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Abstract. Over the last years, stochastic models have called the attention of remsardihe num-
ber of publications in the subject has grown and the topic is being analyzgifférent applications.
Observing the new literature produced in the field, it is possible to verifyrtbat expressions, as un-
certainty quantification and uncertainty propagation, have emergede Elxpsessions become largely
used and fashionable, however there is no consensus of their meaBamisauthor arbitrates a mean-
ing according to its own convenience. Sometimes the disarray is such tleaedtfimeanings, some of
them contradictory, can be found throughout the same work. The olgjeftihis paper is to clarify the
concepts. We define what is and what is not uncertainty quantificatioprapagation. We also show,
with simple examples, that several strategies found in literature called steategiempute uncertainty
guantification and propagation are not. They can lead to errors and niigjaads. The examples were
chosen to be as simple as possible in order to highlight different probleinsaiharise when one uses
these strategies.
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1 INTRODUCTION

The literature dealing with stochastic models has grown thee last years. The number of
papers, books and courses in the subject incre@&ethem et al(2017); Le Maitre and Knio
(2010; Smith (2014); Soize (2017, 2012); Sullivan (2015 and Observing the new literature
produced in the field, it is possible to verify that new express, as uncertainty quantification
and uncertainty propagation, have emerged. Since thesessipns do not appear in classical
books and papers and nowadays they are widely used, one kiaylaat are their meaning?
Reading the literature that use them, to answer this queiioot a simple task. Different
papers employ them with different meanings. There is no @wsiss in the literature. Each
author arbitrates a meaning according to its own converieSometimes the disarray is such
that different meanings, some of them contradictory, cafobed throughout the same work.

The objective of this paper is to clarify the concepts. Wergefvhat is and what is not
uncertainty quantification and propagation Besides of thesshow that several strategies found
in the literature called strategies compute uncertaingngjtication and propagation are not.

This paper is organized as follows. Sect®presents the definition uncertainty quantifica-
tion and SectiorB presents some problems that may arise with several steatégind in the
literature that are used to quantify uncertainty. The ppid are classified intdtypes: dimen-
sion, meaning and incompatibility. Some examples of incatibgity are shown in SectioA.
Section5 presents the definition of uncertainty propagation ang,shiown how this definition
is associated with random processes. In Se@&itbmee strategies found in the literature to mea-
sure uncertainty propagation with a set of statistics aseudised. To illustrate the problems that
can arise with the use of these strategies, some simple éxaame given in Sectioi

2 DEFINITION OF UNCERTAINTY QUANTIFICATION

Uncertainty is, certainly, described by the cumulativerdstion function (CDF). Since all
random variables and random vectors have a CDF, one assoamatencertainty to each of
them. Using the CDF, one describes the three main cases anddiminations: when there is
an absolutely continuous, with respect to the Lebesgue umeagrobability density function,
the discrete case, and the singular case. That is, of cdbhesesason why one does not see any
mention to uncertainty quantification in classical bookd$-aler (1957); Chung(1974. The
authors saw no reason to call a CDF by another name. CDF is amtgrtThe prescription of
a CDF is its quantification.

However, one has to acknowledge that to use a CDF to descrdsztaimty is clumsy. One
feels there must be a simpler way. Why not use some small s¢atigtes to reduce a CDF
to a simpler measure, easier to grasp? This seems a greaandeandeed, one finds it in
the literature. It is common to find papers using statistcsaasures. In the case of random
variables, the statistics most used are mean, variancéjcoa® of variation and Shannon
entropy. The idea is to associate numbers to the CDF, as shiéig.ih.

We focus the discussion on three main cases:

1. to use the Shannon entropy;

2. to use mean and standard deviation to construct an emvatapwith them to make a nice
graph;

3. to use mean and coefficient and variation;
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Figure 1: Reductions: to replace the CDF for a small set oiSsitzs.

In the probabilistic context, the Shannon entrofy,Jayneg1957; Shannon(1948 of a
random variable is viewed as a measure of the informatiamecHoy the associated probabilistic
distribution. Sometimes, the Shannon entropy is used asangyn of uncertainty. In this paper
uncertainty is the CDF, entropy is a statistics computed fad@DF. It reflects some properties
of the CDF, but not all. In the case of discrete random varglflds defined using the mass
function. It is dimensionless. In the case of absolutelytiomious random variables using the
probability density function. It is not dimensionless.

