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Abstract. Dynamical problems are governed by initial value problems (IVP), often nonlinear, that must

be solved to understand the dynamical features of a problem. Numerical methods are very efficient and

provide approximations with the precision required, if one is interested in solving a specific problem. Un-

fortunately, numerical approximations do not provide the insight necessary to understand how a solution

depends on the parameters of the problem. Sometimes, perturbation methods help in the sense that they

can provide an analytical approximation that shows how the parameters influence the solutions. However

to solve a problem for large time intervals require high order approximations that are cumbersome to de-

rive. This paper uses a symbolic method to derive approximation of an IVP using Poincaré-Lindstedt

method. The resulting linear problems are combined to have several orders of approximations. The ap-

proximations are compared to understand their domain of validity. As a reference to estimate the quality

of an approximation, a Runge-Kutta method is used for a specific value of the parameters, of course. To

show the main features of the methodology, it is applied to a non-damped Duffing equation, the simplest

nonlinear problem used in Mechanics. It is computed analytical approximations of displacement, veloc-

ity, and frequency, for any order of approximation and initial conditions desired by the user. To quantify

how the order of approximation affect the results, the obtained analytical approximations are evaluated

for different combinations of parameters values. The results show that the number of terms has a great

influence in the accuracy of the approximation, specially when the term that controls the nonlinearities

grows.
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1 INTRODUCTION

Dynamical systems are governed by initial value problems (IVP), which are,usually, nonlin-

ear and frequently do not have a known solution (see Abarbanel and Sushchik (1993)). This

article deal with two different approximation methods to nonlinear IVP solution, an analytical

and a numerical method. Numerical methods are very efficient and provide approximations

with the precision required, but it does not provide the needed insight to understand how a so-

lution depends on the problem parameters. Alternatively, analytical approximations can often

be found, particularly, if nonlinearity is relatively small, Wagg and Virgin (2012).

Perturbation methods are a powerful technique to compute analytical approximations to IVP,

see Rao (1995), Simmonds and Mann (1986), Wagg and Virgin, 2012. In this paper we chosen

to analyze a type of perturbation method called as Poincaré-Lindstedt method, which gives an

uniformly valid asymptotic expansion for periodic solutions of weakly nonlinear oscillations,

He (2002). This method assumes that the nonlinear IVP solution is a power series of the pertur-

bation parameter, which will be introduced in the nonlinear equation. To compute the analytical

approximation, this series should be truncated according to the number of terms desired. As a

reference to estimate the quality of an approximation, a Runge-Kutta method is used for a spe-

cific value of the parameters. An cumulative error was determined to quantify the accuracy of

the approximations. Afterwards, we analyzed how the number of terms influences the analytical

approximations domain of validity. This contribution presents the Poincaré-Lindstedt method-

ology by applying it to the non-damped Duffing equation, the simplest nonlinear problem used

in Mechanics, more details in Kovacic and Brennan (2011).

2 POINCARÉ-LINDSTEDT METHOD

In this section, the Poincaré-Lindstedt method, is briefly presented. Consider the general

nonlinear equation

ü(t) + ω2

0
u(t) + αf(u̇(t), u(t)) = 0, (1)

with initial conditions u(0) = A0 and u̇(0) = 0, where �̇ means the derivation in relation to t,

α is a constant parameter that controls the nonlinearity and f is function of u and u̇. The first

step of this technique is to introduce a perturbation parameter ǫ into the nonlinear term of the

Eq. (1),

ü(t) + ω2

0
u(t) + ǫαf(u̇(t), u(t) = 0 . (2)

Observe that when ǫ is equal to zero the equation becomes linear and, since its coefficients

are constant, it has a well known analytical solution, see in Simmonds and Mann (1986). The

second step is to change the time scale. A nondimensional parameter τ is defined as

τ = ωt , (3)

where the angular frequency, ω, is function of the initial amplitude, A0, given by

ω(A0) = ω0 + ǫω1(A0) + ǫ2ω2(A0) + ... , (4)

where each ωi, i = 1, 2, 3, .., n is a function of A0. Applying Eq. (3) into (2), we obtain

