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Abstract. Over the last years, stochastic models have called the attention of researchers. The num-
ber of publications in the subject has grown and the topic is being analyzed indifferent applications.
Observing the new literature produced in the field, it is possible to verify thatnew expressions, as un-
certainty quantification and uncertainty propagation, have emerged. These expressions become largely
used and fashionable, however there is no consensus of their meanings. Each author arbitrates a mean-
ing according to its own convenience. Sometimes the disarray is such that different meanings, some of
them contradictory, can be found throughout the same work. The objective of this paper is to clarify the
concepts. We define what is and what is not uncertainty quantification andpropagation. We also show,
with simple examples, that several strategies found in literature called strategies to compute uncertainty
quantification and propagation are not. They can lead to errors and misleadingness. The examples were
chosen to be as simple as possible in order to highlight different problems that can arise when one uses
these strategies.
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1 INTRODUCTION

The literature dealing with stochastic models has grown over the last years. The number of
papers, books and courses in the subject increasedGhanem et al.(2017); Le Maître and Knio
(2010); Smith (2014); Soize(2017, 2012); Sullivan (2015) and Observing the new literature
produced in the field, it is possible to verify that new expressions, as uncertainty quantification
and uncertainty propagation, have emerged. Since these expressions do not appear in classical
books and papers and nowadays they are widely used, one may ask: what are their meaning?
Reading the literature that use them, to answer this questionis not a simple task. Different
papers employ them with different meanings. There is no consensus in the literature. Each
author arbitrates a meaning according to its own convenience. Sometimes the disarray is such
that different meanings, some of them contradictory, can befound throughout the same work.

The objective of this paper is to clarify the concepts. We define what is and what is not
uncertainty quantification and propagation Besides of this,we show that several strategies found
in the literature called strategies compute uncertainty quantification and propagation are not.

This paper is organized as follows. Section2 presents the definition uncertainty quantifica-
tion and Section3 presents some problems that may arise with several strategies found in the
literature that are used to quantify uncertainty. The problems are classified into3 types: dimen-
sion, meaning and incompatibility. Some examples of incompatibility are shown in Section4.
Section5 presents the definition of uncertainty propagation and, it is shown how this definition
is associated with random processes. In Section6 three strategies found in the literature to mea-
sure uncertainty propagation with a set of statistics are discussed. To illustrate the problems that
can arise with the use of these strategies, some simple examples are given in Section7.

2 DEFINITION OF UNCERTAINTY QUANTIFICATION

Uncertainty is, certainly, described by the cumulative distribution function (CDF). Since all
random variables and random vectors have a CDF, one associates an uncertainty to each of
them. Using the CDF, one describes the three main cases and their combinations: when there is
an absolutely continuous, with respect to the Lebesgue measure, probability density function,
the discrete case, and the singular case. That is, of course,the reason why one does not see any
mention to uncertainty quantification in classical books asFeller (1957); Chung(1974). The
authors saw no reason to call a CDF by another name. CDF is uncertainty. The prescription of
a CDF is its quantification.

However, one has to acknowledge that to use a CDF to describe uncertainty is clumsy. One
feels there must be a simpler way. Why not use some small set of statistics to reduce a CDF
to a simpler measure, easier to grasp? This seems a great ideaand, indeed, one finds it in
the literature. It is common to find papers using statistics as measures. In the case of random
variables, the statistics most used are mean, variance, coefficient of variation and Shannon
entropy. The idea is to associate numbers to the CDF, as show inFig. 1.

We focus the discussion on three main cases:

1. to use the Shannon entropy;

2. to use mean and standard deviation to construct an envelope and with them to make a nice
graph;

3. to use mean and coefficient and variation;
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Figure 1: Reductions: to replace the CDF for a small set of statistics.

In the probabilistic context, the Shannon entropy,S, Jaynes(1957); Shannon(1948) of a
random variable is viewed as a measure of the information carried by the associated probabilistic
distribution. Sometimes, the Shannon entropy is used as a synonym of uncertainty. In this paper
uncertainty is the CDF, entropy is a statistics computed froma CDF. It reflects some properties
of the CDF, but not all. In the case of discrete random variables, S is defined using the mass
function. It is dimensionless. In the case of absolutely continuous random variables using the
probability density function. It is not dimensionless.

