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Abstract. This paper discusses a constitutive model for large strigitoplasticity implemented in a
model based on hyperelasticity. Viscoplasticity is datiiethe context of Perzyna model, based on an
extended vyield criteria proposed originally by Ponthot.tHa paper details of large strain viscoplastic
model based on hypoelasticity, implemented in the code fdetare presented for comparison purposes.
The hyperelastic large strain model extended to viscdpigshas been implemented in Sogde following
a previous work of the authors. Numerical problems in smidiis case as well as large strain conditions
have been tested. Viscoplastic solutions recover lgfastic and elastoplastic cases with both codes.
The results obtained with both codes are practically idahfor the small strain problem tested. For the
large strain case both codes agrees well for limiting cdsegssome differences in the load level attained
for intermediate values of viscosity are found.
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1 INTRODUCTION

In this paper the derivation of a large strain viscoplastmdel based on hyperelasticity,
based on a previous work of the authoPoiithot et al.2005 is discussed. The large strain
model structure is taken from previous work@drcia-Garing1993; Garino and Olive(1995
1996, derived in the context of the ideas 8im6(1988ab); Simo and OrtiZ1985 for the rate
independent case. A viscoplastic Perzyna type model isemehted following a work of
Ponthot(2002 where a unified algorithm for elasto/viscoplastic probédmas been proposed.

The kinematics of the resultant constitutive model is basethe multiplicative decompo-
sition of deformation gradient tensdrde, 1969. Stresses can be derived from a hyperelastic
potential and the model is written in the framework of inedrvariables theory and thermody-
namics of irreversible solidd_(bliner, 1990. The stress update algorithm proposed by Pon-
thot treats the elasto/viscoplastic problem in a unified.wagr a J2-flow material model, it
is a simple generalization to rate-dependent problemseofddial return algorithm for rate-
independent plasticity, including a generalized consisteondition. The resultant numerical
model has been implemented and tested in the code Sogde.

In the paper the main ideas of a similar constitutive modeppsed byPonthot(2002 are
discussed in order to provide a framework for the discussfoasults obtained with Sogde and
Metafor, a code where a model due to Ponthot has been imptethen

The classicaklastic predictor - plastic corrector split problem is used in the numerical
scheme of both codes tested. In this way a fully implicit aliipon is designed. The resultant
update algorithm is written in terms of kinematics quaestinstead of the usual one defined
for the stress tensor. In the work it is shown that the unifiegte/viscoplastic stress update
proposed byPonthot(2002 is naturally included in the (previous) numerical struetof rate
independent case, as regards the update be rewritten ia téikmematic variables.

In a previous work of the author®¢nthot et al.2009 a list of references were suggested
in order to review the state of the art of the problem. A corhprsive account of the problem
can be found in the textbooks btibliner (1990, for the fundamentals, ar@ttosen and Ristin-
maa(2005 both for theory and numerical discussion. In the work$efzyna(1966 1971)
distinctive features of so called Perzyna models of visgstdity can be found.

An overview of numerical algorithms proposed for viscopitedg can be seen in the work of
Ponthot(2002 and references therein. Many different algorithms haenlakeveloped in order
to integrate elastic-viscoplastic equations, and a véudiscussion can be found @®olinval
(1988. In general the models proposed in the literature, seenfiianceHughes and Taylor
(1978, Suliciu (1998, Pan(1997, Rubin (1996, Bruhns and Rot{1994) among others, in
general don't exhibithe same level of performance as the radial return algorithm for plasticity.