ω2u′′(τ) + ω2

0
u(τ) + ǫαf(u′(τ), u(τ)) = 0 , (5)
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where �
′ represents the derivation in relation to τ . This equation has as solution,

u(τ) = u0(τ) + ǫu1(τ) + ǫ2u2(τ) + ... , (6)

where each ui, i = 0, 1, 2, 3, .., n is an unknown function to be determined from the governing

equation and the initial conditions. Applying the Eqs. (4) and (6) into (5), the terms with

coefficients of same powers must be collected in order to form a family of linear initial value

problems. These linear initial value problems must be solved according to the increasing order

of powers ǫ. It is important to remark that as we are interested in periodic approximations, for

each initial value problem the secular terms must be eliminated (the coefficients of secular term

should match to zero). Doing this, it is possible to compute approximation to each ωi. The last

step is to replace each ui and ωi calculated into Eqs. (4) and (6). Some examples can be found

in Pasquetti (2008), He (2002) and Wagg and Virgin (2012).

3 ANALYTICAL APPROXIMATION TO THE SOLUTION OF THE DUFFING EQUA-
TION

To illustrate the application of the Poincaré-Lindstedt method described previously, consider

f(u̇, u) = u3, Eq. (1) becomes

ü+ ω2

0
u+ αu3 = 0 , (7)

this equation is known as non-damped Duffing equation. Applying the first two steps mentioned

previously, i. e, introducing a parameter ǫ multiplying the nonlinear term and, changing the time

scale according to Eq. (3), Eq. (7) becomes

ω2u′′ + ω2

0
u+ ǫαu3 = 0 . (8)

To exemplify the Poincaré-Lindstedt method, we will show how to calculate the approxima-

tion of the solution to Eq. (8) considering three terms in the power series of ǫ given in Eqs. (4)

and (6). These power series truncated become

u ≈ u0 + ǫu1 + ǫ2u2 + ǫ3u3 , (9)

ω ≈ ω0 + ǫω1 + ǫ2ω2 + ǫ3ω3 . (10)

Substituting Eqs. (9) and (10) into (8) and grouping the terms according to the power of ǫ, we

have the following family of IVP

ω2

0
u′′

0
+ ω2

0
u0 = 0 , (11)

ω2

0
u′′

1
+ ω2

0
u1 = −αu3

0
− 2ω0ω1u

′′

0
, (12)

ω2

0
u′′

2
+ ω2

0
u2 = −ω2

1
u0 − 2ω0ω1u

′′

1
− 2ω0ω2u

′′

0
− 3αu1u

2

0
, (13)

ω2

0
u′′

3
+ω2

0
u3 = −ω2

1
x′′

1
−2ω0ω1u

′′

2
−2ω0ω2x

′′

1
−2ω0ω3u

′′

0
−2ω1ω2x

′′

0
−3αu0u

2

1
−3αu2

0
u2 , (14)

with initial conditions u0(0) = A0, u
′

0
(0) = 0 and ui(0) = u′

i
(0) = 0, i = 1, 2, 3.
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The solution of Eq. (11) according to the initial condition for u0 and u′

0
is u0(τ) = A0 cos τ .

Substituting it into equation (12), we obtain

ω2

0
u′′

1
+ ω2

0
u1 =

(

2A0ω0ω1 −
3A3

0
α

4

)

cos τ −
A3

0
α

4
cos 3τ (15)

observe that the right side of this equation contains a term cos τ , which causes resonance. To

avoid this, the coefficients from this term should be matching to zero in a way that the term is

eliminated. Doing this, we find

ω1 =
3A2

0
α

8ω0

. (16)

After the elimination of the resonant terms, the Eq. (15) can be solved to u1 and subsequently

replaced in Eq. (13), which becomes

ω0u
′′

2
+ ω0u2 =

(

cos(3τ)

4
+

3 cos(τ)

4

)(

3A5

0
α2

8ω2

0

+
9A3

0
αω1

4ω0

)

+ cos(τ)

(

A0ω
2

1
+ 2A0ω0ω2 −

7A3

0
αω1

4ω0

)

−

(

3A5

0
α2

8ω2

0

)(

5 cos(3τ)

16
+

cos(5τ)

16
+

5 cos(τ)

8

)

,

(17)

the same steps used to solve Eq. (15) should be done to solve Eq. (17). Substituting all the

terms ui and ωi calculated into Eqs. (9) and (10), we obtain an analytical approximation to u

as function of τ . If desired, the approximation can be written as function of t using the relation

given in Eq. (3).

