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Abstract. In CAD packages, solid objects are represented by a collection of NURBS bounding surfaces 
and curves. Traditional finite element analysis employs curved elements of limited geometric capability, 
such as quadratic finite elements whose boundaries are represented by quadratic curves and surfaces 
that cannot reproduce exactly real life geometries. This complicates the adaptive analysis in curved 
geometries where there is a need to do a lot of queries to the geometry model to refine the mesh. To 
overcome this problem, several formulations that consider the exact geometry in the finite element 
formulation, such as the isogeometric formulation have appeared. In general, these formulations are not 
simple and requires complex integration rules to obtain the finite element matrices. An alternative 
representation based on triangular NURBS finite elements, that are triangular elements whose 
boundaries are NURBS curves is used in this paper. A simplified analytical integration on these elements 
for planar stress analysis that does not require numerical integration is presented. It and can be easily 
extended to 3-D nonlinear problems, including contact and plasticity. 
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1 INTRODUCTION 

Nowadays there is a great interest into integration between Computer Aided Design (CAD) 

and finite element analysis software. Traditionally these areas used different geometric 

representation of the same domain since their objectives are very distinct. CAD systems are 

oriented to production and need a very precise description of the geometry and traditional finite 

element analysis, sometimes, uses a crude approximation of the geometry that is reduced 

employing a considerable amount of small simple elements (Cottrell et al., 2009). 

From an engineering point of view, an accurate description of the geometry is important for 

adaptive finite element analysis, where the size of the elements is successively reduced until a 

desired precision is attained, since for this process an exact description of curved boundaries is 

required to position new nodes and elements. It is also important for the analysis of imperfect 

structures, like thin shells, where the size of the imperfections (deviations from exact geometry) 

can have a very negative impact on its stability (Godoy, 1996). 

An important step towards reducing the gap between CAD and finite elements was the 

introduction of the so called Isogeometric Analysis (Hughes et al., 2005) where finite elements 

based on the same curves and surfaces NURBS (Non Uniform Rational B-Splines) used by 

CAD systems can reproduce the exact geometry of the model. This simplifies the adaptive 

refinement process since the geometry information is contained within each finite element. 

 Isogeometric analysis is not exempt of several problems like trimmed geometries (Marussig 

and Hughes, 2017) where the intersection of surfaces is not properly approximated by CAD 

systems leading to the appearance of gaps between intersecting surfaces that invalidate finite 

element analysis. Isogeometric analysis also uses the same NURBS functions to describe the 

field of variables and this leads to complicated finite element matrices that need special 

numerical integration rules (Adam et al., 2015a), (Adam et al., 2015b), (Fahrendorf et al., 2018). 

Another problem is that solids in CAD are generally modeled only by the surfaces that enclose 

its volume, so there is a need to construct a volumetric finite element mesh to fill the volume 

(Cottrell et al., 2007). 

An alternative approach is to enrich the classical finite element shape functions with NURBS 

to exactly reproduce the boundary. A representative method of this class is the NEFEM 

(NURBS Enriched Finite Element Method) (Sevilla et al., 2008) where the elements only have 

curved sides and faces at the boundary. There are many variants of this approach (George and 

Borouchaki, 2012), (Jaxon and Qian, 2014), (Engvall and Evans, 2016), (Xia and Qian, 2017) 

but all have in common a local representation of the geometry by means of Bezier or rational 

Bezier triangular functions (Farin, 1986). 

In general, the description of the geometry needs more complicated shape functions than the 

usual low order polynomials used to describe the field of variables. But there is no reason to 

use the same shape functions for both. Even with low order elements, the desired precision can 

be achieved by adaptive refinement (Zienkiewicz et al., 2013).  

The use of different shape functions to describe the geometry and the variables field is 

proposed in this paper. The only condition is that in the limit of the adaptive refinement process 

the geometry of the element converges to a regular shaped finite element with straight sides. In 

this manner, any classical, hybrid or mixed finite element formulation (Zienkiewicz et al., 2013) 

independently of the geometry of the finite element can be applied. 

To illustrate the proposal, cubic rational Bezier functions to describe the geometry of a 

triangular finite element will be employed, but only linear polynomial shape functions will be 

used to describe the field of variables. This, obviously, leads to complicated integrals on curved 

domains but, to ensure convergence, exact values of these integrals in the limit, when the shape 

of the element tends to be regular, are only needed. Based on these criteria, a simplified 
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integration methodology that does not use numerical rules (quadrature free) and recovers the 

exact values of the integrals in the limit will be presented. 