For some probabilities, one can associate a meanµ, varianceσ2, and coefficient of variation
δ = σ/µ (ratio between the standard deviation and mean). The mean ofa probability mass, or
distribution, is the best approximation of it by a number, and the absolute error of this approx-
imation, in the mean square sense, is the variance. The coefficient of variation is a measure of
the relative error.

It is common to find papers using statistics as measures of uncertainty, as we can see in
Chen et al.(2010); Khosravi and Nahavandi(2014); Nordström and Wahlsten(2015); Motra et al.
(2016); Zidek and Eeden(2003); Conrad(2016). Please note that statements likegiven a ran-
dom variable with fixed mean, when the variance grows, the level of uncertainties also grows
or for two random variables with different means and variances, the random variable with the
higher coefficient of variation is always the more uncertainare meaningless.

The reductions - to replace the CDF for a small set of statistics - may indeed work in some
cases. But they do not always work and, moreover, the different measures they define may not
be compatible. That is, the ordering of uncertainty, in the measure defined by the statistics, may
vary depending on what set of statistics one chooses. So, thegreat idea does not work so far,
but it is happily used in the literature.

3 STRATEGIES FOUND IN THE LITERATURE TO QUANTIFY UNCERTAINTY

As said in the introduction, to use a CDF to describe uncertainty is clumsy. One of the
problems that arise with this description is that the comparison of CDF to see which is more
uncertain is not evident. The idea found in the literature tosolve this dilemma is to use some
small set of statistics to reduce a CDF to a simpler measure, easier to grasp. The most used
statistics are variance, coefficient of variation and Shannon entropy.

The reductions - to replace the CDF for a small set of statistics - may indeed work in some
cases. However, these reductions present problems in relation to the dimension, meaning, and
incompatibility of statistics.

3.1 Dimension of statistics

It would be useful if the same set of statistics could be used to all random objects, random
variables (discrete and continuous) and random vectors forinstance. However, the statistics of
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different objects have different dimension, in a way that itis not possible to compare them.

• For random variables, the mean, variance, coefficient of variation, and entropy are scalars.
Beside this, the entropy of discrete random variables is always a non-negative value and
the entropy of continuous random variables can assume values inR.

• For random vectors, the mean and variance are vectors. The covariance and correlation
are matrices and the entropy is a scalar. Observe that for random vectors the coefficient
of variation is not defined in the literature.

Figure2 outlines the dimensions. Another problem is that there are random variables that do
not have any moment, for example the random variables with Cauchy density function.

random variable

random vector

mean

variance  

coef. of variation

entropy

mean

variance  

covariance

entropy

discrete r.v.: entropy 

continuous r.v.: entropy 

scalars

vectors

scalar

matrix

Figure 2: Dimension of statistics.

3.2 Meaning of statistics

The statistics usually used to reduce the CDF are variance, coefficient of variation and Shan-
non entropy. However, these statistics already have their own meaning. The mean of a prob-
ability mass, or distribution, is the best approximation ofit by a number, and the norm of the
quadratic error of this approximation, in the mean square sense, is the variance. The coefficient
of variation is a measure of the relative error. The Shannon entropy of a random variable is
viewed as a measure of the information carried by the associated probabilistic distribution.

3.3 Incompatibility

Another problem that appears in the use of a set of statisticsas measure of uncertainty is that
the different measures may not be compatible. That is, the ordering of uncertainty may vary
depending what set one chooses. In the next section, some examples show the contradictions.

Beside this, there is an incompatibility in relation to the entropy of discrete random variables
and the entropy of continuous random variables. Observe that while the entropy of discrete
random variables is always a non-negative value, the entropy of continuous random variables
can assume values inR. Therefore, the lower value of entropy of a discrete random variable is
0 and of a continuous random variable is−∞.

For example: ifX is uniformly distributed in[0, 2n], then the entropySX = −
∫ 2n

0

1

2n
ln

(

1

2n

)

dx =

ln 2n. Also, if Y is uniformly distributed in[0, 2−n], thenSY = ln 2−n. Observe that as the
support of the distribution increases, the entropy increases. In the limit, it goes to∞. As the
support decreases, the entropy decreases and, in the limit,it goes to−∞. This case where the
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support tends to zero could be seen as an limit case, in which the random variable assumes only
one value. This is certainty, deterministic. Therefore, for continuous random variables, if en-
tropy is considered a measure of uncertainty, the lower measure (corresponding to the certainty)
is −∞. However, the limit obtained for discrete random variablesis different. If we consider
a discrete random variable which assumes only one value, we get that the entropy of certainty
is 0. The conclusion is that entropy could not be used as measure of uncertainty of random
variables. That is no consensus of what is the entropy of certainty.