For some probabilities, one can associate a meaariances?, and coefficient of variation
0 = o/u (ratio between the standard deviation and mean). The meampbability mass, or
distribution, is the best approximation of it by a numbe #me absolute error of this approx-
imation, in the mean square sense, is the variance. Theaseegffof variation is a measure of
the relative error.

It is common to find papers using statistics as measures ariangty, as we can see in
Chen et al(2010; Khosravi and Nahavan@014); Nordstrom and Wahlstg2019; Motra et al.
(2016; Zidek and Eedeii2003; Conrad(2016. Please note that statements Igkeen a ran-
dom variable with fixed mean, when the variance grows, the lduaheertainties also grows
or for two random variables with different means and variances,random variable with the
higher coefficient of variation is always the more unceri@ia meaningless.

The reductions - to replace the CDF for a small set of stasistrnay indeed work in some
cases. But they do not always work and, moreover, the diftenerasures they define may not
be compatible. That is, the ordering of uncertainty, in treasure defined by the statistics, may
vary depending on what set of statistics one chooses. Sgyr#at idea does not work so far,
but it is happily used in the literature.

3 STRATEGIESFOUND IN THE LITERATURE TO QUANTIFY UNCERTAINTY

As said in the introduction, to use a CDF to describe uncdystagmclumsy. One of the
problems that arise with this description is that the consparof CDF to see which is more
uncertain is not evident. The idea found in the literatursdtve this dilemma is to use some
small set of statistics to reduce a CDF to a simpler measusiere@ grasp. The most used
statistics are variance, coefficient of variation and Sbarentropy.

The reductions - to replace the CDF for a small set of stasistmay indeed work in some
cases. However, these reductions present problems iforetatthe dimension, meaning, and
incompatibility of statistics.

3.1 Dimension of statistics

It would be useful if the same set of statistics could be usealltrandom objects, random
variables (discrete and continuous) and random vectoiigigtaince. However, the statistics of
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different objects have different dimension, in a way thad ot possible to compare them.

e Forrandom variables, the mean, variance, coefficient etran, and entropy are scalars.
Beside this, the entropy of discrete random variables isy@waanon-negative value and
the entropy of continuous random variables can assumesvall®e

e For random vectors, the mean and variance are vectors. Magi@oce and correlation
are matrices and the entropy is a scalar. Observe that fdonavectors the coefficient
of variation is not defined in the literature.

Figure2 outlines the dimensions. Another problem is that thereamdam variables that do
not have any moment, for example the random variables witlti@adensity function.

mean

random variable == | variance
coef. of variation scalars
entropy *

mean ———— vectors
variance
random vector _> ) )
covariance matrix
scalar

entropy

« [discrete r.v.: entropy >0
continuous r.v.: entropy € R

Figure 2: Dimension of statistics.

3.2 Meaning of statistics

The statistics usually used to reduce the CDF are variane#fjaent of variation and Shan-
non entropy. However, these statistics already have thairmmeaning. The mean of a prob-
ability mass, or distribution, is the best approximationtddy a number, and the norm of the
quadratic error of this approximation, in the mean squamneegds the variance. The coefficient
of variation is a measure of the relative error. The Shanmiropy of a random variable is
viewed as a measure of the information carried by the adsacaobabilistic distribution.

3.3 Incompatibility

Another problem that appears in the use of a set of statesicseasure of uncertainty is that
the different measures may not be compatible. That is, tderimmg of uncertainty may vary
depending what set one chooses. In the next section, somgpsashow the contradictions.

Beside this, there is an incompatibility in relation to thérepy of discrete random variables
and the entropy of continuous random variables. Obseniewthdée the entropy of discrete
random variables is always a non-negative value, the enwwbpontinuous random variables
can assume values R. Therefore, the lower value of entropy of a discrete randanmable is

0 and of a continuous random variable-isc.
1 1

2n
For example: ifX is uniformly distributed irj0, 2"], then the entropyx = —/ —In (—) dx
0

2n AL
In2". Also, if Y is uniformly distributed in[0, 27"], thenSy = In27". Observe that as the
support of the distribution increases, the entropy in@sasn the limit, it goes tao. As the
support decreases, the entropy decreases and, in theifiguogs to—oco. This case where the

