Mecánica Computacional Vol XXXVI, págs. 215-224 (artículo completo) José G. Etse, Bibiana M. Luccioni, Martín A. Pucheta, Mario A. Storti (Eds.) San Miguel de Tucumán, 6-9 Noviembre 2018

RIGIDIZACIÓN DINÁMICA DE VIGAS CANTILEVER EN ESCALÓN CON MATERIALES FUNCIONALMENTE GRADUADOS

DYNAMIC STIFFENING OF STEPPED CANTILEVER BEAMS WITH FUNCTIONALLY GRADED MATERIALS

Gonzalo J. Gilardi a,b, Diana V. Bambill a,b y Carlos A. Rossit a,b

^a Departamento de Ingeniería (UNS), Instituto de Ingeniería-II-UNS (UNS-CIC), Universidad Nacional del Sur (UNS), Avenida Alem 1253,8000 Bahía Blanca, Argentina, http://www.uns.edu.ar

^b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. gonzalo.gilardi@uns.ed.ar, dbambill@criba.edu.ar, carossit@criba.edu.ar

Palabras clave: Viga AFG, Timoshenko, rigidización dinámica, viga escalonada, Cuadratura Diferencial Generalizada, Elementos Finitos

Resumen. La optimización estructural de lograr elevar las frecuencias naturales de un elemento resistente mediante una adecuada remoción o redistribución de su masa original se conoce como rigidización dinámica. Así se logra una reducción del peso y paralelamente, un incremento de su rigidez dinámica global. Por ejemplo, en una viga con un motor adosado, elevar su frecuencia fundamental resulta conveniente para evitar el fenómeno de resonancia. Este trabajo estudia la rigidización dinámica de vigas en voladizo, mediante la reducción de la sección transversal de manera discontinua y con una variación gradual en la dirección longitudinal de las propiedades del material (AFGM, por sus siglas en inglés). El modelo se basa en la teoría de vigas de Timoshenko. Los resultados se obtienen utilizando dos procedimientos: el Método de Cuadratura Diferencial Generalizada y el Método de Elementos Finitos. Se corroboran los resultados obtenidos con ambos métodos y se comparan, para situaciones particulares del modelo, con valores disponibles en la literatura técnico-científica.

Keywords: AFG beam, Timoshenko, dynamic stiffening, stepped beam, Generalized Differential Quadrature, Finite Element.

Abstract. Structural optimization consists of achieving the increase of the natural frequencies of a resistant element by varying the material characteristics, the geometry or both. This effect is known as dynamic stiffening. When part of the beam material is removed, in addition to reducing weight, greater dynamic stiffening can be achieved. A similar effect can be produced by a continuous variation of the material properties. For example, in a beam with a motor attached, raising the fundamental frequency of the beam is convenient to avoid the phenomenon of resonance. This paper studies the dynamic stiffening of cantilever beams, by means of the reduction of the cross section in a discontinuous way and with a gradual axial variation in the material properties (AFGM, for its acronym in English). The model is based on the Timoshenko beam theory. Two methods are used: differential quadrature and finite element methods. Results obtained by both methods are presented and, when possible, they are also compared with some particular results present in the scientific-technological literature.

1 INTRODUCCIÓN

Desde su aparición en 1984 a la actualidad, los materiales funcionalmente graduados (FGM, por sus siglas en inglés) han impulsado un importante foco de investigación, para varias disciplinas. En cuanto a su aplicación a estructuras resistentes, la ingeniería estructural ha desarrollado numerosos estudios acerca del comportamiento estático y dinámico de elementos estructurales tales como vigas, columnas, placas, etc. En el trabajo de Gilardi et al. (2018) se puede visualizar el desarrollo que ha tenido en cuanto a su aplicación en vigas.

En muchas situaciones es necesario variar la sección transversal de la viga de manera de optimizar su rigidez, ya sea para evitar resonancias y/o reducir tensiones dinámicas. Entre los trabajos desarrollados para la teoría de Euler-Bernoulli, se encuentra el de Felix et al. (2006) donde se estudia la optimización dinámica de vigas de dos y tres tramos; y el de Rossit et al. (2007) que, además, incorpora la variación de la sección transversal ahusada y el efecto una masa adosada. En cuanto a la teoría de Timoshenko, se puede citar el trabajo de Gilardi et al. (2014) que presenta la rigidización dinámica de vigas AFG rotantes y escalonadas.