4 EXAMPLES OF INCOMPATIBILITY IN THE STRATEGIES FOUND IN THE LIT-
ERATURE TO QUANTIFY UNCERTAINTY

4.1 Bimodal density function

Consider a family of continuous random variablesXd, parameterized byd, with a bimodal
density functionpd symmetrically distributed around its meanµ. The functionpd, sketched in
Fig. 3, is

pd(x) =











1, x ∈ [µ− (d/2)− (1/2) , µ− (d/2)] ,

1, x ∈ [µ+ (d/2) , µ+ (d/2) + (1/2)] ,

0, in all others cases.

(1)

The variance of this family of random variablesXd is

Figure 3: Family of bimodal density functionspd.

σ2
d = E[(Xd − µ)2] =

1

12
(3d2 + 3d+ 1) . (2)

The entropy is

Sd = −
∫ ∞

−∞

pd(x) ln pd(x) dx = 0 . (3)

Observing Eqs. (15), and (16), we verify that for a given value ofµ, asd (distance between
peaks of the bimodal density function) increases, the variance,σ2

d, and the coefficient of varia-
tion, δd = σd/µ (for µ 6= 0), increase. However, the entropySd remains constant and equal to
zero.

This example of the bimodal family shows quite well that entropy, mean, variance, and
coefficient of variation are different things. One can varyµ, σ2, δ = σ/µ independently with
fixed entropy.
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4.2 Gaussian density function

The next example deals with a continuous random variable. Consider a family of continuous
random variablesXµ, parametrized byµ, with a Gaussian density functionpµ

p(x)µ =
1√
2σ2π

e−
(x−µ)2

2σ2 , (4)

whereµ is the mean andσ2 the variance. The entropy of the Gaussian density function is

Sµ = −
∫ ∞

−∞

p(x) ln p(x) dx =
1

2
ln (2σ2π e ). (5)

Observing Eq. (5), we verify that the meanµ does not enter the final formula of the entropy.
This means that all Gaussian functions with a common variance σ2 have the same entropy. A
translation changesµ andδ = σ/µ, but does not change the value ofSµ. Increasing the mean,
δ decreases, and decreasing the mean,δ increases.

4.3 Gamma density function

The next example also shows that it is possible that an increase of the variance corresponds
to a decrease of entropy. Consider a family of continuous random variablesX with a Gamma
density functionp

p(x) =
1

Γ(k)θk
xk− 1e−

x
θ . (6)

written as function of the parametersk > 0 and θ > 0, a shape parameter and a scale pa-
rameter, respectively. The mean ofX is µ = kθ and the varianceσ2 = kθ2. The entropy is
Khodabin and Ahmadabadi(2010)

S = −
∫ ∞

−∞

p(x) ln p(x) dx = k + ln θ + ln[Γ(k)] + (1 − k)ψ(k). (7)

whereψ is the digamma function. In Fig.4 it is shown the graph of the entropyS as function
of the varianceσ2 for different values of the meanµ of X. We verify that for the smaller value
of the meanµ = 1.0, the value ofS decreases as the variance increases. Whenµ = 3.0, an
interesting behavior can be observed. For values of variance lower then9.0, S increases as
the variance increases. However, for values of variance above 9.0, S decreases as the variance
increases. This means that entropy andσ2 may not vary in the same sense. Thus, if the Shannon
entropyS is considered a measure of the level of uncertainties, the variance can not be taken as
a measure of the level of uncertainties either.

5 DEFINITION OF UNCERTAINTY PROPAGATION

As CDF is uncertainty, uncertainty propagation is the variation of the CDF with a parameter
(discrete or continuous), i.e., the dynamics of the CDF, as sketched in Fig.5. Remark that this
problem has already been studied by Einstein years ago in thecontext of Brownian motion.
Einstein formulated this problem through a diffusion equation Einstein(2018), an equation that
describes how is the dynamics of the probability distribution function, PDF, of the position of
one particle. Integrating it, one can describe the variation of the CDF.

The literature around 1905 does not not mention the expression uncertainty propagation. De-
spite dealing with the problem, the authors of the time did not call it by uncertainty propagation.
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Figure 4: Entropy as function of the variance of a continuousrandom variable with a Gamma density function.

