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Abstract. This paper introduces a finite element model for the inverse design of pieces with large dis-
placements in the elastic range. The problem consists in determining the initial shape of the piece, such
that it attains the designed shape under the effect of service loads. The model is particularly focused on
the design of pieces with a markedly anisotropic behavior, like laminated turbine blades. The formulation
expresses equilibrium on the distorted configuration. However, it uses the standard constitutive equation
library, which is usually expressed for measures attached to the undistorted configuration. Modifications
in standard finite elements codes are then restricted to the routines for the computation of the finite ele-
ment internal forces and tangent matrix. Two application examples are given, the first one for validation
purposes, while the second application has industrial interest for the design of turbine blades.
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1 INTRODUCTION

A central aspect when we design a piece to have a certain shape after severe deformation,
is to know the undistorted shape of this piece. In this analysis, the final (desired) configuration
Is supposed to be that of the piece subjected to service loads once the steady state has been
attained, neglecting any transient effect.

The classical (direct) problem in nonlinear elasticity consists in determining the distorted
shape knowing the loads applied to the piece in a given reference configuration. The subject
of this study is the inverse problem that consists in determining the undistorted configuration
knowing the final configuration and service loads. Strictly speaking, it is an inverse “design”
problem Beck and Woodbuiy199§), in contrast to classical inverse “measurement” problems
(often called simply “inverse problems”), consisting in determining the material data knowing
both the distorted and undistorted configurations, as well as the service loads.

Some pieces (like turbine blades) that are designed to be cyclically used, must recover the
original shape after each service cycle. This constraints the material of these pieces to lie
into the elastic range all along the deformation process. Moreover, sometimes they are made of
laminates, with a markedly orthotropic behavior. Therefore, with the restriction of being limited
to small strains but large deformations, we will use an anisotropic hyperelastic material law. We
remark that in the isotropic case, some simplifications could be introduced that allow extending
the formulation to finite hyperelasticity.

Previous numerical models for the inverse design analysis of hyperelastic bodies subjected
to large deformations have been proposeGioyindjee and Mihali¢1996 199¢ andYamada
(1997. Both models use the finite element method in order to discretize the inverse defor-
mation. They differ in the fact that Govindjee and Mihalic’s model is Eulerian, because the
equilibrium equation is formulated in terms of variables attached to the (known) distorted con-
figuration, while Yamada’s model is Arbitrary-Lagrangean-Eulerian (ALE), i.e., the problem
Is expressed on a reference configuration which is different from the undistorted and distorted
ones.

The additional complexity involved by the third configuration inherent to the ALE model,
makes the Eulerian model better suited for current applications. Indeed, we began by following
Govindjee and Mihalig1998) until some practical constraints in the modelling of anisotropic
media motivated the current development. Figbyindjee and Mihali€199&) write not only
the equilibrium equations but also the constitutive equations in terms of Eulerian variables,
which complicates the description of orthotropic materials whose preferred directions are usu-
ally defined in the unknown undistorted configuration. As it will be shown in Se&ijrthis
gives rise to an additional source of nonlinearity that has not been considered up-to-date.

An effort has been made in order to use the available material library from our nonlinear finite
elements code Mecan8&mtech2005), in which constitutive equations are written in terms of
Lagrangean variables. Then, the modifications made into the code in order to implement the
current model are restricted to the routines for computing the residual vector and tangent matrix
for the inverse finite element method, preserving the material library.

The other important contribution is the treatment of body forces, not included in the previous
works. In fact, in the problems addressed by the previous inverse design nfedeisdjee and
Mihalic, 1996 199§ Yamada'1997), the body forces were not relevant. However, this is not
the case when modelling turbine blades, where centrifugal body forces are significant. External
forces (including body and surface forces) usually depend on deformation, with the consequent
contribution to the finite element tangent matrix.
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Figure 1:Distorted configuratior8, domain of inverse analysis, and undistorted configurafigsought as solu-
tion.

Two examples of application of the model are given. First, we consider the simple case of
bending of a laminated beam, for which the determination of its distorted shape is an easy task
for any available code for large deformation analysis. Once the distorted shape is known, we
evaluate the ability of the present model to recover the initial shape. The second case is an
industrial application to the determination of the initial shape that a laminated turbine blade
should have in order to attain the desired designed shape under pressure and centrifugal loads.

2 KINEMATIC DESCRIPTION

Let By be the undistorted reference configuration of a continuum body/3athé objective
(final) configuration. The positiom € B of any particleP with position X € B, is determined
by the deformatior: = ¢(X ). The deformation gradient relative to the reference configuration
IS :

F = Grad ¢, 1)

where Grad denotes gradient with respeckiae 5.