2 BÉZIER REPRESENTATION OF NURBS CURVES AND SURFACES 

NURBS curves and surfaces are very popular in CAD systems because they can model not 

only free form curves but also all the family of conics curves and surfaces, like circles (Piegl 

and Tiller, 1997). 

 
Figure 1: NURBS curve and its control polygon and knots 

 

A NURBS curve is defined by a control polygon with control points Pi. Geometrically the 

NURBS curve is formed by several segments with a high degree of continuity between 

segments. The union of segments occurs at the knots of the NURBS curve which are shown on 

Figure 1.    

2.1 Bézier representation of NURBS curves 

A Bézier representation of a NURBS curve is a curve segment defined by a control polygonal 

with control points Pi and their associated weights wi , where the initial and final points coincide 

with consecutive  knots of the NURBS curve (Farin, 2002) (see Figure 2). 

 

 

P1 

P2 P3 

P4 

 w1 

w2 w3 

w4 

 t 

 
Figure 2: Bézier representation of a NURBS segment. 

 

The rational Bézier curves of degree n are defined parametrically in an interval [0,1] of t as 𝐜(𝑡) = {𝑥(𝑡)𝑦(𝑡)} = ∑ 𝐵𝑖,𝑛(𝑡)𝑤𝑖𝐏𝑖𝑛𝑖=0∑ 𝐵𝑖,𝑛(𝑡)𝑤𝑖𝑛𝑖=0  
(1) 

Where functions Bi,n(t) are the Bernstein polynomials of degree n defined as  
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In the case of a planar curve the control polygon is contained in the plane of the curve and 

the control points have two coordinates 𝐏𝑖 = {𝑥𝑖𝑦𝑖} (4) 

In general, the control points of the Bézier representation are different from the control points 

of the NURBS curve, but the segments are geometrically identical. 

Also, the Bernstein polynomials can be written using barycentric coordinates 1,2 as 
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Where 1,2 are the barycentric coordinates in one dimension 
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(6) 

The barycentric coordinates specify the location of a point of a simplex (a line, a triangle, 

tetrahedron, etc.) as the center of mass of unequal masses 1,2 placed at its vertices. Barycentric 

coordinates are not independent since they are related by 

121 =+  (7) 

The barycentric coordinates have other properties that simplify the derivation and integration 

of functions of these variables over simplices (generalization of a triangle to arbitrary 

dimensions).  

2.2 The rational Bézier triangle 

A rational Bézier triangle has NURBS sides which have been reparametrized as Bézier 

curves. A reference triangle of straight sides with the same vertices of the curved triangle is 

defined to describe the geometry (see Figure 3).    
 

 y 

 x 
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V3 

L 3 

L 1 

 
Figure 3: Definition of reference triangle for an element with NURBS boundary 
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To represent a rational Bézier triangle is necessary to extent the definition of Bernstein 

polynomials to two dimensions using barycentric coordinates in a triangle (Farin, 2002). The 

barycentric coordinates for a triangle are the usual area coordinates 1, 2, 3, (Cook et al., 2001) 

defined on a reference triangle (see Figure 4). 
 

ξ 2 

ξ 3 
ξ 1 

V1 

V3 

V2 

 
Figure 4: Area coordinates on reference triangle 

 

Any point on the reference triangle can be identified by a unique combination of its 

barycentric coordinates. As in the previous case, barycentric coordinates are not independent 

since they are related by  

1321 =++   (8) 

Using barycentric coordinates simplifies the definition of interpolation functions on the 

reference triangle. In particular, Bernstein polynomials of degree n on the triangle are (Farin, 

2002) 
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Where the trinomial coefficients are 
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For example, for n = 3 the Bernstein functions are 
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(11) 

Then, we can define a mapping surface x(1, 2, 3) of degree n between each point 1, 2, 

3 of the reference triangle and a point x,y of the curved triangle by means of (n+2)(n+1)/2 

control points Pijk, each one associated to a Bernstein functions on the triangle as 𝒙(1, 2, 3) = {𝑥(1, 2, 3)𝑦(1, 2, 3)} = ∑ 𝐵𝑖𝑗𝑘𝑛 (1, 2, 3)𝑤𝑖𝑗𝑘𝐏𝑖𝑗𝑘𝑖+𝑗+𝑘=𝑛∑ 𝐵𝑖𝑗𝑘𝑛 (1, 2, 3)𝑤𝑖𝑗𝑘𝑖+𝑗+𝑘=𝑛  
(12) 

For example, for the cubic triangle the control points are located at vertices, thirds of the 

sides and the centroid of the reference triangle (Figure 5). 
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Figure 5: Control points on a cubic Bézier triangle 

 

Bernstein functions for the cubic triangle and the control points can be seen on Figure 6. 