Figure 5: Uncertainty propagation: the dynamics of the CDF.

Only recently the expression appeared and spread in papers,books and courses. The expression
is new, but what it represents is not!

Nowadays, uncertainty propagation is a frequent term in theliterature. Several papers claim
that they compute uncertainty propagation. However, what it is actually done, in the majority
of them, is anything but it. Instead of to compute the variation of the CDF with a parameter,
they compute the variation of a set of statistics with a parameter. In this paper we focus the
discussion on three strategies found in the literature called “uncertainty propagation”:

1. to compute the variation of mean and standard deviation and then to use them to construct
an envelope graph;

2. to compute the variation of coefficient of variation;

3. to compute the variation of Shannon entropy.

To replace the CDF by a small set of statistics seems to be a powerful tool to determine
uncertainty propagation. Instead of dealing with the CDF, which is a function, one deals with a
reduction of it, statistics. With the reduction, it would bepossible to determine what is happen-
ing with the uncertainty and, some questions as “What is happening with the uncertainty?, Is it
growing or decreasing?” could be answered. However what apparently is a powerful tool can
lead to errors and misleadingness. One possible misleadingness is that that different strategies
may not be compatible, moreover, they can be contradictory.While a set statistics suggests that
the uncertainty is growing with a parameter, another set suggests that the uncertainty is decreas-
ing. Each set of statistics may provide different information about what is happening with the
uncertainty.
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Since one of the objectives of this paper is to discuss the three strategies found in the literature
based on reductions and, to show with simple examples how they can mislead. The examples
were chosen to be as simple as possible. Examining them one sees immediately the inadequacy
of the reductions.

6 STRATEGIES FOUND IN THE LITERATURE TO COMPUTE UNCERTAINTY
PROPAGATION

In this Section, three strategies, frequently called in theliterature as uncertainty propagation
are presented. The first one is based on the first two moments ofa probability distribution: mean
and variance (square of the standard deviation). As the meanvalue is interpreted as a nominal
value and the standard deviation is the errorSouza de Cursi and Sampaio(2015), we will call
this strategy as absolute error analysis. This first strategy consists in to compute the variation
of mean and standard deviation with a parameter to constructa region showing three curves.
Two bounding curves showing the mean± standard deviation and the third curve, between the
bounding two, that shows the mean value, seen as a nominal value. This procedure constructs
a graph typically called envelope. A second strategy is based on coefficient of variation (ratio
between standard deviation and mean), seen as a measure of relative error. The idea is to
compute the variation of the coefficient of variation. Remarkthat these two strategies may
not always be used. In some cases, neither envelope nor coefficient of variation exist, as in
the random processX(t) = t C, with t ∈ R, whereC is a random variable with Cauchy
distribution. Finally, the third strategy usually found inliterature is to compute the variation of
entropy. Although these three strategies use different sets of statistics, it is a common mistake to
believe that they provide the same information. Next we present some simple examples where
one verifies that they may not be compatible, moreover, they may be contradictory.

7 EXAMPLES OF INCOMPATIBILITY IN THE STRATEGIES FOUND IN THE LIT-
ERATURE TO COMPUTE UNCERTAINTY PROPAGATION

.

7.1 Example 1:

Given a random variableY with Gaussian distribution (with meanµY 6= 0 and variance
σ2
Y ), consider the random processX(t) = t Y , with t ∈ R. For a specifict ∈ R, t 6= 0, X(t)

is a random variable with Gaussian distribution with meanµX(t) = t µY , varianceσ2
X
(t) =

t2 σ2
Y , coefficient of variationδX(t) =

σX(t)

µX(t)
= δY and, entropyηX(t) =

1

2
ln (2πeσ2

X
(t)) =

1

2
ln (2πet2 σ2

Y ).

Figures.6(a), 6(b) and7(a)show an envelope graph, coefficient of variation and entropyof
X as function of the parametert for µY = 1.0 andσ2

Y = 1.0. Remark that the envelope suggests
that the “uncertainty” decreases whent approaches zero. However, the coefficient of variation
suggests that the “uncertainty” is constant. The entropy gives a third different behaviour. As
t approaches zero from the positive or negative side, the entropy goes to−∞. This simple
example shows the contradictions of the strategies. To compute the uncertainty propagation, it
is necessary to compute the variation of the CDF ofX(t) with t, given by

PX(t)(x) =
1

2

[

1 + erf

(

x− µX(t)

σX(t)
√
2

)]

=
1

2

[

1 + erf

(

x− t µY

t σY
√
2

)]

. (8)
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Some examples are given Fig.7(b).
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Figure 6: (a) Envelope graph and (b) coefficient of variation ofX as function oft.
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Figure 7: (a) Entropy ofX as function oft and (b) cumulative distribution function (CDF) ofX(t) for different
values of the parametert.