Rather few works for rate dependent Perzyna models aresdiedun the framework of
large strain modeldVang and Sluy$2000 have proposed an incremental model for the elastic
problem and the integration of the problem is carried outgisi midpoint rule Ponthot(2002
has proposed model based on hypoelasticty for the elastllggn and viscoplastic effects
are integrated with a unified (plastic/viscoplastic) strepdate procedureSimo and Hughes
(1998 have discussed the problem for a Duvaut-Lyons model ty@arosio et al(2000);
Carosio(200]) proposed a unified analysis for the problem, denoting thdahof Ponthot
(2002 as continuum viscoplasticty and the one duéMang and Sluy$2000 as consistent
viscoplasticity. However the comparison of this model hesrbformulated only for small strain
problems.Alfano et al.(2001) presented general solucion pededures irelasto/viscoplastiojt
for the small strain case too.
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In section 2 of the work some results of the large strain kiagrs are provided in order to
provide some tools for the derivation of theoretical modetsried out in section 3 for large
strain elasticity and in section 4 for viscoplasticity. Tihmumerical algorithms are discussed in
section 5 and the results obtained with the two codes tesgediscussed in section 6, in order
to provide conclusions of the work.

2 KINEMATICS

In order to describe the kinematics of a solid under largemedtion two configurations of
a body are considered. The first one, usually konwn as refereonfiguration (not necessarily
the initial configuration) at a certain ting is denoted as(2, where the position of a material
particle at this time is denoted by its position vec&r The second configuration considered
is the current or deformed configuration, at timedenoted as(?, where the position of the
same material particle 8. In figurel both configurations are shown. There exists an equation
that relates the position of material particle in both camfagionsX andx respectively, of the
form:

x=x(X,t) (1)

The velocity of the reference poiX is the material time derivative of the position vector

and is defined by
. 0x(X,t)
v=a = 57 (2)

The deformation gradient of the motion & is the second-rank two-point tenshr such
that

ox .

By the polar decomposition, we can uniquely decompbses

F=RU with R'R=1I and U=U" 4)

The correspondingpatial gradient of velocity is given by

It can be decomposed into a symmetric and antisymmetriclpard + w with

d = L@a+1") the rate of deformation (6)
w = 1@-1" the spin tensor (7)

The Almansi strain tensor, that is a useful measure for lafgen problems, is defined in the
current configuratioft as:

e=1lg b7 ®

whereg is the spatial metric tensor, abd' = F~7 F~! is the Finger tensor.
For the elastoplastic continuum the kinematics of the mabtan be extended on the basis
of the very well known multiplicative decomposition of defmation gradient tensaF’ in its
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Figure 1: Kinematics of large strain elastoplastic soliohfigurations

elastic and plastic componentseg 1969, as is it shown in equatior®) and illustrated in
figure 1.

F = F°F? 9)

From equation9) can be derived additive decompositions for Almansi straisor and rate
of deformation tensor as can be seen in &) &nd (L1) respectively.

e=e‘+¢é’ (20)
d=d" +d’ (11)
wheree® ande? tensors are defined as the Almansi strain teestut replacingF’ for F° and

F? respectively. From the literature can be recognized that(&t) is the Lie derivativel,
(Marsden and Hughe$983 of eq. (LO).

3 LARGE STRAIN ELASTIC CONSTITUTIVE MODELS

In this section hyperelastic and hypoelastic models areduoiced. The hypoelastic models
were during many years the classical option in computaktimeghanics literature but since the
late years of the eighties hyperelastic models become abidalternative.

3.1 Hypoelastic Constitutive Models

A Hypoelastic Constitutive model can be defined as lineati@t between an objective
derivative of Cauchy stress tenssrand the rate of deformation tensdy by mean of fourth
order constant tensdP(Truesdell and NoJI1965.

gij: Dijkldkl or g': D:d (12)

whereD is the Hooke stress-strain tensor given by

1
D1y = K 0;;0 + 2G (k651 — §5¢j5k5) (13)

In the case of an elastoplastic material the stress depenitie @lastic componedt of rate of
deformation tensor.

One of the major challenges while integrating the rate equdii2) in large-deformation
analysis is to achieve incremental objectivity i.e. to nteim correct rotational transformation
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properties all along a finite time step. However, standanétdiscretization procedures, when
applied to objective rate constitutive equations, typycahly achieve objectivity in the limit
of vanishingly small time steps. In order to overcome thabfem, a procedure that has now
become very popular, is to rewrite the equations in a caostat moving frame.