El presente trabajo tiene como finalidad implementar el material AFG en vigas que vibran libremente, para optimizar su diseño desde el punto de la rigidización dinámica. Para describir el comportamiento a flexión de la viga vibrante, se considera la teoría de Timoshenko (1921, 1922) que contempla la deformación por corte y la inercia rotatoria. El problema se resuelve mediante los métodos aproximados de Cuadratura Diferencial Generalizada (GDQM, según sus siglas en inglés) y Elementos Finitos (FEM, por sus siglas en inglés). Se desarrollan distintos casos que pueden ser representados mediante el modelo propuesto, verificando su concordancia en los resultados con casos particulares disponibles en la literatura científica.

2 GENERALIDADES DEL MODELO

La Figura 1 presenta el modelo de viga Timoshenko AFG en voladizo de dos tramos, desarrollado para el presente estudio. La sección transversal, tiene doble simetría (rectangular) con ancho b y altura h. En cada tramo, dicha sección puede ser variable y constituirse por materiales AFG diferentes. El eje \overline{x} coincide con la línea recta que une los baricentros de todas las secciones transversales (en la posición sin deformar) y es normal al eje \overline{y} en el baricentro de la sección inicial, donde ambos tienen origen. Para identificar cada parámetro geométrico y del material, se asigna un primer subíndice que indica el extremo del tramo al que se está haciendo referencia, "0" para el extremo izquierdo y "1" para el derecho; y un segundo subíndice "1" o "2" para señalar el tramo en consideración. Se denota con L a la longitud de la viga y con subíndices a las longitudes de los respectivos tramos.

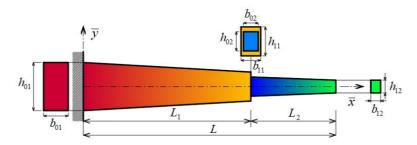


Figura 1: Viga AFG de dos tramos con vinculación elástica.

El sistema de ecuaciones diferenciales que rige el comportamiento a flexión de la viga Timoshenko AFG, se obtiene de aplicar el principio de Hamilton y seguir el procedimiento desarrollado por Banerjee (2001).

$$\frac{\partial}{\partial \overline{x}} \left[\kappa G A \left(\frac{\partial v}{\partial \overline{x}} - \psi \right) \right] - \rho A \frac{\partial^2 v}{\partial t^2} = 0 , \quad \frac{\partial}{\partial \overline{x}} \left[E I \frac{\partial \psi}{\partial \overline{x}} \right] + \kappa G A \left(\frac{\partial v}{\partial \overline{x}} - \psi \right) - \rho I \frac{\partial^2 \psi}{\partial t^2} = 0; \quad (1)$$

donde $v = v(\overline{x}, t)$ indica el desplazamiento del eje de la viga debido a la flexión y al corte, en la dirección el eje \overline{y} y $\psi = \psi(\overline{x}, t)$ es la rotación de la sección transversal alrededor del eje \overline{z} . En cuanto a la geometría: $A = A(\overline{x})$ es el área de la sección transversal, $I = I(\overline{x})$ el momento de inercia de la sección y κ el factor de corrección de corte; y respecto al material: $E = E(\overline{x})$ es el módulo de Young, $G = G(\overline{x})$ el módulo de corte y $\rho = \rho(\overline{x})$ la densidad.

Las condiciones de borde para la viga AFG en voladizo, para todo tiempo t, son:

$$\overline{x} = 0 : \begin{cases} v = 0 \\ \psi = 0 \end{cases} ; \quad \overline{x} = L : \begin{cases} \kappa GA((\partial v / \partial \overline{x}) - \psi) = 0 \\ EI(\partial \psi / \partial \overline{x}) = 0 \end{cases}$$
 (2)

3 CARACTERÍSTICAS GEOMÉTRICAS Y DEL MATERIAL

Al considerar sección transversal variable y constituida por materiales AFG, es necesario definir una expresión genérica que permita describir ambas cualidades:

$$P_k(\overline{x}) = P_{0k} f_{Pk}(\overline{x}) \quad \text{con} \quad k = 1, 2.$$
 (3)