Copyright © 2018 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecénica Computacional Vol XXXVI, pags. 723-739 (2018) 727

support tends to zero could be seen as an limit case, in wiictahdom variable assumes only
one value. This is certainty, deterministic. Therefore,dontinuous random variables, if en-
tropy is considered a measure of uncertainty, the lower aregsorresponding to the certainty)
is —oo. However, the limit obtained for discrete random variali¢egifferent. If we consider
a discrete random variable which assumes only one value etvigt the entropy of certainty
is 0. The conclusion is that entropy could not be used as measunecertainty of random
variables. That is no consensus of what is the entropy chiceyt

4 EXAMPLESOFINCOMPATIBILITY INTHE STRATEGIESFOUND INTHE LIT-
ERATURE TO QUANTIFY UNCERTAINTY
4.1 Bimodal density function

Consider a family of continuous random variablég parameterized by, with a bimodal
density functiornp; symmetrically distributed around its mean The functionp,, sketched in
Fig.3,is

L welp—(d/2) = (1/2), p—(d/2)],
pa(z) = {1, € [u+(d/2),n+(d/2)+(1/2)], 1)
0, inall others cases

The variance of this family of random variabl&s is

pa(z)

Figure 3: Family of bimodal density functions.

o2 = E[(Xy— p)?] = 11—2(3d2 +3d+1). 2)

The entropy is
Sy = —/ pa(x) Inpg(x)dx =0. (3)

Observing Egs.15), and (6), we verify that for a given value qf, asd (distance between
peaks of the bimodal density function) increases, the na€a?2, and the coefficient of varia-
tion, 6, = o4/ (for u # 0), increase. However, the entropy remains constant and equal to
zero.

This example of the bimodal family shows quite well that epy, mean, variance, and
coefficient of variation are different things. One can vary?, § = o/u independently with
fixed entropy.
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4.2 Gaussian density function

The next example deals with a continuous random variablesi@ena family of continuous
random variables(,,, parametrized by, with a Gaussian density function

1 _(@—p)?
p(x)lt: \/me 0% (4)

wherey is the mean and? the variance. The entropy of the Gaussian density funcsion i

S, =— /_OO p(x) Inp(x)de = %ln (20%me). (5)

o0

Observing Eq.%), we verify that the meap does not enter the final formula of the entropy.
This means that all Gaussian functions with a common vagiaidhave the same entropy. A
translation changes andé = o/, but does not change the value%f. Increasing the mean,
0 decreases, and decreasing the méamcreases.

4.3 Gammadensity function

The next example also shows that it is possible that an isereathe variance corresponds
to a decrease of entropy. Consider a family of continuousaamndariablesX with a Gamma
density functiorp

1 k—1_-2
written as function of the parametets> 0 andd > 0, a shape parameter and a scale pa-
rameter, respectively. The mean &fis 1 = k6 and the variance? = k0. The entropy is
Khodabin and Ahmadaba(010

S = —/ plx)Inp(z)dr =k +Inf+In[l['(k)] + (1 — k)v(k). (7)
wherev is the digamma function. In Fidt it is shown the graph of the entroyas function

of the variancer? for different values of the meamof X. We verify that for the smaller value

of the meary, = 1.0, the value ofS decreases as the variance increases. When3.0, an
interesting behavior can be observed. For values of vagidmweer then9.0, S increases as
the variance increases. However, for values of varianceesh0, S decreases as the variance
increases. This means that entropy afdnay not vary in the same sense. Thus, if the Shannon
entropysS is considered a measure of the level of uncertainties, than@e can not be taken as

a measure of the level of uncertainties either.

5 DEFINITION OF UNCERTAINTY PROPAGATION

As CDF is uncertainty, uncertainty propagation is the vanmabf the CDF with a parameter
(discrete or continuous), i.e., the dynamics of the CDF, atchled in Fig5. Remark that this
problem has already been studied by Einstein years ago indihiext of Brownian motion.
Einstein formulated this problem through a diffusion eguaEinstein(2018, an equation that
describes how is the dynamics of the probability distrimutiunction, PDF, of the position of
one particle. Integrating it, one can describe the vamatiothe CDF.

