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Abstract. An important requirement in design is to be able to compare experimental results from 
prototype structures with predicted results from a corresponding finite element model. In this context, 
model updating may be defined as the fit of an existing analytical model in the light of measured 
vibration test. After fitting, the updated model is expected to represent the dynamic behavior of the 
structure more accurately. An important class of model updating methods is the penalty functions 
based approaches (the so-called indirect methods), in which the objective is to maximize the 
correlation between the measured and analytical modal model. Because of its nature, the solution 
requires the problem to be linearized and optimized iteratively. As the advantages, these methods 
allow a wide choice of parameters to be updated that keeps the physical meaning and both the 
measured data and the initial analytical parameter estimates may be weighted, which gives the 
versatility to the methodology. In this way, this paper presents an indirect based updating study of a 
reduced scale three-story plane frame structure constructed and tested at the Laboratory of Structural 
Dynamics and Reliability (LDEC) of the Federal University of Rio Grande do Sul (UFRGS), Brazil. 
The updated results, presented in this paper, showed great accuracy. The stiffness and mass matrices 
were able to keep the original pattern of the finite element model of the structure. 
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1 INTRODUCTION 

In modern dynamic design and analysis of complex structures, it is extremely necessary to 
deal with reliable mathematical models. This becomes especially true for structures whose 
operation, integrity, safety and control critically depend on the structure’s dynamic 
characteristics. In this context, one way to verify the math model accuracy is by comparing 
the experimental results provided through the conduction of dynamic tests with those 
expected from a previous analytical analysis. 

Generally smooth differences are found, and it is believed that the experimental modal data 
offer more confidence than the finite element model. Therefore, in order to determine the 
spatial properties of the structure which can reproduce the whole characteristics of the test 
structures (measured or unmeasured), reconciliation processes including model correlation 
and model updating, must be performed. This process of modifying the mathematical model 
in order to achieve a good agreement with the measured data is called model updating. 

The model updating in structural dynamics may be divided into two main categories, that 
is: the direct and the iterative methods. In the first group, the model is expected to match 
some reference data, usually consisting of an incomplete set of eigenvalues and eigenvectors 
derived from measurements. These direct methods are also known as representation models 
because they are able to replicate the measured data, but the main drawbacks are: high quality 
measurements are required and accurate modal analysis, the mode shapes must be expanded 
to the finite element mode size and the usual loss of connectivity of the structure with updated 
matrices fully populated. 

The second category or the iterative updating methods has as main goal to improve the 
correlation between the experimental and analytical models via a penalty function. Because of 
the general nature of penalty functions, the problem has to be linearized and thus optimized 
iteratively. Since the penalty function is usually non-linear, the iterations may not converge. 
In any case, iterative methods have two main advantages. First, a wide range of parameters 
can be updated simultaneously and second, both measured and analytical data can be 
weighted, a feature which can accommodate engineering intuition. 

In this context, the main goal of the present paper is to carry out a vibration based iterative 
model updating approach through the penalty function based procedures using experimental 
data. The studied structure is a reduced scale three-story plane frame constructed and tested at 
the Laboratory of Structural Dynamics and Reliability (LDEC) of the Federal University of 
Rio Grande do Sul (UFRGS), Brazil, for different kinds of dynamic studies. The results of the 
finite element model are compared with those obtained experimentally and in the sequence an 
updating procedure is conducted. It is shown that with a little iterations the parameters and 
frequencies quickly converge and the model is able to keep the physical meaning. 

2 ITERATIVE UPDATING TECHNIQUES BASED ON PENALTY FUNCTIONS 

Penalty function methods express the modal data as a function of the unknown parameters 
using a truncated Taylor series expansion. The series is truncated to yield the linear 
approximation: 

 θSz δδ =  (1) 

where jθθθ −=δ , jθ  is the current value of the parameter vector, θ  is the estimated vector, 

je zzz −=δ  , ez  is the measured output, jz  is the current estimate of the output, S  is the 
sensitivity matrix containing the first derivative of the eigenvalues and mode shapes with 
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respect to the parameters, evaluated at the current parameter estimate jθ . 
Calculate those first derivatives of the eigenvalues and mode shapes with respect to the 

parameters is computationally intensive and efficient methods for their computation are 
required. Fox and Kapoor (1968), calculated the derivative of the ith  eigenvalue, iλ , with 
respect to the jth  parameter, jθ , by taking the derivative of the eigenvector equation, to 
give: 
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Pre-multiplying by the transpose of the eigenvector, iφ , and using mass orthogonality and 
the original definition of the eigensystem produces: 
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These authors have also suggested two methods for calculating the first derivative of the 
eigenvectors. Lim (1987) suggested an approximate method for calculating the first derivative 
of the eigenvectors which is only valid for the low frequency modes. Other methods for 
calculating mode shapes derivatives have been suggested by Chu and Rudisill (1975), Ojalvo 
(1987) and Tan and Andrew (1989). 