7.2 Example 2:

Given a random variableY with Gaussian distribution (with meanµY and varianceσ2
Y ),

consider the random processX(t) = t+ Y , with t ∈ R. For a specifict ∈ R, X(t) is a random
variable with Gaussian distribution with meanµX(t) = t+µY , varianceσ2

X
(t) = σ2

Y , coefficient

of variationδX(t) =
σX(t)

µX(t)
=

σY
µY + t

and, entropyηX(t) =
1

2
ln (2πeσ2

X
(t)) =

1

2
ln (2πet2 σ2

Y ).

Figures.8(a), 8(b)and9(a)show an envelope graph ofX, coefficient of variation and entropy
as function of the parametert for µY = 5.0 andσ2

Y = 10.0. Each graph exhibits a different
behavior. While the envelop suggests a linear growth witht, the coefficient of variation is
smaller than zero whent < −µY and it is bigger then zero whent > −µY . The entropy, similar
to the previous example, suggests that the “uncertainty” isconstant. The CDF ofX(t) with t is
given by

PX(t)(x) =
1

2

[

1 + erf

(

x− µX(t)

σX(t)
√
2

)]

=
1

2

[

1 + erf

(

x− (t+ µY )

σY
√
2

)]

. (9)

Some examples are given Fig.9(b).
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Figure 8: (a) Envelope graph and (b) coefficient of variation ofX as function oft.
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Figure 9: (a) Entropy ofX as function oft and (b) cumulative distribution function (CDF) ofX(t) for different
values of the parametert.

7.3 Example 3:

Consider the random processX(t) = t C, with t ∈ R, whereC is a random variable with
Cauchy distribution:

pC(x) =
1

πγ

[

γ2

(x− x0)2 + γ2

]

, (10)

wherex0 is a location parameter, specifying the location of the peakof the distribution, and
γ is a scale parameter. Whenx0 = 0 andγ = 1, the cumulative distribution function, the
characteristic function and entropy ofC are respectively:

PC(x) =
1

π
arctan

(

x

γ

)

+
1

2
, (11)

φC(a) = E[eiaX ] = e−|a| , ∀a ∈ R , (12)

ηC = ln(4πγ) . (13)

For a specifict ∈ R, X(t) is a random variable with Cauchy distribution, thus it does not have
any moments. In this case, it is not possible to construct neither envelop nor coefficient of
variation graphs.

7.4 Example 4: free vibration

Consider a simple mass-spring oscillator moving on a horizontal surface without friction, as
shown in Fig.10.
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Figure 10: Free mass-spring oscillator.

Its equation of motion is

m ẍ(t) + k x(t) = 0 . (14)

wherem is the mass,k is the spring stiffness,t is time andx is the position of the mass.
Considering thatm = 1.0 kg and the initial conditions arex(0) = 1 m andẋ(0) = 0 m/s, the
solution of Eq.14 is

x(t) = cos (
√
kt) . (15)

Consider that the spring stiffness is uncertain and modeled as a discrete random variableK
with Bernoulli distribution. It takes the values1 N/m andπ2/4 N/m, each one with probability
1/2. The mass function ofK is

p(K = 1) = 1/2 ,

p(K = π2/4) = 1/2 .
(16)

As it was assumed that the spring stiffness is uncertain, theresponse of the system is a ran-
dom process,X Grimmett and Welsh(1986); Sampaio and Lima(2012). SinceK has Bernoulli
distribution, for each value oft > 0, X(t) has also a Bernoulli distribution. With probability
1/2, K = 1 N/m and thenX(t) = cos (t). Also with probability1/2, K = π2/4 N/m and then
X(t) = cos (π

2
t). Then the mean, variance and entropy are, respectively:

µX(t) = E[X(t)] =
1

2
cos (t) +

1

2
cos (

π

2
t) , (17)

σ2
X
(t) =E[(X(t)− µX(t))

2] = E[X2(t)]− µ2
X
(t)

=
1

2

{

cos2 (t) + cos2 (
π

2
t)
}

− 1

4
cos2 (t)− 1

4
cos2 (

π

2
t)− 1

2
cos (t) cos (

π

2
t)

=
1

4

{

cos (t)− cos (
π

2
t)
}2

.