In the problem we are interested in, we know the final configuration and we want to deter-
mine the inverse deformatioN = v (x) giving the positionX € B, of every particle whose
final position isx € B. The inverse deformation gradient is defined as

f=grady = F}, (2)
where grad denotes gradient with respectte B.

3 MATERIAL DESCRIPTION

The constitutive law for a general hyperelastic material can be written as follOgge;
1997)
ow
S=—=S(FE 3
wherew is the strain-energy density functiofi,is the second Piola-Kirchhoff stress tensor, and

FE is the Green-Lagrange strain tensor defined as
1
2
1 denoting the second-order identity tensor.

E=_(F'F-1), (4)

Copyright © 2006 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



1272 V.D. FACHINOTTI, A. CARDONA, P. JETTEUR

3.1 Accounting for anisotropy in inverse modelling

The constitutive equatioi®) is formulated in terms of and E, that are Lagrangean tensors,

i.e. tensors related to the reference configuration. Consequently, the material properties must
be attached to this configuration which is unknown. This hinders the definition of preferred
material directions, and hence the modelling of anisotropic materials.

Fortunately, in the case of laminated bodies like turbine blades, although we may have very
large rotations, strains remain small. Then, it is possible to estimate accurately the preferred
directions in the distorted configuration by writing the constitutive equai@rin( Eulerian
form by simple rotation of the material axes. Therefore, we rotate the Green-Lagrange strain
tensor and the second Piola-Kirchhoff stress tensor to the spatial axes as follows :

E*=RER"=- (FF"-1)=_-(V*-1), (5)
S* = RSR”. (6)

N —
N —

V is the symmetric positive-definite left-stretch tensor, & the proper orthogonal rotation
tensor, both arising from the polar decomposition of the deformation gradient :

F=VR. (7)

Now, the chain rule together with equatids) yields

_Ow  Ow 0Ey ow _ or Ow
5 = 35, = 0By, 08, _ ligg. O S=RGER ®
from which we deduce the desired constitutive law in Eulerian form :
ow
S* = = S*(E"). 9
g =SB ©)

In such a way, we are able to define the material properties with respect to a system of axes
linked to the known distorted configuration.

4 FINITE ELEMENT FORMULATION

The inverse design problem consists in finding the functiothat satisfies the equilibrium
equations, taken here in the weak form :

/tr (0" grad (n)] dv—/b-ndv—/ t-nds=0 (20)
B B OB

for every admissible variation, whereo is the Cauchy stress tensbéris the given body force
per unit distorted volume, is the traction prescribed on the portios; of the boundary) 5 of
the distorted domai® (hencet is a force per unit distorted area).
Using the finite element method, the position of particles in the undistorted configuration is
approximated inside a typical finite element with nodesl, 2, ..., N as follows

N
X~ Ni(x) X, (11)
I=1

whereN;(x) is the shape function associated to the nodend X ; is the unknown position of
this node in the undistorted configuration.
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Introducing this approximation, and taking variations with respect to the positions in the
undistorted configuration (that is, the standard Galerkin formulation), we get the discrete equa-
tion

R = Fint . Fext — 07 (12)
where '™ and F® are respectively the internal and external force vectors, given by
Fnt — / B7& dv, (13)
B
Fot— / NTbdv + NTtds, (14)
B 0B

B being the well-known gradient matrix, aadthe vector containing the independent compo-
nents of the symmetric Cauchy stress tenspgiven as follows"

_ T
o = [011 0922 033 012 023 031] .

The computation oé is detailed in the next section.

Concerning external forces in turbine blades modelling, they mainly consist of the centrifugal
and pressure forces. The former are represented by the first term of the r.h.s. of edufation (
with b defined as

b — pacentr’ (15)

beingp the density in the distorted configuration, aifd"" the centrifugal acceleration, defined
as

a®"(z) = w x [w x (x — 0)], (16)

wherew is the angular velocity vector aralthe position of an arbitrary point on the rotation
axis.

On the other hand, the second term of the r.h.s. of equati@)népresents the pressure force
by defining

t=—pn a7

wherep is the pressure and the outer normal to the portians; of the surface of the body in
the distorted configuration.

4.1 Computation of strains and stresses in finite elements

By using equationXl), the inverse deformation gradient is approximated in terms of deriva-
tives of the interpolation functions as :

0X  ON;
il Sl 'S (18)
ox ox
'From now on, in order to perform the matrix operations involved in the finite element formulation, every
symmetric stress tensor will be mapped into a vector in the same way Rsrther, the strain tensd@ (and any
other symmetric strain tensor) will be mapped into the vector

E = [Ey11 Eg F33 2E15 2E3 2F3]7.
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Once f is known, we can compute the (direct) deformation gradiént= !, and then the
Green-Lagrange straifv using equation4) as well as its rotated counterpdtt* given by
equation ).