 $P_k(\overline{x})$ representa a una característica de la viga, variando en la dirección axil de la misma desde un valor inicial P_{0k} y con una distribución $f_{Pk}(\overline{x})$. Específicamente, se puede escribir:

$$E_{k}(\overline{x}) = E_{0k} f_{Ek}(\overline{x}); G_{k}(\overline{x}) = G_{0k} f_{Gk}(\overline{x}); \rho_{k}(\overline{x}) = \rho_{0k} f_{\rho k}(\overline{x});$$

$$I_{k}(\overline{x}) = I_{0k} f_{Ik}(\overline{x}); A_{k}(\overline{x}) = A_{0k} f_{Ak}(\overline{x}); b_{k}(\overline{x}) = b_{0k} f_{bk}(\overline{x}); h_{k}(\overline{x}) = h_{0k} f_{hk}(\overline{x}).$$

$$(4)$$

Se adoptan propiedades de material isótropo, por lo cual los módulos de corte G y de Young E se relacionan mediante la siguiente expresión:

$$G_{k}(\overline{x}) = E_{k}(\overline{x})/2(1+\mu_{k}) \tag{5}$$

donde μ_k es el coeficiente de Poisson, y por lo tanto se cumple que $f_{Gk}(\bar{x}) = f_{Ek}(\bar{x})$.

Para los cálculos se considera una ley de distribución axial asimétrica de la forma:

$$f_{Pk}(\bar{x}) = 1 + \left(\frac{P_{1k}}{P_{0k}} - 1\right) \left(\frac{\bar{x}_k}{L_k}\right)^{n_k}, \bar{x}_k \in [0, L_k] \text{ con } k = 1, 2.$$
 (6)

Donde n_k indica de que forma varían las distintas propiedades en cada tramo.

4 MÉTODOS APROXIMADOS

Para obtener la solución al problema de vibraciones libres de las vigas Timoshenko que se estudiaran, se emplean los métodos aproximados de GDQM y FEM (Gilardi et al. (2017)).

5 RESULTADOS NUMÉRICOS

5.1 Casos de comparación

El primer caso de comparación, estudiado por Tong et al. (1995), corresponde a una viga

Timoshenko escalonada en $L_1/L=2/3$, de ancho constante $b=b_{01}$ y dos tramos de altura constante $h_1=h_{01}=h_{11}$ y $h_2=h_{02}=h_{12}$; con $h_2/h_1=0.8$. Los parámetros que definen a la viga son: $\kappa=5/6$; $\mu=0.3$; $r_0=\left(\sqrt{I_{01}/A_{01}}\right)/L$. De acuerdo a lo definido por Gilardi et al. (2017), el parámetro de esbeltez de la viga es $s_{01}=1/r_0$.

 $\Omega_i = \omega_i L^2 \sqrt{(\rho_{01} A_{01})/(E_{01} I_{01})}$

(7)

La Tabla 1 presenta los primeros 5 coeficientes de frecuencia adimensionales:

			•	<u> </u>	, and the second second	
<i>S</i> ₀₁	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Solución
	3,82429	21,3548	55,0448	107,507	173,622	GDQM
75	3,82426	21,3561	55,0472	107,508	173,630	FEM
	3,8219	21,3540	55,0408	107,499	173,632	Tong et al. (1995)
	3,77304	19,8047	47,3531	84,1407	125,065	GDQM
25	3,77301	19,8057	47,3551	84,1409	125,068	FEM
	3,7716	19,8036	47,3540	84,1399	125,068	Tong et al. (1995)

Tabla 1: Coeficientes de frecuencia Ω_i para viga cantiléver homogénea y escalonada.

Los coeficientes obtenidos tienen muy buena correlación con los resultados de la bibliografía. Se implementan en cada tramo, $N_k = 23$ nodos en GDQM y $n_{ek} = 1000$ elementos en FEM.