The literature around 1905 does not not mention the exessicertainty propagation. De-
spite dealing with the problem, the authors of the time didcadl it by uncertainty propagation.
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Figure 4: Entropy as function of the variance of a continuaunslom variable with a Gamma density function.

CDF
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Figure 5: Uncertainty propagation: the dynamics of the CDF.

Only recently the expression appeared and spread in pdgoeiss and courses. The expression
IS new, but what it represents is not!

Nowadays, uncertainty propagation is a frequent term inité@ture. Several papers claim
that they compute uncertainty propagation. However, wihatactually done, in the majority
of them, is anything but it. Instead of to compute the vasiawf the CDF with a parameter,
they compute the variation of a set of statistics with a patam In this paper we focus the
discussion on three strategies found in the literatur@ddlincertainty propagation”:

1. to compute the variation of mean and standard deviatidrreen to use them to construct
an envelope graph;

2. to compute the variation of coefficient of variation;

3. to compute the variation of Shannon entropy.

To replace the CDF by a small set of statistics seems to be arfudvi@ol to determine
uncertainty propagation. Instead of dealing with the CDHR¢cWis a function, one deals with a
reduction of it, statistics. With the reduction, it would pessible to determine what is happen-
ing with the uncertainty and, some questions as “What is ha@ppgewith the uncertainty?, Is it
growing or decreasing?” could be answered. However whadrapply is a powerful tool can
lead to errors and misleadingness. One possible misleagisgs that that different strategies
may not be compatible, moreover, they can be contradicWhile a set statistics suggests that
the uncertainty is growing with a parameter, another sejssitg that the uncertainty is decreas-
ing. Each set of statistics may provide different inforraatabout what is happening with the
uncertainty.
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Since one of the objectives of this paper is to discuss tleetbirategies found in the literature
based on reductions and, to show with simple examples hoyvcidne mislead. The examples
were chosen to be as simple as possible. Examining them es@smediately the inadequacy
of the reductions.

6 STRATEGIES FOUND IN THE LITERATURE TO COMPUTE UNCERTAINTY
PROPAGATION

In this Section, three strategies, frequently called inliteeature as uncertainty propagation
are presented. The first one is based on the first two momeatsrobability distribution: mean
and variance (square of the standard deviation). As the wedar is interpreted as a nominal
value and the standard deviation is the eBouza de Cursi and Sampd015, we will call
this strategy as absolute error analysis. This first styategsists in to compute the variation
of mean and standard deviation with a parameter to construetjion showing three curves.
Two bounding curves showing the mearstandard deviation and the third curve, between the
bounding two, that shows the mean value, seen as a noming.vahis procedure constructs
a graph typically called envelope. A second strategy isdasecoefficient of variation (ratio
between standard deviation and mean), seen as a measufativererror. The idea is to
compute the variation of the coefficient of variation. Remtr&t these two strategies may
not always be used. In some cases, neither envelope norcoeeffof variation exist, as in
the random proces¥(t) = tC, with ¢t € R, whereC is a random variable with Cauchy
distribution. Finally, the third strategy usually foundliterature is to compute the variation of
entropy. Although these three strategies use differeatdettatistics, it is a common mistake to
believe that they provide the same information. Next we gmesome simple examples where
one verifies that they may not be compatible, moreover, they Ibe contradictory.

7 EXAMPLESOF INCOMPATIBILITY INTHE STRATEGIESFOUND IN THELIT-
ERATURE TO COMPUTE UNCERTAINTY PROPAGATION

7.1 Examplel:

Given a random variabl® with Gaussian distribution (with meam, # 0 and variance
0%.), consider the random proce¥$t) = tY, with ¢t € R. For a specifi¢ € R, ¢ # 0, X(t)
is a random variable with Gaussian distribution with meaitt) = ¢y, variances?(t) =
ox(t)
pize(t)

- I 1
t? 0%, coefficient of variationyy(t) = = dy and, entropyyy(t) = 5ln (2meai(t)) =
1
—In (2met? o).

