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Abstract. This paper presents a numerical study on thermal spallation of rock. In the present context, 
thermal spallation refers to fragmentation of rock surface material when subjected to rapid external 
heating. For modelling the rock fracture in thermal spallation, an embedded discontinuity finite 
element approach is chosen. In the present implementation, a displacement discontinuity (crack) is 
embedded perpendicular to the first principal direction in a CST element upon violation of the 
Rankine criterion. The heating due to mechanical dissipation is neglected as insignificant in 
comparison to the external heat flux. Thereby, the underlying thermo-mechanical problem becomes 
uncoupled the only input from the thermal part to the mechanical part being thermal strains. This 
problem is solved with explicit time marching using the mass scaling to speed up the solution. A 
thermal spallation problem of a rock sample under axisymmetry is simulated as a numerical example. 
Different heat flux intensities are tested to demonstrate the capability of the method.  
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1 INTRODUCTION 

Rapid heating of granitic rocks’ surfaces causes them to disintegrate into disc-shaped chips 
called spalls (Kant and von Rohr, 2016). The principle of this phenomenon, called thermal 
spallation, is illustrated in Figure 1. Accordingly, the compressive stress state induced by an 
external heat shock generates new cracks in the rock due to mismatching elastic and thermal 
properties of the constituent minerals as well as further propagation of the existing cracks, e.g. 
by the wing crack mechanism. Further propagation of the cracks parallel to the rock surface 
leads to spalling, or ejection by buckling, of the fragments when cracks reach a critical length. 

 

Figure 1: Principle of thermal spallation. 

Thermal spallation, or weakening rock by heat shock in general, can be used in mining and 
excavation to assist (or even replace) traditional mechanical breakage. Therefore, it has been 
the topic of several numerical studies (Pressacco and Saksala, 2018; Walsh and Lomov, 2013; 
Whittles et al., 2003). In the present paper, a preliminary numerical study on thermal 
spallation of rock under axisymmetric conditions is presented.  

For this end, a finite element based numerical method is described. The rock fracture 
model is based on the embedded discontinuity finite elements. In comparison to the external 
heat shock, the mechanical heating effects are insignificant. Therefore, the governing thermo-
mechanical problem becomes uncoupled. Moreover, the material properties are assumed to be 
temperature independent in this preliminary study. A numerical example of heterogeneous 
granitic rock under a high intensity heat flux is solved under axisymmetric conditions in order 
to demonstrate the method.      

2 THEORY OF THE NUMERICAL MODEL 

A brief description of the modelling approach is given here. First, the finite element 
discretized equations of the thermal and mechanical parts of the problem are given. Then, the 
rock fracture model based on the embedded discontinuity finite elements is sketched. Finally, 
the time integration scheme of the uncoupled thermo-mechanical problem is outlined. 

2.1 Finite element discretized heat equation and equation of motion 

As mentioned above, the external heat flux in the thermal spallation problem is 
significantly larger than the heat generation due to mechanical response. Therefore, the 
coupling term involving the mechanical heating effects in the heat equation can be ignored. 
This being the case, the finite element discretized heat (balance) equation becomes   

 θ θ  Cθ K θ f 0  (1) 

where θ θ,  ,  and C K f  are the capacitance matrix, the conductivity matrix, and the external 
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force, respectively, defined as  

 θ θ θ θ θ θ θ, ,T T T

n
V V A

c dV k dV q dA     C N N K B B f N  (2) 

where  is the density, c is the specific heat capacity,  is the temperature, N is the 
temperature interpolation matrix, k is the conductivity, qn is the normal component of the heat 
flux, and B is the gradient of N. Generally, the specific heat capacity and conductivity 
depend on temperature but this dependency is neglected in this study.  

The mechanical part of the thermal spallation problem is governed by the equation of 
motion, which is written as follows in the discretized form:  

 int ext int 1 u, e

e

N T

k
V

dV   Mu f f f A B σ  (3) 

where M is the mass matrix, u is the displacement vector,  is the stress matrix, fext, fint are the 
external and internal force vectors, respectively, Bu is the kinematic operator matrix, and A is 
the standard finite element assembly operator. 