 

 

 
Figure 6: Bernstein functions for the cubic triangle (Farin, 2002) 

 

Defining the shape functions 𝑀𝑖𝑗𝑘𝑛
 associated to each control point Pijk then the mapping (12) 

can be written as 𝒙(1, 2, 3) = {𝑥(1, 2, 3)𝑦(1, 2, 3)} = ∑ 𝑀𝑖𝑗𝑘𝑛 (1, 2, 3) 𝐏𝑖𝑗𝑘𝑖+𝑗+𝑘=𝑛  
(13) 

  

Where 𝑀𝑖𝑗𝑘𝑛 (1, 2, 3) = 𝐵𝑖𝑗𝑘𝑛 (1, 2, 3)𝑤𝑖𝑗𝑘∑ 𝐵𝑖𝑗𝑘𝑛 (1, 2, 3)𝑤𝑖𝑗𝑘𝑖+𝑗+𝑘=𝑛  
(14) 

Note that with an appropriate choice of weights and location of control points it is possible 

to represent any quadratic or conic curve (like a circle sector) on the boundary (Piegl and Tiller, 

1997).     

Then, rational Bézier triangles to mesh a planar region whose boundaries are NURBS curves 

can be used. A planar domain whose boundaries are NURBS curves can be seen in Figure 7.a, 

the dots on the boundary curves are the knots of the NURBS (Piegl and Tiller, 1997). A NURBS 

segment can be reparametrized between knots by an equivalent Bézier curve. A discretization 

with Bézier triangles (Farin, 2002),(Jouglard et al., 2012) is presented in Figure 7.b. 
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Figure 7: a) NURBS boundary with knots b) meshing with Bézier triangles. 

 

If instead of a planar domain we have a NURBS surface, the Bezier triangles from the 

NURBS representation can be obtained by a process known as Bezier extraction (Hennig et al., 

2016), (de Borst and Chen, 2018), (Goldman and Filip, 1987). The important point is that all 

the information regarding the geometry is contained in each Bézier triangle and can be used for 

adaptive refinement without any query to the geometric database. 

3 A RATIONAL BÉZIER FINITE ELEMENT 

The main idea of this work is to separate the interpolation for variables and geometry, then 

a conventional finite element interpolation can be used for variables and a Bézier interpolation 

for the geometry. A triangular finite element for stress analysis with a cubic Bézier geometry 

and a linear interpolation for displacements is developed to exemplify the procedure.  

Assuming that the components of displacement u,v in the directions x,y are approximated by 

linear interpolation functions as   

u(ξ1, ξ2, ξ3) = ∑ ξi ui

𝟑
𝒊=𝟏 = 𝐍𝑇𝐮

v(ξ1, ξ2, ξ3) = ∑ ξi vi

𝟑
𝒊=𝟏 = 𝐍𝑇𝐯  

(15) 

Where ui,vi are the displacement nodal values of the linear interpolation 𝐮 = {u1 u2 u3}𝑇𝐯 = {v1 v2 v3}𝑇  
(16) 

And N is the vector of linear shape functions 𝐍 = {ξ1 ξ2 ξ3}𝑇 (17) 

The principle of the virtual displacements for a deformable finite element can be stated as  

0dT =−=  ext
A

WAhW     (18) 

Where h is the thickness, Wext is the virtual work of external loads,  is the stress field 

 T

xyyyxx =  (19) 

And  is the strain field 

 T

xyyyxx =  (20) 
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Where the strain components are 
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Replacing the finite element approximations, we have 

dB=  (22) 

Where d is the vector of nodal displacements of the mesh 𝐝 = {u1 v1 u2 v2 u3 v3}𝑇 (23) 

And the gradient matrix B is 𝐁 = [B1 B2 B3] (24) 

The nodal matrices Bi for linear shape functions are 

Bi =
[  
   
 𝜕𝑁𝑖𝜕𝑥 0

0 𝜕𝑁𝑖𝜕𝑦𝜕𝑁𝑖𝜕𝑦 𝜕𝑁𝑖𝜕𝑥 ]  
   