(18)

ηX(t) = −1

2
ln

(

1

2

)

+
1

2
ln

(

1

2

)

≈ 0.69 ∀t > 0 . (19)

Comparing the envelope and entropy graph, shown in Figs.11(a)and11(b), one sees, imme-
diately, that they suggest different behaviors.
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Figure 11: (a) Envelope graph of the system response. (b) Entropy of the system response.

Figure 12: Forced mass-spring oscillator.

7.5 Example 5: forced vibration

Consider a simple mass-spring oscillator moving on a horizontal surface without friction
subject to a forcef , as shown in Fig.12.

Its equation of motion is

m ẍ(t) + k x(t) = f(t) . (20)

The driving forcef is chosen to be of the form

f(t) = t , (21)

and the initial conditions arex(0) = 1 m andẋ(0) = 0 m/s. Hence, the solution of Eq.20 is

x(t) = cos (
√
kt) +

t

k
. (22)

Consider again that the spring stiffness is uncertain and modeled as a discrete random vari-
ableK with Bernoulli distribution given by Eq.16. The position of the mass becomes a random
process,X. The mean, variance and entropy ofX are

µX(t) = E[X(t)] =
1

2

(

cos (t) + t+ cos (
π

2
t) +

4t

π2

)

, (23)

σ2
X
(t) =E[(X(t)− µX(t))

2]

=
1

2

{

cos (t)

2
+
t

2
−

cos (πt
2
)

2
− 2t

π2

}2

+
1

2

{

cos (πt
2
)

2
+

2t

π2
− cos (t)

2
− t

2

}2

.
(24)

ηX(t) = −1

2
ln

(

1

2

)

+
1

2
ln

(

1

2

)

≈ 0.69 , ∀t > 0 . (25)

R. LIMA, R. SAMPAIO734

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



In Fig. 13(a) it is shown an envelope graph of the system response. The shaded region
is bounded by mean± standard deviation. The entropy, variance and coefficient of variation
graphs are shown in Fig.13(b), 14(a)and14(b).
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Figure 13: (a) Envelope graph of the system response. (b) Entropy of the system response.

The result shows that the entropy remains constant in time, despite the variation of the mo-
ments. Therefore, the envelope graph suggests that the “uncertainty” is growing with time while
the entropy suggests that it is constant. The variance and coefficient of variation as function of
time, suggest other behaviors. While the variance oscillates over time, the coefficient of vari-
ation has a peak between zero and five seconds. This example shows that the three strategies
found in the literature are not compatible. They provide different information and can mislead
us and lead to errors.
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Figure 14: (a) Variance of the system response as function oftime. (b) Coefficient of variation of the system
response as function of time.

7.6 Example 6: stochastic stick-slip oscillations

The previous examples were chosen to be as simple as possiblein order to highlight different
problems that can arise when one uses the sets of statistics.Next we present a simple, but
more realistic example. This example is discussed in details in the papersLima and Sampaio
(2017a,b).

Consider the system composed by a simple oscillator (mass-spring) moving on a rough sur-
face, as shown in Fig.15. The base has velocityv. The roughness induces a dry-frictional
force between the mass and the base which is modeled as a Coulomb friction. Due to this fric-
tion model, the resulting motion of the mass can be characterized in two qualitatively different
modes:
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Figure 15: Stick-slip oscillator.

• the stick-mode (in which the mass and base have the same velocity during an open time
interval) and;

• the slip-mode, in which mass and base have different velocities.

Consider that the dry-friction oscillator has an imposed stochastic bang-bang motion. Its
velocity is modeled as a Poisson process, represented byV.

Since it is assumed that the base motion is uncertain, the response of the stochastic stick-slip
oscillator is a random process which presents a sequence alternating stick and slip-modes. We
are interested in the stochastic characterization of thesesequences. Defined a time interval for
analysis, the variables of interest are the number of time intervals in which stick and slip occur,
the instants at which they start and their duration. These variables are modeled as stochastic
objects in order to allow the stochastic characterization the dynamics of the oscillator. Thus we
have the

• number of time intervals in which stick occurs represented by the discrete random variable
ST ;

• number of time intervals in which slip occurs represented bythe discrete random variable
SL;

• instants at which sticks begin represented by a discrete random processT1, · · · , TST
,

where the subscripts1, · · · , ST indicate the order that they occur, i.e., the instant in which
starts the first stick, the second, and so on up to theST -th stick;

• duration of sticks represented by a discrete random processD1, · · · , DST
, where again

the subscripts1, · · · , ST indicate the order that they occur;

• instants at which slips begin represented by a discrete random processL1, · · · , LSL
,

where1, · · · , SL indicate the order that they occur;

• duration of sticks represented by a discrete random processH1, · · · , HSL
, where1, · · · , SL

indicate the order that they occur.