For a given group of rotations, it is possible to generate a change of frame from the fixed
Cartesian reference axes to the corresponding rotating (@geotational axes). In these axes,
when transformed by, the Cauchy stress becomes

o°=plop (14)

and upon time differentiation of this expression results:

-c T(

o¢=p d'—w0'+0'w)p:pT<v7Fp (15)

whered is a corotational objective stress rate e.g.
& isJaumannrate ib = W
& is Green-Naghdi rate i = RR”

Expression15) indicates that, a somewhat complicated expression asjaativie derivative
becomes a rather simple time derivative under the apptepciaange of coordinates. This
suggests that the entire theory and implementation wik tak canonically simpler forms if
transformed to thep — system. For more details on this change of coordinate, Beathot
(1995 andHughes(1983. In the new reference frame, the evolution equation tagestimpler
form:

6¢=D": d" (16)

3.2 Hyperelastic Constitutive Models

These models are defined from a free energy functiahat plays the role of an elastic
potential. The Cauchy stresses can be derived as shown {h2qg.

_ov
"~ de

In practice, it is possible for metals to write free energgdiion as a quadratic function of
Almansi strain tenso¢ and material constanfsandy as it is shown in equatiorig).

(17)

o

1
Y° = 5/\ trie)* + u(e:e) (18)
From equationX7) the Cauchy stress tensor results:

oc=M\tr(e)1 + 2pe (19)

This model has been used previously®grcia-Garind1993; Garino and Olive(1995 1996
as an alternative to the neohookean models proposed byasraatthors $imo, 1988ab; Simo

and Ortiz 1985. The fourth order tensaD defined in eq. 13) can be recovered in this case as
oo

6_6.

Copyright © 2006 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



1932 C.G. GARINO et.al.

3.3 Comparison of Hypoelastic and Hyperelastic Models

For large strain regimen the hyperelastic and hypoelastistitutive models, given in equa-
tions (12) and (L9) respectively, define different materials if the same fownrder constitutive
tensor is used in both models. In order to ilustrate this fpaire analytical response of both
models under a uniaxial extension are given in equatidd)sand @1), respectively (seGarcia-
Garino(1993, appendix 1, Anl.6.1). For both models material constants1 andy, = 1 are
considered.

a(t) = 500+ 2 o (20)
o(t) = (A + 2u)t 21)

The response of both model is compared in Figiifer a large extension (left) and small
strain case (right).

Comparison of elastic constitutive models Comparison of elastic models for small strains
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Figure 2:Large strain models comparison

REMARKS

1. For large displacements but small deformations probldikes elastic buckling and
other applications usually found in structural analysisthbmodel show the samg¢
response.

1%

2. In presence of large deformation but small elastic s¢rdike in metal forming ap-
plications, practially the same results are obtained withdiscussed models. See
(Garcia-Garinp1993 and Ponthot 1995 for available comparisons.

3. Different responses can be expected when elastic defimmsare large or moderate.

4 LARGE STRAIN VISCOPLASTIC MODEL

In this section viscoplastic problem is presented and thnditive featuresRerzynal1966
1971 are briefly introduced. The main results of J2 rate indepahdase are first presented in
order to provide a framework for the discussion of viscoptéy.
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4.1 Rate Independent J2 model

Plasticity is taken into account by means of an associatove flle f = g, wheref andg
accounts for the yield and plastic potential functions eesipely. The yield function is the very
well known Von Mises or J2 model given in equatic&®).

flo,0y) =06 —0,=0 (22)

wheres = ,/3s: s denotes equivalent stressjs the deviatoric stress tensor anglis the

current yield stress.
Flow rule can be written now in terms of yield criterfaas:

P _ 4 Sy
d’=9 n where N Nemm (23)
n denotes the unit outward normal to the yield functian: (n = 1) to the yield surface and
is the plastic multiplier.
The plastic multipliery can be computed from the consistency condition, obtairted éfe
differentation of the yield functiorf.

flo,0y) =0 (24)
The loading/unloading conditions can be obtained from tbbrkTucker inequalities:

vf =0, v >0, <0 (25)

The hardening law that brings the evolution law of yields$rs, is written in terms of proper
internal variables. In this work only linear isotropic harnihg is considered.