El segundo caso de comparación, Huang et al. (2013) y Zhao et al. (2017), corresponde una viga cantiléver AFG, de un tramo y con sección transversal ahusada (ancho b constante y altura h variando linealmente. La ley de variación que adoptaron es:

$$A(\bar{x}) = A_{01}((L - c\bar{x})/L) ; I(\bar{x}) = I_{01}((L - c\bar{x})/L)^{3}; \text{ con } c = 0,1.$$
 (9)

$$E_{\text{ZrO}_2} = 200 \,\text{GPa}; \rho_{\text{ZrO}_2} = 5700 \,\frac{\text{kg}}{\text{m}^3}; E_{\text{Al}} = 70 \,\text{GPa}; \rho_{\text{Al}} = 2702 \,\frac{\text{kg}}{\text{m}^3}; \mu_{\text{ZrO}_2} = \mu_{\text{Al}} = 0.3.$$
 (10)

La viga está constituida de dos materiales mezclados en distintas proporciones de acuerdo a la distribución axial asimétrica definida en la Ec. (6) con $n_1 = 1$. Con una sección totalmente de zirconia (ZrO₂: 01) en $\bar{x} = 0$ y una sección completa de aluminio (Al: 11) en $\bar{x} = L$. Los demás parámetros son $s_{01} = 10$ y $\kappa = 5/6$.

La Tabla 2 exhibe los primeros 5 coeficientes de frecuencias obtenidos. Se aprecia que la concordancia entre los resultados es excelente. La precisión se obtiene de adoptar en la longitud total de la viga, $N_1 = 23$ nodos en GDQM, y $n_{e1} = 2000$ elementos en FEM.

n_1	$\Omega_{_{1}}$	Ω_2	Ω_3	$\Omega_{\scriptscriptstyle 4}$	$\Omega_{\scriptscriptstyle 5}$	Solución
	3,94464	14,9364	30,5727	46,4069	60,9420	GDQM
1	3,94464	14,9364	30,5727	46,4069	60,9420	FEM
1	3,94464	14,9364	30,5727	46,4089	I	Huang et al. (2013)
	3,94470	14,9371	30,5745	46,4104	ı	Zhao et al. (2017)
	3,93579	15,1533	31,2239	47,5836	62,7344	GDQM
2	3,93579	15,1533	31,2239	47,5836	62,7344	FEM
2	3,93579	15,1533	31,2239	47,5857	1	Huang et al. (2013)
	3,93585	15,1540	31,2257	47,5871	_	Zhao et al. (2017)

Tabla 2: Coeficientes de frecuencia Ω_i para viga AFG de tramo ahusado (ZrO₂ – Al).

5.2 Casos propuestos

Con la finalidad de mostrar el efecto de rigidización dinámica que se logra sobre una viga de sección transversal constante y de material homogéneo, se propone analizar el efecto de disminuir la sección transversal de la viga, de manera escalonada, e implementar un material AFG para su composición. Los casos a estudiar son:

- A: Viga de material homogéneo con escalón.
- B: Viga de material AFG en el primer tramo y el segundo tramo de acero únicamente.
- C: Viga de material AFG, incorporando una discontinuidad en escalón en la altura.

En los casos B y C, las propiedades del material AFG varían de acuerdo con la ley de distribución definida en la Ec. (6) con $n_k = 1$. Para los cálculos se considera ancho constante $b = b_{01}$, y dos tramos de altura constante $h_1 = h_{01} = h_{11}$ y $h_2 = h_{02} = h_{12}$; $\kappa = 5/6$ y $s_{01} = 100$.

La viga se considera constituida del material AFG propuesto por Su et al. (2013), el cual está compuesto por: alúmina (Alum: 01) y acero (Ac: 11):

$$E_{Ac} = 210 \,\text{GPa}; \rho_{Ac} = 7800 \,\text{kg/m}^3; E_{Alum} = 390 \,\text{GPa}; \rho_{Alum} = 3960 \,\text{kg/m}^3; \mu_{Ac} = \mu_{Alum} = 0, 3.$$
 (11)

Se emplea esta composición por ser la que optimiza la rigidización dinámica de viga. Por otra parte, los valores de los coeficientes de frecuencia calculados son referenciados a los de una viga patrón constituida de acero y de sección constante.