 
=

[  
   
 ∂ξi
∂x

0
0 ∂ξi

∂y
∂ξi
∂y

∂ξi
∂x ]  

   
 
 

(25) 

The stress vector σ is related to the strain vector ε by the constitutive matrix C as 

BdCC ==   (26) 

For any variation δd of the nodal displacements, the variations of the strain field and the 

external virtual work are  

                                          dB =  ,      extextW fdT =  (27) 

Where fext is the vector of external loads. Then the virtual work is 

0dTT =




 −=  ext

A
AhW fBd   

(28) 

Since this equation must be valid for any variation δd then we must have 

ext
A

int Ah fdK Bf ===  dT  (29) 

Where fint is the vector of internal forces and K is the stiffness matrix that can be written as  

= A
AhdT  BCBK  (30) 

This integral must be computed over the curved triangle, but it is convenient to do a 

coordinate transformation to integrate in area coordinates. 

3.1 Transformation of coordinates 

The differential area element dA is given by  

dA = J 𝑑ξ1𝑑ξ2𝑑ξ3 (31) 

Where for a general Bézier triangle of order n with (n+1)(n+2)/2 control points Pijk with 

coordinates xijk, yijk the jacobian J of the transformation is defined as (Felippa, 2015) 
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J = 12𝑑𝑒𝑡
[  
   
 1 1 1∑ 𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξ1

 𝑥𝑖𝑗𝑘𝑖+𝑗+𝑘=3 ∑ 𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξ2
 𝑥𝑖𝑗𝑘𝑖+𝑗+𝑘=3 ∑ 𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξ3

 𝑥𝑖𝑗𝑘𝑖+𝑗+𝑘=3∑ 𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξ1
 𝑦𝑖𝑗𝑘𝑖+𝑗+𝑘=3 ∑ 𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξ2

 𝑦𝑖𝑗𝑘𝑖+𝑗+𝑘=3 ∑ 𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξ3
 𝑦𝑖𝑗𝑘𝑖+𝑗+𝑘=3 ]  

   
 
 

(32) 

The derivatives of the shape functions 𝑀𝑖𝑗𝑘3  are 𝜕𝑀𝑖𝑗𝑘𝑛 (1, 2, 3)𝜕𝑝 = (𝜕𝐵𝑖𝑗𝑘𝑛 𝜕𝑝⁄  𝑊𝑛 − 𝐵𝑖𝑗𝑘𝑛  𝜕𝑊𝑛 𝜕𝑝⁄ ) 𝑤𝑖𝑗𝑘(𝑊𝑛)2  

(33) 

Where 𝑊𝑛(1, 2, 3) = ∑ 𝐵𝑖𝑗𝑘𝑛 (1, 2, 3) 𝑤𝑖𝑗𝑘𝑖+𝑗+𝑘=𝑛  
(34) 

And the derivative of the Bernstein functions with respect to ξ1 is 𝜕𝐵𝑖𝑗𝑘𝑛𝜕1 = ( 𝑛𝑖, 𝑗, 𝑘) 𝑖 ξ1𝑖−1ξ2𝑗  ξ3𝑘 
(35) 

Analogously with the derivatives with respect to ξ2, ξ3. 

For the gradient matrix (45) the derivatives 𝜕𝑝 𝜕𝑥⁄  and 𝜕𝑝 𝜕𝑦⁄  can be calculated as 

(Felippa, 2015)  𝜕𝑝𝜕𝑥 = 12J
∑ (𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξq

− 𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξr
)  𝑦𝑖𝑗𝑘𝑖+𝑗+𝑘=3𝜕𝑝𝜕𝑦 = 12J

∑ (𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξr − 𝜕𝑀𝑖𝑗𝑘𝑛𝜕ξq
)  𝑥𝑖𝑗𝑘𝑖+𝑗+𝑘=3

 

(36) 

Where cyclic permutation of indices p,q,r must be applied. 