o, = he’ (26)
whereh is a material parameter that corresponds to the slope offéaiee stress vs. effective

plastic strain curve under uniaxial loading conditionspaknown as hardening module in the
case linear hardening. The effective plastic stédioan be computed from the plastic flow as:

G >
?zdgﬂ:ﬁ:VG§ @7)

4.2 Perzyna J2 viscoplastic model

The kinematics of the problem can be generalised for theopisstic problem as shown in
equations8) and @9).

e=¢e“+e”? (28)
d=d+d” (29)

wheree' andd" are viscous counterpart of plastic components of Almamairstensore?
and rate of deformation tensdf respectively.

Contrary to the case of rate independent plasticity, theceffe stress is no longer con-
strained to remain less or equal to the yield stress but ondageec > o, . Therefore the
overstressgl is defined as:

d= (o —0y) (30)
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where(z) denotes the Mac Auley brackets defined(by = 1/2(z + |z|). Clearly, an inelastic
process can only take place if, and only if, the overstidasgositive, consequently > 0.
For this problenPerzyna1966 1971) proposed the following flow rule:

d” = (¢(d, ) n (31)

wheren is the viscosity of the material. Many alternatives has beeposed in practice in
order to generalize the functiafd, n).

The structure of viscoplastic flow given in equati@i) suggests that function plays the
role of aviscoplastic paramete*?. In this sense this kind of models can be considered as
penalty regularization of rate-independent plasticityevehthe consistency parameter has been
replaced by an increasing function of the overstress likeotie proposed byonthot(2002):

3 og—o0 m
LUp e Y
=5 ) (32)

wheren is a hardening exponent; is a rate sensitivity parameter aatt is the equivalent
viscoplastic flow. Taking into account equatior&l) and @2) the viscoplastic flow can be
expressed in a similar way to the rate independent problem as

4’ = 4"Pn (33)

the equivalent equivalent viscoplastic fle# can be computed fron2{) replacingd” for d'”.

[2 2
er =y |3d"d” = \@7 (34)

In this problem the hardening law given i&g) is valid providinge*” be the internal variable.
From equations34) and @2) results:

2 og—0 "
ZUp ZAvp Y 35
=[5 = (mrie) )

so that, in the viscoplastic range, a new constraint is defiRedtbof 2002.

f=6—-0,— n(er)r(Er)m = o (36)
This criterion is ageneralization of the classical von-Mises criterign= 0 for rate-dependent
materials The latter can simply be recovered by imposing= 0 (no viscosity effect). On
the other hand if a large enough value is adopted,ftire elastic response is recovered. Kuhn
Tucker conditions can be written in a similar way to the rate independent cas {aé®ot
(2002 for details).

¥Pf=0,  47>0, f<0 (37)

5 NUMERICAL SCHEME

In this section the numerical scheme necessary to impletheliscussed theoretical model
in a finite element code is introduced. This scheme is basededictor élastig-corrector
elasto/viscoplastitechnique. The predictor scheme is discussed in subse&ttipwhere the
case of Metafor (Hypoelasticity) is discussed in paragfaphl, and the predictor problem for
for Sogde (Hyperelasticity) can be seen in paragfafpl? The viscoplastic corrector is written
in terms of stress in Metafor and in function of strains in @gHowever after a previous work
of the authorsRonthot et a].2005 the problem can be presented in a unified format.
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5.1 Elastic Problem
5.1.1 Predictor for the hypoelastic model

In this section the numerical scheme in order to computerifilestress are briefly reviewed
following the ideas oPonthot(2002, where a detailed derivation of the scheme can be found.
In the corotational frame, the equation to integrate simptiuces to

6¢=D: d" (38)

In order to compute the trial stress tensor in corotationafiguration the stress tenserin
the cartensian frame can be rewritten as:

to_c:ttho_tp (39)

so that the trial elastic stress is given by :
o t+At
HAlGe™ —tge 4 / D d°dt (40)
t

or, in the Cartesian frame, for a constant elastic ted3oresults :

A
t+Ato_tr — t+Atp t+Ato_c” t+AtpT — t+Atp |:tpT to_ tp 4 D /t+ tD . dc dt:| t+AtpT (41)
t
that can be understand, from a rather engineering pointes¥,\like a three steps operation. If
new operatorg* andp, are introduced, that loosely accounts fotational pull back and push

forwards respectively, the algorithm can be expressednmpeact form as can be seen in BOX
1.