En primer lugar, se hallan los primeros 3 coeficientes de frecuencias para dos vigas de sección transversal constante, con $h = h_1$, una conformada por material homogéneo y otra de material AFG. Los valores obtenidos se encuentran en la Tabla 3. Se aprecia una excelente concordancia en los resultados. Se emplean para la longitud total de la viga, $N_1 = 23$ nodos en GDQM, y $n_{el} = 1000$ elementos en FEM.

h_2 / h_1	Mater	ial Homo	géneo	M	0.1.17		
	$\Omega_{_1}$	Ω_2	Ω_3	$\Omega_{_1}$	Ω_2	Ω_3	Solución
	3,51265	21,8889	60,7409	4,77959	29,8245	82,9215	GDQM
	3,51265	21,8889	60,7409	4,77959	29,8245	82,9215	FEM

Tabla 3: Coeficientes de frecuencia para viga cantiléver homogénea y escalonada.

Seguidamente, se presentan en la Tabla 4, Tabla 5 y Tabla 6 los primeros 3 coeficientes de frecuencias obtenidos para los casos A, B y C, respectivamente. En general, se obtiene una correlación muy buena en los resultados. Los coeficientes se obtuvieron de utilizar $N_k = 23$ nodos en GDQM, y $n_{ek} = 2500$ elementos en FEM, en cada tramo.

Los gráficos de la Figura 2, Figura 3 y Figura 4 presentan al coeficiente de frecuencia fundamental Ω_1 versus la relación de alturas h_2/h_1 para las distintas relaciones L_1/L expuestas en las tablas anteriores. Para completar adecuadamente los gráficos, fue necesario calcular los valores hallados para otras relaciones de h_2/h_1 . El efecto de rigidización dinámica que se observa es que, en todos los casos, para $L_1/L=3/4$ se obtiene la mayor rigidización y que además, para relaciones $h_2/h_1 < 0.2$, Ω_1 decrece bruscamente debido a los cambios en la rigidez y la masa de la viga. Para relaciones $L_1/L < 1/3$ y $L_2/h_1 < 0.7$, si la viga es homogénea no se produce rigidización dinámica. Sin embargo, al considerar el material AFG propuesto, sí se observa el efecto de rigidización dinámica.

L_1/L	h_2 / h_1	0	.8	0.6		0.4		0.2	
LITE	Solución	GDQM	FEM	GDQM	FEM	GDQM	FEM	GDQM	FEM
3/4	$\Omega_{_1}$	3,78245	3,78243	4,12213	4,12199	4,56166	4,56148	5,10188	5,10180
	Ω_2	22,1992	22,1996	22,2031	22,2050	20,4384	20,4446	12,4487	12,4566
	Ω_3	58,1087	58,1109	52,1666	52,1734	42,7597	42,7646	36,8933	36,8906
	Ω_1	3,82716	3,82709	4,23155	4,23156	4,73963	4,73976	4,85484	4,85659
2/3	Ω_2	21,4512	21,4522	19,8575	19,8609	15,6846	15,6907	9,23424	9,23637
	Ω_3	55,6007	55,6027	48,9920	48,9938	43,3998	43,3983	36,5989	36,6141
	Ω_1	3,81280	3,81284	4,10697	4,10741	4,07343	4,07485	2,68019	2,68220
1/2	Ω_2	19,7326	19,7337	16,5841	16,5859	13,2009	13,2009	11,4038	11,4023
	Ω_3	54,7559	54,7563	48,2341	48,2390	37,4839	37,4990	20,2423	20,2531
	Ω_1	3,61863	3,61862	3,49075	3,49184	2,83725	2,83928	1,55908	1,55908
1/3	Ω_2	19,2549	19,2549	16,8077	16,8070	14,6131	14,6143	9,47335	9,47861
	Ω_3	52,5021	52,5056	42,2681	42,2742	31,3671	31,3675	23,4774	23,4779
	Ω_1	3,45441	3,45511	3,10976	3,11163	2,34940	2,35247	1,23996	1,24087
1/4	Ω_2	19,3828	19,3826	16,9803	16,9812	13,6913	13,6969	7,68803	7,69370
	Ω_3	51,6226	51,6238	42,1414	42,1402	33,6559	33,6532	21,1365	21,1501

Tabla 4: Coeficientes de frecuencia para viga cantiléver homogénea y con escalón.