Observing the Eq. (17), it is possible to verify that this equation has more terms that Eq. (15),

consequently, to solve it is more irksome. This happen because we are solving an equation that

corresponds to a higher order of ǫ. Table 1 shows the relationship between order of series

ǫ, the number of equations in the family of IVP, number of terms in the right side of each

equation and the total of terms in right side of equations. Looking at Tab. 1, we observe

that the greater the order of series ǫ, the greater the quantity of equations to solve and total

of terms. Since approximations with high order are cumbersome to solve by hand, a routine in

MATLAB software using symbolic algebra was developed. This routine allows the computation

of approximations to solution of u according to the numbers of terms chosen by the user.
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Order of

series ǫ

Number of equations

in the family of IVP

Number of terms in the

right side of each IVP
Total of terms in right side

1 2
0

2
2

2 3

0

62

4

3 4

0

13
2

4

7

4 5

0

24

2

4

7

11

5 6

0

39

2

4

7

11

15

Table 1: Relationship between order of series ǫ, the number of equations in the family of IVP,

number of terms in the right side of each equation and the total of terms in right side of equa-

tions.

4 DISCUSSION OF THE RESULTS

The routine implemented in MATLAB software allows the computation of approximations to

the displacement, velocity and frequency, ω, with desired order and initial conditions. Another

routine, also implemented in MATLAB, was developed to calculate numerical approximations

to u through Runge-Kutta method, using the command ODE45. The obtained analytical ap-

proximations are evaluated for different combinations of parameters values and compared with

the numerical approximation to understand their domain of validity. A primary result around

the importance of the approximation order can be observed Fig. 1. In Fig. 1(a) it is shown an

approximation of u considering just one term and, in Fig. 1(b) considering six terms. Observe

that with one term, for t smaller than 20, the analytical approximation has a good accuracy

compared with the numerical, however, as t increases, the curves begin to separate. With six

terms, we observe that the two curves are almost indistinguishable for t < 50.
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Figure 1: Numerical (red) and analytical approximation (blue) (a) with one term; (b) with six

term; with ǫ = 1, α = 1.5, ω0 = 1 e A0 = 0.5.

To improve the study about the domain of validity of the approximations, we use two differ-

ent measures of error. The first error used is the module of the maximum difference between

the analytical and numerical approximations during a time interval [0, T ] for fixed parameters

values, that is

max
0<t<T

|ua(t)− un(t)|. (18)

Since system trajectory is periodic, their maximum amplitude has the same value of the initial

displacement, A0. Using this metric, there is a maximum error which happens when, simultane-

ously, one approximation are in the maximum displacement and the other are in the minimum,

as exemplified by Fig. 2, therefore the maximum error value is 2A0.

300 305 310 315 320 325

-0.4

-0.2

0

0.2

0.4

Figure 2: Example: error maximum in the displacement

Figure 3a shows the approximation errors with one and two terms as function of T . Observe

that with one term, the maximum error is achieved when T ≈ 1000, while with two terms, the
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error around 0.1 when T = 1000. Figure 3 shows, as aforementioned, that the increase the

order of the approximation improves the domain of validity.

0 500 1000
0
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0.4

0.6

0.8

(a) Noncumulative error between 1 and 2

terms.

0 500 1000
0

0.02

0.04

0.06

0.08

0.1

(b) Noncumulative error between 2 and 3

terms.

0 500 1000
0

0.005

0.01

(c) Noncumulative error between 3 and 4

terms.

0 500 1000
0

0.5

1

1.5

10
-3

(d) Noncumulative error between 4 and 5

terms.

0 500 1000
0

1

2

3

10
-4

(e) Noncumulative error between 5 and 6

terms.