BOX 1: Summary of predictor problem for hypoelastic model

For a given increment of tim@t¢ that maps configuratioff2 in “+2tQ), tensorsp andd*
computed from such mapping, ahd stored in data base of the problem, compute:

1. to¢ =tpT ta !p, in compact forméoc = tp* lo
2. g —tge 4 [N D c g dt

3. t+Ato.tr — t+Atp tJrAto.c“' t+AtpT’ in CompaCt form.tJrAto.tr — p*tJrAto.c“'

In summary the trial stress in the final configuration can hié&evrin compact form as:

t+AL
Hatglr — p, {p* ‘o + / D:d dt} (42)
t

In order to simplify eq. 42) Ponthot(2002 suggested the following simplifficative assump-
tions:

1. The unrotated configuration is choseri@sthen’p = T
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2. p(t) =R
3.d° = A%, that comes from an exponential map td(t)
theincremental naturastrain tensoC is defined as:

_ 1 1
C=hU=;h U? = 3 In(FTF) (43)

Then the trial elastic stress can easily be computed as:
t+Ato_t7“ — tJrAtR [to, + D Cf} tJrAtRT — tJrAtR [to, + D: hl(U)} tJrAtRT (44)

5.1.2 Predictor for the hyperelastic model

In this problem the plastic quantities remain frozéit2! FP™" =t F?), The trial glastiq
component of the deformation gradient tensor results:

t+AtFeTR — t-‘rAtF (t—l—AtFpTR)—l — ,f tF (tFp)—l — ,f tFe (45)
wheref is the incremental deformation gradient tensor. The ptedhi@lue of the elastic Finger
tensor+Atpe 1 s

t+AtbeflTR — (tJrAtFe—T t+AtFe—1 )TR — f*T tbefl f*l (46)
Finally, the trial stresses”” are computed from eqgmt6) in terms of the predictor value of
elastic Aimansi straifi®'e<™ " = 1 ("*4lg — th Aty 1 THy

It is important to note that the elastic problem is reducetht® computation of a closed
expression.

5.2 Viscoplastic Problem

In this case the geometry of body remains fixed and stresertans internal variables must
be updated. The plastic corrector is derived first for theehglastic model following the ideas
of a previous work of the author®¢nthot et al.2005. The flow rule given in eq.31), can be
written in the material configuratictf in terms of the viscoplastic component of Right Cauchy
Green tenso€"” and viscoplastic multipliek*? as:

C"=2¢d"=2 \?¢*'n=2\AN (47)

equation 47) is integrated using a Backward-Euler scheme:

t+At0p o tcp — 9 \VP t+AtN (48)

Following the same steps of the elastoplastic countergahi® modelGarcia-Garind1993;
Garino and Olive(1996 the updated Finger tensor resuPo(thot et a].2005:

t+Atbefl — t+AtbeflTR 492 AP t+Atn (49)

it is important to note that Finger tensor, and consequesttss tensor can be updated, once
AP is computed. From definition of elastic component of Aimastsain tensor, see eql(),
and eq. 49) results:

t+At e 1

e’ =59 -

t+Atbe* 1
5 )

t+AtbeflTR — 9\ t+Atn) — t+AteeTR — )\ t+Atn

(50)

1
—5(9—
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Introducing the viscoplastic correction of elastic comgainof Almansi strain tensor given
in equation §0) in the constitutive equatiori ), the corrector problem can be written in terms
of stresses as:

t+Ato_ — t+Ato_TR — 9\ L t+Atn (51)

that is the result shown in equation (51), section 6.3 in tlekvof Ponthot(2002, after in-
tegration over the time interva, ¢t + At], with initial conditions given by, 'é”? and’o,.
This result, found in a previous work of the authoPofithot et al(2009), shows that the
hyperelastic model originally derived for elastoplastiolgems naturally includes the viscous
counterpart.