The penalty functions methods differ in the choice of design parameters and the definition 
of optimization constraints. Design parameters such as individual elements of the mass and 
stiffness matrices, sub-matrices, geometric or material properties can be defined. Constraints 
are usually imposed on natural frequencies and mode shapes. 

Usually, the number of design parameters and measurements is not equal and hence the 
matrix S  in (1) is not square. The case in which there are more design parameters than 
measurements was considered by Chen and Garba (1980). The parameter vector closest to the 
original analytical parameters was sought which reproduce the required measurement change. 
They found the solution to the problem by seeking a set of design parameters by minimizing 
the norm as an additional constraint equation: 

 ∑Δ=
j

jQ 2θ  (4) 

Similarly, the SVD technique was used by Hart and Yao (1977) and Ojalvo et al. (1989) 
for a case with less design parameters than measurements. The solution of equation 1 can be 
calculated by minimizing the penalty function: 

 ( ) ( ) ( )θSzθSzθ δδδδδ −−= TJ  (5) 

where θSz δδε −=  is the error in the predicted measurements based on the updated 
parameters. Differentiating J  with respect to θδ  and setting the result equal to zero, it can be 
shown that the solution is given by: 

 [ ] zSSSθ δδ TT 1−
=  (6) 

and an updated estimate of the unknown design parameter vector is obtained by: 

 jjj θθθ δ+=+1  (7) 
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In practical situations, all measured data do not have the same accuracy. Usually, mode 
shape data are less accurate than natural frequency data. Also the higher natural frequencies 
are not measured as accurately as the lower ones. The relative accuracy of measured data can 
be incorporated into the updating process by including a diagonal positive definite weighting 
matrix εεW , whose elements are given by the reciprocals of the variance of the corresponding 
measurements. Equation 5 becomes: 

 ( ) ( ) ( )θSzWθSzθ δδδδδ εε −−= TJ  (8) 

The minimization of equation 8 yields: 

 [ ] zWSSWSθ δδ εεεε
TT 1−

=  (9) 

or in full, 

 [ ] ( )jm
TT

jj zzWSSWSθθ −+=
−

+ εεεε
1

1  (10) 

In either solutions equation 6 or equation 10, the number of measurements was assumed to 
be larger than the number of parameters. Under this assumption the matrix is square being full 
rank, so the equations may be solved. However, in almost all practical cases this situation will 
not occur, i.e., the number of unknown parameters will exceed the number of measured data 
points. Due this problem SST  will be rank deficient because the number of equations in 
equation 1 is less than the number of unknowns. An alternative approach (Natke, 1988) is to 
add an extra term to minimize the change of the design parameters. The extended weighted 
penalty function can be expressed as: 

 ( ) θWθWθ δδεεδ θθεε
TTJ +=  (11) 

where again θSz δδε −=  is the error in the predicted measurements based on the updated 
parameters. Next is added a positive definite weighting matrix θθW  chosen to be a diagonal 
matrix with the reciprocals of the estimated variances of the corresponding parameters as the 
elements. These variances are not an easy task and some engineering insight is required. The 
solution of jθδ  is given by: 

 [ ] zWSWSWSθ δδ εεθθεε
TT 1−

+=  (12) 

or in full, 

 [ ] ( )jm
TT

jj zzWSWSWSθθ −++=
−

+ εεθθεε
1

1  (13) 

A similar approach to obtaining a well conditioned set of equations is to weight the initial 
estimates of the unknown parameters. This more accurately reflects the engineer’s desire to 
weight the change in parameter from the initial estimated values, rather than the parameter 
change at every iteration. Thus, the new penalty function is given by: 

 ( ) ( ) ( )00 θθWθθWθ −−+= θθεε εεδ TTJ  (14) 

where the solution is: 

 [ ] ( )( )0
1 θθWzWSWSWSθ −−+=

−

j
TT

θθεεθθεε δδ  (15) 

or in full, 
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 [ ] ( ) ( )( )0
1

1 θθWzzWSWSWSθθ −−−++=
−

+ jjm
TT

jj θθεεθθεε  (16) 

3 APPLICATION: SHEAR BUILDING PLANE FRAME 

The iterative updating approach is verified using a typical reduced scale three-story plane 
frame shown in Figure 1(a). This model was constructed and tested at the Laboratory of 
Structural Dynamics and Reliability (LDEC) of the Federal University of Rio Grande do Sul 
(UFRGS), Brazil, for different kinds of dynamic studies. 

The model has three stories, which can be considered as rigid plates, and two elastic 
columns. This assumption is valid because the stiffness of the girders is much higher than the 
stiffness of the columns, which allows neglecting the flexibility of the former. 

Each one of the two steel columns has cross section dimensions of 
mmtmmb 62.019 =×=  and Young’s modulus equal to 11102× N/m2. The two highest 

stories have a floor-to-ceiling height, h , of 93mm and the lowest story has a 100mm floor-to-
ceiling height. The structural columns are tightly clamped at each floor. The mass of each 
degree of freedom takes account besides the floors’ masses, the columns’ masses, the 
accelerometers masses and accelerometers’ supports masses. Geometrical and physical details 
may be seen in Figure 1(b). 