2.2 Embedded discontinuity finite element model for rock 

The constitutive model for rock employed here is based on the embedded discontinuity 
concept, which is an element based enrichment technique, in contrast to the extended finite 
element method, which is a nodal based enrichment technique. Accordingly, upon reaching an 
elastic limit in a finite element, e.g. tensile strength, a discontinuity line (surface in 3D) is 
embedded inside the element. In the present version, the Rankine criterion is used to indicate 
cracking and the discontinuity is oriented orthogonal to the first principal direction. A brief 
summary of the model originally presented by Saksala et al. (2015) is given here. 

When a displacement discontinuity (crack) is embedded in a CST (constant strain triangle) 
element, the displacement and strain fields can be decomposed as  

  
1

1,2
1

( ) ,

arg max

d

e e

i i d i i d

k

i i

kk
i i

N H N

N

N

 










       

   
  
   

u u α ε u α

n  (4) 

where d is the displacement jump vector,  and e

i i
N u  are the standard interpolation function 

and displacement vector at node i (summation applies on repeated i), and
d

H is the Heaviside 

function at discontinuity d with normal n. Finally,   is a function that restricts the effect of 

the displacement jump within the corresponding finite element so that the essential boundary 
conditions remain unaffected. It should also be mentioned that the gradient of the 
displacement jump is assumed zero here, i.e. constant mode I and II discontinuity is adopted. 
Equation (4) specifies also how function  is selected from among the nodal interpolants. 

A bi-surface, plasticity inspired model was developed in Saksala et al. (2015) for solving 
the displacement jump vector and the traction updates, as well as to control the softening 
behavior at the discontinuity. The components of this model are 
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 (5) 

 
where t and s  are the tension (mode I) and shear (mode II) loading functions, 

respectively, ,  are the internal variable and its rate, m is the crack tangent vector, t and s  

are elastic limits in tension and shear, respectively, I II,α α are the mode I and II crack opening 

vectors, E is the elasticity tensor, t s,   are the mode I and II opening increments, respectively, 

h is the softening modulus, and s is the constant viscosity modulus. The softening slope 
parameter g is defined by the mode I fracture energy GIc by g = t/GIc.  

The problem defined by model (5), i.e. the traction and internal variables update, can be 
solved with the standard algorithms of multisurface plasticity. After this, a new stress is 
calculated by 

  tot θ θ: ( ),
d

       σ E ε α ε ε I   (6) 

where tot θ and ε ε are the total and thermal strain tensor, respectively,  is the thermal 

expansion coefficient,  is the temperature difference, and I is the identity tensor.  

2.3 Explicit scheme for solving the uncoupled thermo-mechanical problem 

As already mentioned, the uncoupled thermo-mechanical problem governing the thermal 
spallation is solved with explicit time marching. Euler method is employed here leading to 
following equation for the new temperature n+1: 

 1 θ, θ,( )
n n n n n n

t t   C θ C K θ f  (7) 

The mechanical update is performed as follows: 

 
int, ext,

1 1 1,

t t t t

n n t n n nt t  

  

    

Mu f f u

u u u u u u

 

   
 (8) 

Now, the solution procedure for the uncoupled thermo-mechanical problem is as follows. 
First, the temperature is solved by equation (7). Then, the stress and internal variable updates 
are performed through equations (5) and (6). Finally, the mechanical response is advanced by 
solving (8).  

3 NUMERICAL EXAMPLE 

A problem thermal spallation of rock is simulated here in order to test the numerical 
method presented above. Numerical rock is assumed to be heterogeneous with three different 
minerals (Quartz, Feldspar, and Biotite). The heterogeneity is described as follows. First, the 
element numbers are assigned integers from 1 to 3 corresponding to the percentage of the 
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minerals in rock. For example, if the real rock has 33 % of Quartz, then 33 % percent of the 
elements in the mesh are designated as Quartz. Then, the sets representing different minerals 
are randomly mapped into the mesh resulting in a mesoscopic description of heterogeneity. 
The material and model properties for minerals are in Table 1.    