In order to compute the viscoplastic multipligt an integration procedure very similar to
the radial return method of plasticity, proposedriynthot(2002 is used. The tensér2in is
approximated by:

t—l—AtSTR
At = (52)
\/tJrAtSTR - t+AtgTR
so that the final values are given by
t+At€Up — tgvp + \/gAUp (53)
. t+At€~vp . tgvp
e = — 54
€ A7 (54)
where the (unknown) scalar parameké&t stands for
t+At .
AP = / Adt (55)
t

REMARK: It is important to point out that the first order apgimation introduced in eq.
(54) is fully consistent with the approximation introduced o €48).

The \"? parameter is simply determined by the enforcement ofjereeralized consistency
condition f = 0, attimet =t + At, i.e.

3
fO®) = \/5 [sTE — 2 \vpm] : [sTHR — 2 \P m] — t+Atay()\”p)

2 2\
_ P ZH\vp Z
(& \/;A ) (\/;At)

where™2g, is a given function of*? and consequently a given function o .
The scalar equatiorb6) is a nonlinear expression where the only unknown paranseiér.
It can be easily solved by a local Newton-Raphson iteratiothe particular case where= oo
(no multiplicative hardening);» = 1 (linear dependence between overstress and viscoplastic

S|=
3=

~ 0 (56)
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rate of deformation), antl = constant (linear hardening) a closed form solution of thisagion
is given by

1 VsTh: sTE — \/gtay
)\'Up —_

— (57)
2u 1+ i(h + A=)

so that it is now obvious that the present algorithm is a gdization to the rate-dependent
case of the classical radial return algorithm. This one &c#y recovered (with no numerical
difficulty) by settingn = 0 (no viscosity effect). In the viscous case, one can see lieatite-
dependent solutiorb{) is equivalent to rate-independent solution with a fictischardening
given byh* = h + n/At.

6 NUMERICAL SIMULATIONS

In this section numerical problems are simulated in ordezaimpare the response of the
two discussed models on one hand and to verify if the limiesase numerically recovered.
First a problem for small strain regimen is studied, in ortdesvoid the (possible) influence of
non linear geometric effects in the obtained results. Incasé case a problem nonlinear and
material nonlinearities is carried ouih all cases Q1/P0 element is used.

6.1 Numerical simulation of a plane strain plate under smallstrain regime

In this problem, proposed 4dfano et al.(2001) a plane strain plate, with a centratailar
hole is studied. The dimensions of the plate are 18 x 10 m, R = SMuaterial constants
considered areF = 2.1 10° Mpa; v = 0.3; 0, = 240 Mpa; H = 0. A linear Perzyna
viscoplastic model withn = 1 andn = oo is considered. Different viscosity values of
parameter are taken studieth?, 10'2 and10%. In figure 3, the finite element mesh used is
displayed. Imposed displacements (at y=18m) are appligbaufinal displacement of 50 mm
is reached in 25 equals time steps.

In figure 4 load-displacements curves obtained with both codes caadre &rom the figure
can be observed:

1. The elastic limit case is recoverd with both codes for aasity parametey = 10%°.
2. The elastoplastic limitase is recovered with both codes for= 102
3. Pratically the same response is obtained with both codes for intermediate vajuE)dt.

From the results obtained can be said that both codes companewell and the algorithm
implemented represents properly the limit cases discuasszttions.2.

It is worthwhile to note that both codes recover naturallyaBrstrain case, even when the
respective models are derived for large strains situatibasthe complete range of valuesrpf
tested no difficulties for convergence were found.