Figures.6(a), 6(b) and7(a)show an envelope graph, coefficient of variation and entadpy
X as function of the parametefor 1,y = 1.0 ando? = 1.0. Remark that the envelope suggests
that the “uncertainty” decreases wheapproaches zero. However, the coefficient of variation
suggests that the “uncertainty” is constant. The entropggga third different behaviour. As
t approaches zero from the positive or negative side, th@gnigoes to—oo. This simple
example shows the contradictions of the strategies. To atertpe uncertainty propagation, it
is necessary to compute the variation of the CDE0f) with ¢, given by

T —1py

T—pxe) \ | _ L .
1+ erf (—fo(t)\/ﬁ> =35 [1+ef <—t0'y\/§>:| : (8)
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Some examples are given Fig(b).
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Figure 6: @) Envelope graph and] coefficient of variation ofC as function oft.
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Figure 7: @) Entropy of X as function oft and @) cumulative distribution function (CDF) dk(¢) for different
values of the parameter

7.2 Example2:

Given a random variabl® with Gaussian distribution (with meam- and variances?),
consider the random proce¥st) =t + Y, with ¢t € R. For a specifi¢ € R, X(¢) is a random
variable with Gaussian distribution with meaq(t) = t+ uy, variancesi (t) = o3, coefficient

of variationd(t) = ox(?) S
pa(t) oy

Figures8(a), 8(b)and9(a)show an envelope graph &f coefficient of variation and entropy
as function of the parameterfor iy = 5.0 ande? = 10.0. Each graph exhibits a different
behavior. While the envelop suggests a linear growth witthe coefficient of variation is
smaller than zero wheh< — iy and it is bigger then zero wheén> — . The entropy, similar
to the previous example, suggests that the “uncertaintgdistant. The CDF dX'(¢) with ¢ is

given by
l+ef | ——=||==|1+ef | ———= || . 9
( Uac@e)\/5 )] 2 oyV2

Some examples are given FE(b).

1 1
. and, entropy)x(t) = 5 In (2mec(t)) = 5 In (2met? 03).

1
Py () = 2
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Figure 8: &) Envelope graph andj coefficient of variation ofC as function oft.
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Figure 9: @) Entropy of X as function oft and @) cumulative distribution function (CDF) df(t) for different
values of the parameter

7.3 Example3:

Consider the random proce¥$t) = ¢t C, with t € R, whereC' is a random variable with
Cauchy distribution:

_ 1 7

wherez is a location parameter, specifying the location of the pafathe distribution, and
~ is a scale parameter. Wheg = 0 andy = 1, the cumulative distribution function, the
characteristic function and entropy ©fare respectively:

Po(x) = %arctan (%) + % , (11)
dc(a) = Ele"X] = el Va € R, (12)
o = In(4r7) (13)

For a specifi¢ € R, X(t) is a random variable with Cauchy distribution, thus it doeshave
any moments. In this case, it is not possible to construd¢heeienvelop nor coefficient of
variation graphs.

7.4 Example4: freevibration

Consider a simple mass-spring oscillator moving on a hot@@urface without friction, as
shown in Fig.10.
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Figure 10: Free mass-spring oscillator.

Its equation of motion is

mi(t)+kax(t)=0. (14)

wherem is the massk is the spring stiffnesst is time andx is the position of the mass.
Considering thatn = 1.0 kg and the initial conditions are(0) = 1 m and(0) = 0 m/s, the
solution of Eq.14is

x(t) = cos (Vkt) . (15)

Consider that the spring stiffness is uncertain and modededdiscrete random variablé
with Bernoulli distribution. It takes the valugsN/m andz?/4 N/m, each one with probability
1/2. The mass function oK is

p(K=1)=1/2,

p(K =72/4) =1/2. (16)

As it was assumed that the spring stiffness is uncertaimg$gonse of the system is a ran-
dom process) Grimmett and Welsl1986; Sampaio and Lim&012. SinceK has Bernoulli
distribution, for each value of > 0, X(¢) has also a Bernoulli distribution. With probability
1/2, K = 1 N/m and theriX(¢) = cos (¢). Also with probability1/2, K = 72/4 N/m and then
X(t) = cos (5t). Then the mean, variance and entropy are, respectively:

1 1 T

pa(t) = B[X(8)] = 5 cos (¢) + 5 cos (1), 17
o3 (t) =E[(X(t) — nx(t)*] = E[X*(1)] — pi3(t)
:% {cos2 (t) + cos? (gt)} — icosQ (t) — %(2032 (gt) — %cos () cos (gt) (18)
= {eos ) —cos (50}
1=t (1) + 2 (B) =00 oo, 19

Comparing the envelope and entropy graph, shown in Ely@)and11(b) one sees, imme-
diately, that they suggest different behaviors.