L_1/L	h_2 / h_1	0.	.8	0	0.6		0.4		0.2	
LIIL	Solución	GDQM	FEM	GDQM	FEM	GDQM	FEM	GDQM	FEM	
3/4	Ω_1	4,88353	4,88368	5,34517	5,34511	5,94123	5,94112	6,56504	6,56547	
	$\Omega_{_2}$	27,4465	27,4473	26,7532	26,7566	23,0322	23,0408	13,2297	13,2368	
	Ω_3	71,0485	71,0519	62,7885	62,7949	53,0974	53,0989	48,1427	48,1409	
	Ω_1	4,85030	4,85033	5,35855	5,35860	5,93155	5,93206	5,41750	5,42040	
2/3	Ω_2	25,3369	25,3384	22,6569	22,6612	17,3072	17,3132	11,1671	11,1674	
	Ω_3	66,9564	66,9579	59,6926	59,6927	53,8613	53,8610	39,2260	39,2497	
	Ω_1	4,60537	4,60559	4,82865	4,82957	4,48383	4,48630	2,72401	2,72427	
1/2	Ω_2	22,0359	22,0370	18,6689	18,6699	15,6378	15,6366	13,7923	13,7936	
	Ω_3	63,0302	63,0318	54,0232	54,0323	39,9857	40,0032	22,1943	22,1995	
	Ω_1	4,09534	4,09528	3,78471	3,78463	2,93078	2,93146	1,56624	1,56735	
1/3	Ω_{2}	21,2179	21,2176	18,8538	18,8534	16,0945	16,0983	9,63211	9,63897	
	Ω_3	56,4897	56,4929	45,6229	45,6263	35,3957	35,3913	25,6381	25,6493	
1/4	Ω_1	3,77565	3,77566	3,27213	3,27255	2,39267	2,39380	1,24302	1,24389	
	Ω_2	21,0904	21,0905	18,4019	18,4042	14,2875	14,2942	7,73627	7,74172	
	Ω_3	55,0438	55,0438	45,7640	45,7612	36,7669	36,7707	21,4373	21,4524	

Tabla 5: Coeficientes de frecuencia para viga cantiléver con material AFG en el primer tramo.

L_1/L	h_2 / h_1	0.	.8	0.	0.6		0.4		0.2	
	Solución	GDQM	FEM	GDQM	FEM	GDQM	FEM	GDQM	FEM	
3/4	$\Omega_{_{1}}$	5,17014	5,17035	5,66771	5,66852	6,31546	6,31543	7,01637	7,01691	
	Ω_2	29,9516	29,9528	29,2351	29,2393	25,2736	25,2832	14,5404	14,5488	
	Ω_3	77,8431	77,8483	68,7086	68,7176	57,8205	57,8234	52,1756	52,1742	
	Ω_1	5,21951	5,21967	5,77951	5,77968	6,43020	6,43084	6,00114	6,00433	
2/3	Ω_{2}	28,7076	28,7099	25,7250	25,7306	19,6585	19,6659	12,4731	12,4738	
	Ω_3	75,1500	75,1544	66,7520	66,7545	60,0147	60,0163	43,8461	43,8741	
	Ω_1	5,15392	5,15438	5,45546	5,45654	5,17287	5,17540	3,21686	3,21729	
1/2	Ω_2	26,5461	26,5494	22,3200	22,3230	18,3741	18,3741	15,9885	15,9907	
	Ω_3	74,4244	74,4308	63,9157	63,9302	47,4065	47,4300	26,2007	26,2086	
	$\Omega_{_1}$	4,84923	4,84982	4,56345	4,56392	3,60403	3,60520	1,94747	1,94900	
1/3	Ω_2	26,2741	26,2772	23,0434	23,0457	19,5877	19,5940	11,8772	11,8866	
	$\Omega_{_3}$	70,9782	70,9906	57,1240	57,1352	43,8045	43,8050	31,4582	31,4739	
	Ω_1	4,62402	4,62474	4,07792	4,07892	3,02568	3,02745	1,58283	1,58409	
1/4	Ω_2	26,4115	26,4156	22,9313	22,9369	17,9240	17,9345	9,79318	9,80098	
	Ω_3	70,4116	70,4231	57,9878	57,9941	46,1298	46,1405	27,0869	27,1084	

Tabla 6: Coeficientes de frecuencia para viga cantiléver con material AFG en los dos tramos.