6.2 Large strain simulation of a plane strain viscoplastic jate

The problem discussed in the previous section is studieith dgat taking into account large
strain regimen in this case. In order to reach large straifimal displacement of 2000 mm is
imposed. Metafor uses an automatic time step procedurathasts time step size based on
the rate of convergence of previous iterations. In Sogdes¢@@ls time steps are considered in
all cases, but larger increments can be fairly applied fasted case and simulations with large
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Figure 3:Finite element mesh used for small strain simulations
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Figure 4:Viscoplastic plane strain plate: load vs displacementdrigt
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values of viscosity parametetr The finite element mesh used in this case is the same to the
small strain problem shown &
In order to study the behaviour of both codes for limiastoplastic case in figufeare
shown the results obtained with Sogde and Metafor, for @dasticity and viscoplasticity with
low viscosity parameter«{ = 10? andn = 10*%), in terms of load vs displacements histories.
From the figure can be seen:

1. The elastoplastic limit case is recoverd with both codes viscosity parameter= 102

2. For a viscosity parameter= 10'° the results tends to the elastoplastic solution. In this
case similar solutions are found with Sogde and Metafor,|dad level attained with
Sogde is sligthy greater than Metafor.

It is important to point out that elastoplastic limit casedsovered for large strain case. On
the other hand can be noted that the different elastic madelsidered in Metafor (hypoelas-
ticity) and Sogde (hyperelasticity) does not affect thebglaesults because the elastic strains
remain small. This results confirm the good agreement obdagameviously with this two codes
for large strain elastoplastic problems ($&mthot(1995 andGarcia-Garin@d1993.

limiting elastoplastic results
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Figure 5:load vs displacement histories for limiting elastoplastise

In all the cases tested in figubea global softening behaviour is found, that can be explained
from figure9, where a comparison of deformed shapes is shown. For elastigpgsolution and
viscoplastic cases with low viscosity parameters a stredgction of the central section can be
seen. For this case the response of the problem is adikkingcase, and then a load reduction
is obtained after the peak load. This effect, well known eegtardening materials, it is even
more clear for non hardening materials like the one usedsctse.

In figure 6 can be observed the results computed with Metafor and Sayydsdstic cases
and viscoplastic solutions for large viscosity parametes=(1.10'> andn = 1.10'7). Several
considerations can be enuntiated:
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1. The elastoplastic limit case is recoverd with both coadesafviscosity parametey =
1017,

2. For a viscosity parameter= 10% the results tends to the elastic solution. In this case
similar solutions are found with Sogde and Metafor, but Ies| attained with Sogde is
sligthy smaller than Metafor.

In figure 6 can be seen that the elastic response computed with Mesgboactically linear,
so agrees very well with the analytical model discussediagraph3.3and the curve obtained
with Sogde presents small nonlinearities. In general caalokthat both modes agree quite well
for elastic cases despite the different formulation of eetipe elastic models. The viscoplastic
solution for a value of; = 10! computed with both codes is included in figuseas well.
Can be seen that the load level reached with the two codesiigsiand the results obtained
approach the elastic solution. In this case Metafor behshigisty more stiff than Sogde.

limit elastic cases
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Figure 6:load vs displacement histories for limiting elastoplastise

For the large strain studies carried out can be said thatdmmths approach rather well the
limit elastic and elastoplastic cases, and the results obtained with Metafor and Sogde show a
quite good agreement.

In order to study intermediate cases that behaves quitdéasitaielastoplastic solution, vis-
coplastic solution were obtained with the two codes for farage of values of viscosity param-
etern equal t010%; 10°; 10'%;2.10!; 5.10 " andL0'2. The obtained results are shown in figure
7 where can be seen that load-displacements histories sHtemisy response in practically
all the cases. However the load level observed depends ovigbesity considered and for
n = 10'2 the limit load reacheg500 Mpa, while for the elastoplastic solution it is abau0
Mpa. From a qualitative point of view Metafor and Sogde showilar responses, but Sogde
behaves stiffer than Metafor.
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Convergence to elastoplastic result
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Figure 7:Convergence to elastoplastic case: load vs displacemsturigs

Convergence to elastic result
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Figure 8:Convergence to elastic case: load vs displacement historie
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A comparative study of viscoplastic solutions approachireglimit elastic case can be seen
in 8, where the load-displacements histories computed with botles can be seen. The range
of values of viscosity parametertested was10'7; 10'%; 10**; 10*3andL0'2. Again in this case
the behaviour of both codes is qualitative similar. For thedr values of), 102andl03, the
behaviour is quite similar to thelastoplastic processelscussed irY. For all the other cases
global hardening behaviour is found. For the larger values,ol. 10*andl.10!” Metafor
behaves slighty stiffer than Sogde, however for lower v@hfeviscosity this effect is inverse.