 
Parameter Quartz Feldspar Biotite 

% 33 50 17 

 [kg/m3] 2616 2616 2616 

E [GPa] 80 60 20 

 0.17 0.29 0.20 

t [MPa] 10 8 7 

s [MPa] 50 50 50 

GIc [J/m2] 40 40 28 

 [1/K] 1.60E-5 0.75E-5 1.21E-5 

k [W/mK] 4.94 2.34 3.14 
c [J/kgK] 731 730 770 

Table 1: Material and model parameter for typical minerals found in granitic rocks 

Due to the vastly differing time scales, and hence the critical time steps of the explicit 
schemes (7) and (8), of the thermal and mechanical problems, mass scaling is used to speed 
up the solution in time. The present problem turned out to be especially suitable for extreme 
mass scaling: numerical tests revealed that the response remained virtually identical even 
when the density for the mechanical part of the problem was 10000-fold resulting in a critical 
time step of 100 times larger than that with the original density. 

The boundary conditions and the numerical rock are shown in Figure 2. 

 

Figure 2: The CST mesh (7961 elements, the unit of tje dimensions is m), boudary conditions, and the numerical 
rock mineral structure. 

The average element size in the area affected by the heat shock is about 0.1 mm leading to 
a critical time step of order 1E-9 s. Therefore, the mass-scaled time step is of order 1E-7 s 
requiring quite short practical analysis times. Here, a heating time of 10 ms is set, and the 
intensity of the thermal shock needs thus be very high in order to cause spalling. Figure 3 
shows simulation results with constant heat flux qn = 5E6 J/m2.  
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Figure 3: Simulation results for the termal spallation of rock under constant heat flux qn = 5E6 J/m2: the crack 
orientations (a), the magnitude of crack opening vectors (b), the radial stress distribution (c) at the end of 

simulation, and the temperature evolution at all nodes of the rock sample (d). 

According to the results in Figure 3a, the induced cracks are oriented parallel to the surface 
right beneath the heat shock where the radial stress is compressive (Figure 3c). Deeper in the 
rock, where the radial stress is tensile, the crack orientation changes to more perpendicular to 
the surface. The nodal temperatures at the end of simulation are shown in Figure 3d. At the 
surface nodes directly exposed to the heat flux, the temperatures vary between 200 and 270 
degrees Celsius, which is not enough to cause spalling as the maximum opening of the cracks 
is less than 0.001 mm, see Figure 3b.  

Next, the same simulation is carried out with a stronger heat shock. The results are shown 
in Figure 4. 
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Figure 4: Simulation results for the termal spallation of rock under a constant heat flux qn = 12.5E6 J/m2: the 
magnitude of crack opening vectors (a), the crack orientations (b) at the end of simulation, and the temperature 

evolution at all nodes of the rock sample (c). 

With the stronger heat shock, the number of induced cracks is much higher and their 
magnitude of opening close to the rock surface is substantially larger than with the weaker 
heat shock. Indeed, the maximum value of d at cracks close to the symmetry axis exceeds 0.1 
mm in many elements, see Figure 4a. It should be noted that the deformations are not 
magnified. The corresponding temperatures at the surface nodes range from 450 to 650 
degrees Celsius (Figure 4c). According to the experimental study by Kant and von Rohr 
(2016), typical temperatures required for spallation to occur in granitic rocks, range from 550 
to 650 degrees Celsius. Therefore, spallation is predicted by the simulation results in Figure 4. 

4 CONCLUSIONS 

A relatively simple numerical method to model thermal spallation of rock based on 
embedded discontinuity finite elements was presented. The mechanical heating effects were 
ignored as insignificant compared to the external heat shock. Thereby, the finite element 
discretized uncoupled thermo-mechanical problem was solved with explicit time marching. 
The mechanical part of the problem was particularly amenable to mass scaling allowing the 
mass to be scaled even to 10000-fold without observable differences in the results. The 
simulation results were encouraging in the sense that the predicted temperatures, at which the 
spallation of granitic rock occurs, were in reasonable agreement with the experiments. 
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