Copyright © 2018 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



R. LIMA, R. SAMPAIO

734
px T ox >

15 RN
= 1 15
&
5 08 g 1
g 2
=] =
3 5 05
E -0.5
|, 0

19 5 10 15 20 0% 5 10 15 20

t [s] t [s]
(@) (b)

Figure 11: &) Envelope graph of the system respon$&g.Entropy of the system response.
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Figure 12: Forced mass-spring oscillator.

7.5 Example5: forced vibration
Consider a simple mass-spring oscillator moving on a hotaéasurface without friction

subject to a forcg, as shown in Figl2.
Its equation of motion is

m E(t) + k x(t) = f(t). (20)
The driving forcef is chosen to be of the form
flt)y=t, (21)

and the initial conditions are(0) = 1 m andi(0) = 0 m/s. Hence, the solution of EQOis

t
z(t) = cos (Vkt) + T (22)
Consider again that the spring stiffness is uncertain andefeddas a discrete random vari-
able K with Bernoulli distribution given by EdlL6. The position of the mass becomes a random
processX. The mean, variance and entropy)ofre
1

px(t) = E[X(t)] = 5 (cos (t) + 1t + cos (gt) + g) , (23)

1 1 1 1
nx(t) = —=1In (—) + B In (5) ~0.69, Vt>0. (25)
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In Fig. 13(a)it is shown an envelope graph of the system response. Thedhadion
is bounded by mean: standard deviation. The entropy, variance and coefficiemanation
graphs are shown in Fig.3(b), 14(a)and14(b).
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=
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o

!
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t[s] t[s]

(@) (b)

Figure 13: &) Envelope graph of the system respon$&.Entropy of the system response.

)
(4]
=
o

The result shows that the entropy remains constant in tiespite the variation of the mo-
ments. Therefore, the envelope graph suggests that thertanaty” is growing with time while
the entropy suggests that it is constant. The variance agifiaent of variation as function of
time, suggest other behaviors. While the variance osdllater time, the coefficient of vari-
ation has a peak between zero and five seconds. This exangls #hat the three strategies
found in the literature are not compatible. They providéedént information and can mislead

us and lead to errors.

50 4
40 3
O =
o
5 20

10

% 5 10 15 20 % 5 10 15 20
t[s] t[s]

(@) (b)

Figure 14: (a) Variance of the system response as functidimaf. (b) Coefficient of variation of the system
response as function of time.

7.6 Example6: stochastic stick-dlip oscillations

The previous examples were chosen to be as simple as passibter to highlight different
problems that can arise when one uses the sets of statidiest we present a simple, but
more realistic example. This example is discussed in deitaithe papersima and Sampaio
(20173b).

Consider the system composed by a simple oscillator (massg¥pnoving on a rough sur-
face, as shown in Figl5. The base has velocity. The roughness induces a dry-frictional
force between the mass and the base which is modeled as a Gofniction. Due to this fric-
tion model, the resulting motion of the mass can be chaiaetéin two qualitatively different

modes:
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Figure 15: Stick-slip oscillator.

¢ the stick-mode (in which the mass and base have the samatyaladng an open time
interval) and;

¢ the slip-mode, in which mass and base have different védscit

Consider that the dry-friction oscillator has an imposecisastic bang-bang motion. Its
velocity is modeled as a Poisson process, represent®d by

Since it is assumed that the base motion is uncertain, tpemss of the stochastic stick-slip
oscillator is a random process which presents a sequeraating stick and slip-modes. We
are interested in the stochastic characterization of teegaences. Defined a time interval for
analysis, the variables of interest are the number of tirtexvals in which stick and slip occur,
the instants at which they start and their duration. Thesabi@s are modeled as stochastic
objects in order to allow the stochastic characterizati@ndynamics of the oscillator. Thus we
have the

e number of time intervals in which stick occurs representethb discrete random variable

St;

e number of time intervals in which slip occurs representethieydiscrete random variable
St

e instants at which sticks begin represented by a discretdorarprocess/y, - -- , T,

where the subscripfs - - - , Sy indicate the order that they occur, i.e., the instant in Whic
starts the first stick, the second, and so on up tcthh stick;

e duration of sticks represented by a discrete random prabess - , Ds,., where again

the subscripts, - - - | St indicate the order that they occur;

e instants at which slips begin represented by a discreteorangrocessL, - - , Lg, ,
wherel, - -- | S indicate the order that they occur;

e duration of sticks represented by a discrete random prdégss- , Hg, , wherel, - -- | Sy,

indicate the order that they occur.