3.2 Integration of the stiffness matrix in area coordinates 

After replacing the gradient matrix, the integrand of the stiffness matrix becomes a function 

of area coordinates 1, 2, 3 then a coordinate transformation must be applied to obtain the 

stiffness matrix as  

K = ∫ BTCB h J dξ1dξ2dξ3𝐴  (37) 

Note that the elements of the matrix B and the jacobian J are rational functions of the area 

coordinates so direct analytical integration is complicated. The usual procedure is to apply 

numerical integration, but a simplified integration procedure will be employed. 
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4 A SIMPLIFIED INTEGRATION OF THE STIFFNESS MATRIX 

The idea is to replace the gradient matrix B by an approximated matrix B̅, this procedure is 

known as the B-bar approach (Simo and Hughes, 1986). Matrix B is approximated by it Taylor 

series about the element centroid (ξ1 = ξ2 = ξ3 = 1/3) (Liu et al., 1985) 

B = 𝐁|𝑐+ ∂𝐁𝜕ξ1|𝑐 (ξ1 − 13)+ ∂𝐁𝜕ξ2|𝑐 (ξ2 − 13)+ ∂𝐁𝜕ξ3|𝑐 (ξ3 − 13)+⋯ 
(38) 

To ensure convergence, terms up to the same order of the undistorted element must be 

retained (Liu et al., 1994). Since a linear displacement field has been adopted, a constant 

approximated gradient matrix must be employed. 𝐁̅ = 𝐁|𝑐= 𝐁(13, 13, 13) (39) 

A constant jacobian J𝑐 = J(13, 13, 13) is also assumed. Then, the stiffness matrix is 

K ≈ ∫ B̅TCB̅ h J𝑐 dξ1dξ2dξ3𝐴 = B̅TCB̅ hA  (40) 

Where A is the area of the reference triangle (Cook et al., 2001) A = 12 [(𝑥030 − 𝑥300)(𝑦003 − 𝑦300) − (𝑥003 − 𝑥300)(𝑦030 − 𝑦300)]  (41) 

The procedure can be applied with polynomials of high order for the displacement field, but, 

as a rule, the Taylor expansion of matrix B must be always truncated to the same order of an 

undistorted element to guarantee convergence to the exact solution when the size of element 

tends to zero. 

The patch test is passed for undistorted triangles of straight sides, so convergence is achieved 

in the limit when the refined elements become undistorted. Additionally, the procedure gives 

no spurious modes with zero energy since it converges to the classical linear finite element 

triangle which is stable.  

5 NUMERICAL EXPERIMENTS 

A square plate with a central hole under uniform tensile traction q on the right side is 

analyzed. The parameters for this problem are: length l = 4, radius r = 1, q = 1 and the material 

properties are E = 1000, ν = 0.3 and unit thickness.  All parameters are in compatible units. Due 

to symmetry, only a quarter of the plate is analyzed, and plane stress condition is assumed. An 

initial mesh of five elements is successively refined (Figure 8). 

 
Figure 8: Some of the meshes employed obtained by uniform refinement.  
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The results of the analysis are shown in Table 1. The value of the horizontal displacement u 

corresponds to point A and the maximum horizontal stress σx corresponds to point B (see Figure 

8).   

 
  linear triangle Beziér triangle 

nodes elements u at A σx max u at A σx max 

6 5 0.001817 1.207603 0.002212 1.292250 

16 20 0.002619 1.703254 0.002810 1.829486 

51 80 0.003217 2.347071 0.003282 2.404125 

181 320 0.003501 2.898322 0.003518 2.915928 

681 1280 0.003592 3.246309 0.003596 3.252498 

2641 5120 0.003615 3.426818 0.003616 3.430446 

10401 20480 0.003621 3.511488 0.003621 3.512952 

Table 1: Plate with a hole under uniform traction 

The results for the maximum stress σx converge to the exact value 3.6 (Timoshenko and 

Goodier, 1951) for both elements. As expected similar results are obtained since in this problem 

the influence of the geometry disappears for the finer meshes. The increase in total CPU time 

for the Beziér triangle (not shown in Table 1) is minimal since the stiffness matrices are of equal 

sizes for both elements.   

6 CONCLUSIONS 

A finite element formulation for stress analysis on planar domains with curved boundaries 

described by NURBS curves has been presented. Different interpolations are adopted for 

geometry and displacements. Rational Bézier polynomials on curved triangles are used for 

geometry description which can interpolate NURBS boundaries. Usual polynomials are used 

for the displacement field, in fact any type of proved convergent formulation on an undistorted 

triangular element can be employed, including mixed and hybrid formulations. The present 

procedure does not require numerical integration since the integrands are always polynomials 

that can be integrated exactly. The complexity of the formulation increases with the order of 

the Bézier interpolation and an intensive numerical comparison is necessary to decides if a 

simple formulation with straight sided triangles, but retaining the Bézier information for 

adaptive refinement, can be competitive. 
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