Figure 3: Noncumulative error between the analytical and numerical approaches, considering

α = 0.75, ω0 = 1, A0 = 0.5 and ǫ = 1.

Since the dynamics of nonlinear systems are influenced by the initial conditions, we analyzed

the influence of the initial displacement, A0, in the domain of validity using the metric given by

Eq.(18). The outcome is shown in Fig. 4a. As expected, the results show us that when the initial
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displacement grows, the order of approximation also should grows to keep the same error. It

is important to observe that the error of the first approximation is always equal or bigger than

the others errors obtained with higher order approximations. For example, when A0 ≈ 0.5 the

error with one term is about 0.3, while the errors of the others approximation are less than 0.02.

When A0 = 1.0, while the error of approximation with one term already reaches the maximum

error, i. e., twice the initial displacement value, the error of approximation with two terms is

lower, however is somehow close to it if compared with the errors of the approximation with

four, five and six order, which presents errors smaller than 0.2.

Another analysis was to observe the behavior of the error according to the variation of α,

the parameter that controls the nonlinearity, similar to what was made in relation to A0. The

results are shown in Fig.4b. Observe that with the increase of α, the curves that represent the

lower order approximation reach the maximum value before than the others (recalling that the

maximum error is twice the initial displacement, 2A0). These results show again that the first

order error is always equal or bigger than the others errors with higher order. In the performed

analysis, the maximum value of αconsidered is 2.0 since this can be considered a high value to

a parameter that controls the nonlinearity.

0 0.5 1 1.5

0.5

1

1.5

2

2.5

(a) Variation of A0.

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

(b) Variation of α.

Figure 4: (a) Variation of 0.1 < A0 < 1.5 with ǫ = 1, α = 0.5 and ω0 = 1. (b) Variation of

0 < α < 2 with ǫ = 1, A0 = 0.6 and ω0 = 1.

To avoid the maximum error that can happen when we use the error given by in Eq. (18),

we considered in the analysis another measure of error, which we can be seen as measure of

the cumulative error. This cumulative error is given by the sum of the module of the maximum

difference between the analytical and numerical approximation during a time interval [0, T ] for

fixed parameters values, that is

∑

0<t<T

max
0<t<T

|ua(t)− un(t)| , (19)

where ua and un are the analytical and numerical approximations respectively. Figure 5 shows

this error for the approximations until sixth order. Observing it, it is possible to verify that at the

end of the interval, while the error obtained with the first order approximation is around 15000,

the error obtained with the second order is around 1500 and, with the sixth order is lower than

1. This shows that the increase of the order approximation, improves the domain of validity.

M. GOMES, R. LIMA, R. SAMPAIO928

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0 500 1000
0

5000

10000

15000

(a) Cumulative error between 1 and 2 terms.

0 500 1000
0

500

1000

1500

(b) Cumulative error between 2 and 3 terms.
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0
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(c) Cumulative error between 3 and 4 terms.
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10

15

20

(d) Cumulative error between 4 and 5 terms.

0 500 1000
0

1

2

3

4

(e) Cumulative error between 5 and 6 terms.

Figure 5: Cumulative error between the analytical and numerical approaches, considering α =
0.75, ω0 = 1, A0 = 0.5 and ǫ = 1.

5 CONCLUSIONS

Approximations with high order are cumbersome to solve by hand, and to support the analyt-

ical computation, a MATLAB routine was implemented using symbolic algebra. This routine

allows to compute approximations to displacement, velocity and frequency according to the

numbers of terms chosen by the user. In this paper, we calculated analytical approximations un-
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til sixth order. These expressions were used in another routine also implemented in MATLAB,

which assigns values to the parameters of analytical approximations and then, compare them

with numerical approximations. To quantify the difference between these approximations, two

metrics of error were used, a noncumulative and a cumulative one. First, we used the noncumu-

lative. However, as we verified that this metric presents a maximum error, 2A0, exemplified in

Fig. 2, we used the second one, i.e., the cumulative. In both analysis, the results obtained show

that the domain of validity is influenced by the number of terms considered in the analytical

approximation.
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