Las tablas y gráficos mencionados precedentemente se complementan con los gráficos del factor de eficiencia de rigidización η , Figura 5, Figura 6 y Figura 7, el cual se expresa como:

$$\eta = \frac{\Omega_1 / \Omega_{01}}{\Delta m} \tag{13}$$

donde Ω_1 y Ω_{01} representan al coeficiente de frecuencia fundamental de la viga rigidizada y de la viga original, respectivamente ; y Δm es la variación de la masa de la viga rigidizada con respecto a la viga uniforme (maciza y de material homogéneo):

$$\Delta m = \frac{\rho_{01}b_{01}h_{01}\int_{0}^{L_{1}} f_{\rho 1}(\bar{x})f_{b1}(\bar{x})f_{h1}(\bar{x})d\bar{x} + \rho_{02}b_{02}h_{02}\int_{0}^{L_{2}} f_{\rho 2}(\bar{x})f_{b2}(\bar{x})f_{h2}(\bar{x})d\bar{x}}{\rho_{Ac}b_{01}h_{01}L}.$$
 (14)

Puede notarse en los gráficos de η , que para relaciones de alturas $h_2/h_1 \ge 0.3$, todos los modelos planteados son más eficientes que la viga original e inclusive, en el caso C, mejoran la rigidización que brinda la viga AFG de sección constante. En el caso A, la mejor eficiencia se observa para $L_1/L=2/3$, mientras que los casos B y C son para $L_1/L=3/4$.

En general, es notorio que para cada relación L_1/L existe una relación h_2/h_1 que optimiza al factor de eficiencia de rigidización η ; dicha relación de alturas crece a medida que la relación de longitudes decrece. Este comportamiento se asocia a que la viga es una ménsula, por lo que la reducción de la altura en la sección transversal y consecuentemente de la masa tienen lugar en la posición más alejada del empotramiento, donde para el modo fundamental la energía cinética es mayor.

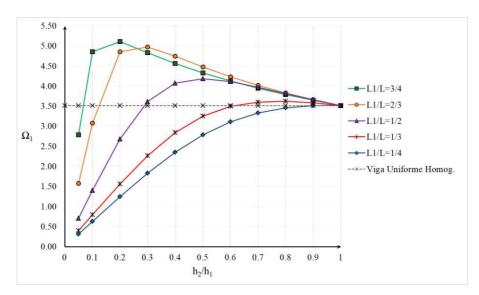


Figura 2: Coeficiente fundamental. CASO A: Viga de material homogéneo con escalón.

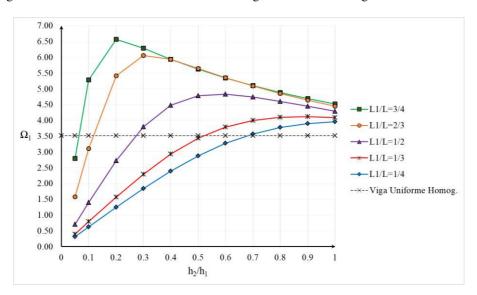


Figura 3: Coeficiente fundamental .CASO B: Viga cantiléver con material AFG en el primer tramo.

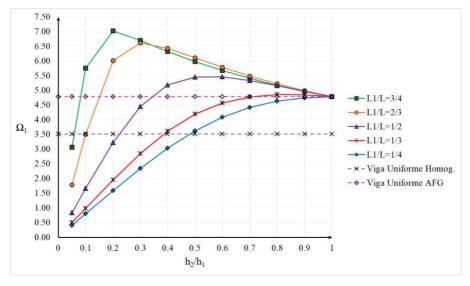


Figura 4: Coeficiente fundamental .CASO C: Viga cantiléver con material AFG en los dos tramos.

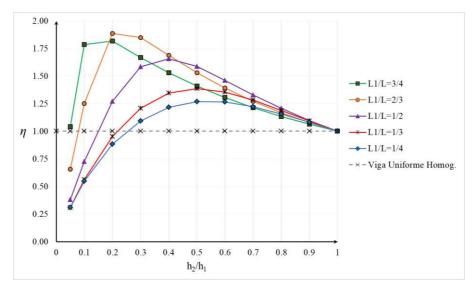


Figura 5: Eficiencia en rigidización CASO A. Viga de material homogéneo con escalón.