Figure 16 shows a sketch of the sequence of sticks and slips in thensystgponse. Observe
that we count the first slip just after the first stick, i.e., heve L, > T;. Besides this, if
the chronometer stops during a slip, the number of sticksjisieor the number of slips, i.e.
St = Sy. If the the chronometer stops during a stick, tlgn= S, + 1.

To estimate statistics and histograms of the random vasatilat characterize the sys-
tem response, the dynamical equations were integrated@8i®es using independent re-
alizations of the base movement generated with the Monteo@aethodSampaio and Lima
(2012; Souza de Cursi and SampdR015. Details of the numeric simulations can be found
in Lima and Sampai¢20173ab).

Some estimated statistics, variance, coefficient of vianaand Shannon entropy @f, - - - , T,
Dy,---,Dg, Li,--- ,LgandHy, - - - , Hg were computed. These results are shown graphically
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Figure 16: Sketch of sequence of sticks and slips in the systeponse for the case in whisk = S7..

in Figs.17(a)to 19(b). It can be observed that the variance and Shannon entropg aisgtants
at which the sticks and slips start grows with the stick argraimber. However, the coefficient

of variation decreases.

This example shows that the steatégund in the literature provide

2
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Figure 17: Estimated variance of the instants at which Jret{eks and (b) slips start.
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Figure 18: Estimated coefficient of variation of the inssaaitwhich the(a) sticks and (b) slips start.

different information in relation to the behavior of un@enty. They are not compatible. To
characterize uncertainty propagation, it is necessargterthine the variation of the CDF, as
it is done inLima and Sampai@2017ab). In these two papers, marginal and joint densities
functions of the instants at which sticks and slips starttaed duration are investigated.

8 CONCLUSIONS

In this paper we define what is, and what is not, uncertaingntjfication and propagation.
Uncertainty is described by the cumulative distributiondtion (CDF) and, uncertainty prop-
agation is the variation of the cumulative distribution étion (CDF) with a parameter, which
can be discrete or continuous. It is not the variation of eégtatistics one with a parameter.

To replace the CDF for a small set of statistics seems to be @nbawtool to determine
uncertainty propagation. However, it can lead to errorsraisieadingness. With simple exam-
ples, we show that the strategies based on a set of statistigsi0t be compatible, moreover,
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Figure 19: Estimated Shannon entropy of the instants athwthie(a) sticks and (b) slips start.

they can be even contradictory. Regarding the examples @sarsenediately the inadequacy
of the use of reductions to compute uncertainty propagattemthermore, some of the strate-
gies based on a set of statistics can not always be used. Zmaemn variables do not have
any moment, that is, it is not possible to compute neitheelpnor coefficient of variation for
them.

In the literature, it is possible to find papers that use siamdously, two or more of these
different sets of statistics to measure of uncertainty agapion without realizing that they are
not compatible. Examples are the works that try to charaeetdrow the uncertainty of an
inputs of a system affects the system response. For instdre®&aximum Entropy Principle
Is used to construct the probability model of the input wite argument that it maximizes the
uncertainty. After, for different values of the coefficiesftvariation of the input statistics of
the system response are computed. With these statisties)\vatope graph is construct. The
objective is to establish a relation between the value ottwedficient of variation of the input
with envelope graph of the output.

The expressions “uncertainty” and “uncertainty quantifa@d are fashionable and largely
used in the literature. However, uncertainty is the CDF. Tdts of statistics used so far, can
not replace the CDF. Moreover, since the sets of statistiadeseribed are not compatible, they
should not be mixed in the same paper. Besides, if one used timese sets, clearly specified,
we see no need to call it “uncertainty”. There are bettermjgtson, variance measures absolute
error, coefficient of variation relative error, and entragyentropy, no new names are needed!
As Jaynes said, the things should be called by their namdsi@new names should be invented
Jayneg1978.
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