andnstage = 2

Figure 21: Strong partitioned scheme in a coarse mesh
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Figure 22: Strong partitioned scheme in a fine mesh

The elastic flat plate problem is geometrically simple, but gives physical insight in the flutter
phenomena, and was very useful in testing the proposed algorithm in a wide range of non-
dimensional parameters.
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