  

(a) (b) 
Figure 1: Shear Building Model 

After known the model geometrical and physical characteristics, it is conducted a 
theoretical analysis through finite element method to obtain the initial stiffness and mass 
matrices. During the dynamic tests, piezoelectric accelerometers (Bruel & Kjaer), signal 
amplifiers (Bruel & Kjaer), an acquisition board (ComputerBoards) and the software HP VEE 
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5.0 (Hewlett Packard) are used to measure the response of the structure. The experimental 
frequencies are selected as the peaks of the response spectrum when the structure is subjected 
to an impulsive loading. Table 1 presents a comparing analysis of the finite element model 
and the experimental results. 

 

Modes 
Theoretical 

Analysis 
(Hz) 

Experimental 
Results (Hz) 

1st 5.47 5.2 
2nd 16.04 16.3 
3rd 23.27 23.0 

Table 1: Compared frequency results. 

As may bee seen, the obtained results showed very close but not identical. In this way, a 
model updating study must be carried out. In this situation, six parameters will be considered 
in the process (the stiffness and the mass of each degree of freedom) and just three measured 
data (the three frequencies) are available. Thus the number of unknown parameters is higher 
than the number of measurements, which lead the solution of updating problem via equation 
16. 

The sensibility matrix is a non-square 63xS  matrix and it was determined through Fox and 
Kapoor (1968) procedure (given in equation 2). The weighting matrices εεW  and θθW  were 
formed by the reciprocals of the variance of the corresponding measurements and by the 
reciprocals of the variance of the corresponding parameters, as was pointed out in section 2. 

Observing Table 2 it is clear that the initial frequencies have moved closer to the measured 
values, reproducing them almost exactly. It is very interesting to note that the convergence is 
very fast, just after four steps, and the results are very accurate. 

 

Modes 1st 2nd 3rd 

Theoretical 
Analysis 

(Hz) 
5.47 16.04 23.27 

2 5.1999 16.3234 23.0452 
4 5.2015 16.2955 23.0011 
8 5.2015 16.2955 23.0011 
12 5.2015 16.2955 23.0011 
20 5.2015 16.2955 23.0011 Ite

ra
tio

ns
 

100 5.2015 16.2955 23.0011 
Experimental 

Results 
(Hz) 

5.2 16.3 23.0 

Table 2: Convergence of the natural frequencies. 

Figures 2 to 4 illustrate the graphical iteration procedure convergence behavior to the three 
analyzed frequencies. 
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Figure 2: Convergence of the 1st natural frequency. 
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Figure 3: Convergence of the 2nd natural frequency. 
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Figure 4: Convergence of the 3rd natural frequency. 
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The updated parameters may be seen in Table 3 and in Figure 5, and as for the natural 
frequencies, they converge very fast. It can be believed that these updated values have 
physical meaning since the experimental natural frequencies are almost exactly reproduced 
and the mass and stiffness matrices preserve the original pattern. 

In the seventh iteration the updated parameters achieve, for this numerical precision, the 
final values showed in Table 3 keeping constant until the end of the procedure. Graphically 
this behavior may be seen in Figure 5. 

 

Modes θ1 θ2 θ3 θ4 θ5 θ6 

Initial 
Values 2251.8509 2251.8509 1811.292 0.3253 0.3514 0.3129 

2 2282.2665 2228.6539 1789.9862 0.3444753 0.4338752 0.2587534 
4 2278.163 2233.342 1787.5456 0.3436723 0.4332875 0.261158 
8 2278.2043 2233.3502 1787.4844 0.3436736 0.4332632 0.2611685 
12 2278.2043 2233.3502 1787.4844 0.3436736 0.4332632 0.2611685 
20 2278.2043 2233.3502 1787.4844 0.3436736 0.4332632 0.2611685 

Ite
ra

tio
ns

 

100 2278.2043 2233.3502 1787.4844 0.3436736 0.4332632 0.2611685 

Units N/m N/m N/m Kg Kg Kg 

Table 3: Convergence of the updated parameters. 
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Figure 5: Convergence of the updated parameters. 

4 CONCLUSIONS 

In this paper was carried out an iterative model updating study, which uses modal data in 
order to improve the correlation between the experimental and analytical models. Iterative 
methods have one main advantage: they maintain the original matrices pattern, so the updated 
model is able to keep the physical meaning. 

It is shown that one important step is the sensibility matrix computation. This may be done 
evaluating the first derivative of the eigenvalues with respect to the updating parameters via, 
for example, the Fox and Kapoor (1968) procedure. Another powerful characteristic is the 
ability to weigh individually both measured and analytical data, which allow the properly 
consideration of the uncertainty contained in this values. 

An example with experimental data of a typical reduced scale three-story plane frame was 
carried out showing that the methodology was able to correct update both mass and stiffness 
matrices and reproduce correctly the tested data. 
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