For the intermediate range of viscosity values testéd’—10'* Sogde show a stiffer be-
haviour than Metafor, result that merit a further researrhthe small strain case, when the
same load program was used this effect was not found. In #se different load programs
where used and perhaps velocity of load could be addresse@@ssible explanation. In gen-
eral a rather qualitative agreement was found for both coddse complete range of viscosity
values tested, in despite of numerical differences in thd level attained.

In figure 9 a comparison of deformed shapes for the different visctiplaases studied is
shown. Two kind of deformatios patterns can be observedthieodiower values of; a necking
type deformed shape is found in presence of large deformaiiothe bottom elements. In this
case the marked reduction of the section near the symmeé&glplains the load displacements
curve found. This case could suggest a redesign of the melsk azone near the circular central
hole.

For intermediate and greater valuesrothe final deformed shape is rather similar to the
elastic case and not very large strains appears to be olblsehvdurther studies it could be
usefull to compute an appropiate norm of strains for all teses tested. For the elastic limit case
can be seen that the originally circular hole takes an @lgitape for the final configuration.

7 CONCLUSIONS

From the codes point of view it is worthwhile to mention thia¢ tmodel has been imple-
mented and tested in Sogde. In this case the structure dabplastic model based on hyper-
elasticity and internal variables theory is mantained aisdoplastic problem is easily taken
into account due the uncoupled structure of free energytiimmcConsequently the structure of
the numerical scheme is preserved, the elastic problemmemeth no changes and viscoplas-
tic corrector step ecompass in the structure of plasticector when stress update algorithm
is recasted in terms of kinematics variables. In this waynimmerical format of the problem
naturally includes viscoplasticity.

Both codes use the same stress update procedure, thatyseasd after a local non linear
iterations at integration point level for the general casé @arious closed forms expresions
are derived for different particular cases. The discussedgaure recovers the results of radial
return algorithm for the inviscid case. Consequently alddvantages that can be obtained from
radial return method like simplicity, robustness and cotaponal efficiency are mantained.

Despite the different elastic models included in Metafat &ogde results obtained are very
similar. The viscoplastic model is quite simple to implemand has been included in the
framework of an hyperelasticity based large strain eldastic model available in Sogde with-
out difficulties.

For small strain case results obtained with both codes aetipally identical. The limit
elastic and elastoplastic cases are recovered for low agd lalues of viscosity parameter
considered. No difficulties in the rate of convergence wetmll with any of the codes tested,
for the different values of viscosity considered.

For large strain case both codes recover very well the elastil elastoplastic limits. For
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A

Figure 9:Comparison of deformed shapes for different cases tested
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this case practically no differences are found in the resulitained with Sogde and Metafor.
In the case of elastic limit both codes behave in a good ageremith the respective elastic
models included, but not very different response it is faufar intermediate values of viscosity
parameter differences are found in the load level attainiglal both codes. In general Sogde
show a stiffer response than Metafor. However qualitatggeiits are similar.

For rather low values of viscosity parameter a global safiggresponse is obtained with both
codes due to a reduction of the section in the central zonpl#te. This effect can be clearly
seen for the limit elastoplastic case where large strairfared in the final configuration of
the body, and perhaps a mesh redesign could be necessahisf@rablem. In general for
intermediate and larger values of viscosity considerechis work large displacements are
found, but not very large stains can be observed in the defdishape.

The differences found in the load level attained with the twdes for intermediate values
of viscosity deserve further study of the problem. As a pnelary cause of this results perhaps
load velocity effects can be addresed. This opinion is ssiggebecause no differences were
found for small strain case were the same program of load sed in both codes. However for
large strain case different load programs were used.
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