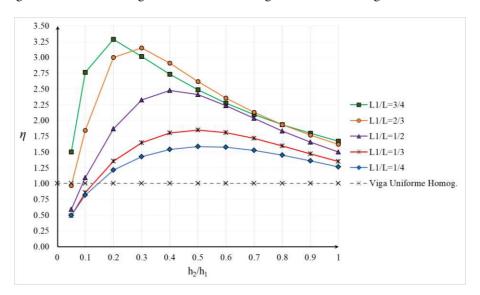


Figura 6: Eficiencia en rigidización CASO B. Viga cantiléver con material AFG en el primer tramo.

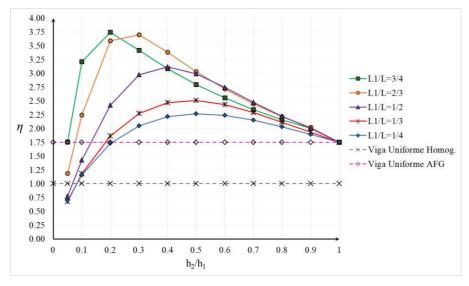


Figura 7: Eficiencia en rigidización CASO C. Viga cantiléver con material AFG en los dos tramos.

6 CONCLUSIONES

El presente estudio da certezas de que GDQM y FEM son métodos eficaces que brindan soluciones precisas para la resolución de este tipo de problemas. Además, han quedado demostradas las ventajas estructurales de emplear FGM en la rigidización dinámica de vigas.

La optimización de la rigidización dinámica de la viga dependerá de la elección adecuada de las relaciones (L_1/L y h_2/h_1) y, además, del tipo de vinculación que posea la estructura.

AGRADECIMIENTOS

El presente trabajo fue auspiciado por la Universidad Nacional del Sur (UNS), el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC). El mismo se desarrolló en el Departamento de Ingeniería y en el Instituto de Ingeniería de la UNS.

REFERENCIAS

Banerjee, J.R., Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beam. *Journal of Sound and Vibration*, 247:97–115, 2001.

Felix, D. H, Rossit, C. A., Maiz, S. y Laura, P. A. A, Experimentos numéricos en rigidización dinámica de elementos estructurales, mediante el método de cuadratura diferencial generalizada. *Mecánica Computacional*, XXV: 1675–1696, 2006.

Gilardi, G. J., Bambill, D.V., Rossit, C.A., Felix, D. H. y Rattazzi, A.R., Respuesta dinámica de vigas Timoshenko rotantes de materiales con propiedades variando funcionalmente. *Mecánica Computacional*, XXXIII: 1025–1039, 2014.

Gilardi, G.J., Bambill, D.V. y Rossit, C.A., Diversos enfoques para el estudio del comportamiento dinámico de vigas Timoshenko AFG. *Mecánica Computacional*, XXXV: 2165–2185, 2017.

Gilardi, G.J., Rossit, C.A. y Bambill, D.V., Free vibrations of tapered AFG Timoshenko beams. (Chapter.1; 1–37). Yuen, J. (editor), *Computational Mechanics (CM)*, *Applications and developments. New York Nova Science Publishers*, 2018.

Huang, Y., Yang, L. and Luo, Q. Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. *Composites: Part B*, 45:1493–1498, 2013.

Rossit, C. A., Maiz, S. y González, V. Y., Comportamiento dinámico de vigas de sección variable con masas adosadas. *Mecánica Computacional*, XXVI: 334–352, 2007.

Su, H., Banerjee, J.R. y Cheung, C.W., Dynamic stiffness formulation and free vibration analysis of functionally graded beams. *Composite Structures*, 106:854–862, 2013.

Timoshenko, S.P., On the correction for shear of the differential equation for transverse vibration of prismatic bar. Philosophical Magazine, 41:744–746, 1921.

Timoshenko, S.P., On the transverse vibrations of bars of uniform cross section. Philosophical Magazine, 43:125–131, 1922.

Tong, X., Tabarrok, B. y Yeh, K.Y., Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section. *J. of Sound and Vibration*, 186(5):710–724, 1995.

Zhao, Y., Huang, Y. y Guo, M., A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory. *Composite Structures*, 168: 277–284, 2017.