Figure16 shows a sketch of the sequence of sticks and slips in the system response. Observe
that we count the first slip just after the first stick, i.e., wehaveL1 > T1. Besides this, if
the chronometer stops during a slip, the number of sticks is equal or the number of slips, i.e.
ST = SL. If the the chronometer stops during a stick, thenST = SL + 1 .

To estimate statistics and histograms of the random variables that characterize the sys-
tem response, the dynamical equations were integrated 18,000 times using independent re-
alizations of the base movement generated with the Monte Carlo methodSampaio and Lima
(2012); Souza de Cursi and Sampaio(2015). Details of the numeric simulations can be found
in Lima and Sampaio(2017a,b).

Some estimated statistics, variance, coefficient of variation, and Shannon entropy ofT1, · · · , T6,
D1, · · · , D6, L1, · · · , L6 andH1, · · · , H6 were computed. These results are shown graphically
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Figure 16: Sketch of sequence of sticks and slips in the system response for the case in whichST = SL.

in Figs.17(a)to 19(b). It can be observed that the variance and Shannon entropy of the instants
at which the sticks and slips start grows with the stick and slip number. However, the coefficient
of variation decreases. This example shows that the strategies found in the literature provide
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Figure 17: Estimated variance of the instants at which the(a) sticks and (b) slips start.
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Figure 18: Estimated coefficient of variation of the instants at which the(a) sticks and (b) slips start.

different information in relation to the behavior of uncertainty. They are not compatible. To
characterize uncertainty propagation, it is necessary to determine the variation of the CDF, as
it is done inLima and Sampaio(2017a,b). In these two papers, marginal and joint densities
functions of the instants at which sticks and slips start andtheir duration are investigated.

8 CONCLUSIONS

In this paper we define what is, and what is not, uncertainty quantification and propagation.
Uncertainty is described by the cumulative distribution function (CDF) and, uncertainty prop-
agation is the variation of the cumulative distribution function (CDF) with a parameter, which
can be discrete or continuous. It is not the variation of setsof statistics one with a parameter.

To replace the CDF for a small set of statistics seems to be a powerful tool to determine
uncertainty propagation. However, it can lead to errors andmisleadingness. With simple exam-
ples, we show that the strategies based on a set of statisticsmay not be compatible, moreover,
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Figure 19: Estimated Shannon entropy of the instants at which the(a) sticks and (b) slips start.

they can be even contradictory. Regarding the examples one sees immediately the inadequacy
of the use of reductions to compute uncertainty propagation. Furthermore, some of the strate-
gies based on a set of statistics can not always be used. Some random variables do not have
any moment, that is, it is not possible to compute neither envelop nor coefficient of variation for
them.

In the literature, it is possible to find papers that use simultaneously, two or more of these
different sets of statistics to measure of uncertainty propagation without realizing that they are
not compatible. Examples are the works that try to characterize how the uncertainty of an
inputs of a system affects the system response. For instance, the Maximum Entropy Principle
is used to construct the probability model of the input with the argument that it maximizes the
uncertainty. After, for different values of the coefficientof variation of the input statistics of
the system response are computed. With these statistics, anenvelope graph is construct. The
objective is to establish a relation between the value of thecoefficient of variation of the input
with envelope graph of the output.

The expressions “uncertainty” and “uncertainty quantification” are fashionable and largely
used in the literature. However, uncertainty is the CDF. The sets of statistics used so far, can
not replace the CDF. Moreover, since the sets of statistics wedescribed are not compatible, they
should not be mixed in the same paper. Besides, if one uses one of these sets, clearly specified,
we see no need to call it “uncertainty”. There are better description, variance measures absolute
error, coefficient of variation relative error, and entropyis entropy, no new names are needed!
As Jaynes said, the things should be called by their names, and no new names should be invented
Jaynes(1978).
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