Entering E* in the constitutive lawd), we determine the rotated second Piola-Kirchhoff
stressS*. Then, we are able to compute the Cauchy stress by means of the relationship

o=jFSF" =;v§'vT, (19)
or, given in Cartesian components :

o1 = JVimSinVin = 3 LmnS: (20)

klmn~mn>

wherej = det f is the Jacobian of the inverse deformati&n= «(x), and

1

kinm lkmn>

(21)

are the components of the fourth-order tenBby which verifies the stated relations of symme-
try.
From equationZ0), the following algorithmic matrix expression for the Cauchy stress is
derived : o
o =;I"S", (22)
whereS* is the vector of independent components of the symmetric stress t€hsand IV
takes the form

§§11 §1é22 §§33 §§1¥112 §§1é23 §§1é31
2211 2222 2233 2212 2223 2231
jV — [I%‘gill [%’)22 I?§333 21?2‘;312 2[?‘)‘;;23 2[?‘)‘;%31 . (23)
;1‘/211 51‘/222 §¥33 §§1\312 §§1‘323 §§1§31
I%;&ll ]%}322 12‘;?33 2[2‘;%12 2[2‘/323 2[2‘}331
3111 3122 3133 3112 3123 3131

Finally, the internal forces vector for the inverse finite element model can be written as
Fnt — / jBTTV §* du. (24)
B

4.2 Solution of the nonlinear equilibrium equation

The nonlinear equatiorilp) is solved iteratively using the Newton-Raphson method (see
Zienkiewicz and Taylo(2000) for details on the implementation of this method in the finite
element context). At each iteratidghwe have to solve the following linear equation for the
incrementAgq :

R(¢"*") = R(¢") + K(d")Aq, (25)

where K denotes the tangent matrix, given by :
OR aFint aFext
K=—= +
dqg  Oq dq
and whergg is the vector of unknown nodal parameters, which in this case are the poskiions
of nodes at the initial configuration.

— Kint + Kext. (26)
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Concerning external forces, we note that there is no contribution to the tangent matrix from
the pressure forces in inverse modelling. In fact, contrary to what happens in direct modelling,
the normaln to the external surface in the distorted configuration is known and fixed. On the
other hand, there would be no contribution from the centrifugal force vectanére known in
the distorted configuration. However, the value of the density we usually know is that related to
the undistorted configuration, say. Then,p is computed from the local mass balance equation

p = Jpo- (27)

Nevertheless, if we remain within the domain of small strains, just a slight variation of the
density is expected, sp ~ po and the contribution of the centrifugal forces to the tangent
matrix can be neglected.

Therefore, the tangent matrix reduces to the expression

K~ KM= / BTa—U dv. (28)
B dq

The computation ofa /0q in an exact analytical way is described in the next section.

4.3 Computation of the stress derivatives

In a typical finite element, after computing the internal forces vector as described above, we
know the inverse deformation gradiefitthe deformation gradierf, the left-stretch tensov
and the fourth-order tensd? (which is a function oft” squared), the rotated Green-Lagrange
strain E*, the rotated Piola-Kirchhoff stress and the Cauchy stress In order to compute the
tangent stiffness matrix for inverse analysis, we need to compute the derivatives of the Cauchy
stress, given in vector form by equatidt?), with respect to the nodal parameters of the inverse
motion. For this purpose, we will compute first the corresponding variations :

1
Ao = AGL,S5,) = —0Aj + jIVAS* + jATY S*. (29)
)
This can be written in the matrix form
Ag =AY + AP 1 AB) (30)

where A s the algorithmic counterpart of thieth term of equationd9). For clarity, the
computation of each term will be treated separately.

4.3.1 Computation of A™,
The differentiation rule for the determinant of a second order tensor yields
Aj=jtr (FTAf) =5 FTAf. (31)
with

FT:[FH Fio Fi3 Foy Fay Fos Fsp Fao F33] (32)
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and
[ Afin ]
Afor
Afs
| Afe
Af = | Afa (33)
Afs
Afis
Afa3
| Afssz |
Further, after differentiating equatiofhg), we get
ON
Af = —LAX,, (34)
ox
which can be written in the matrix form
(20 0 0 22 0 0 .| [ AXy ]
ON- ON:
0 2% o o0 2= 9 AXy,
0o 0 %a o 0 9% AXy,
G 0 0 ZE o0 0 AXo,
Af=1] 0 2L 0 o0 22 0 AXy | = N,Aq. (35)
0 0 Gt 0 0 %= AXy.
N1 0 9N 0 AX3,
0z 0z AX
0o 2L 0 0 %2 0 3y
8N1 8N2 .
| 00 F 0 0 FH 1L ]
So, the variation of takes the form
Aj=jFTAf = jF'N_Aq, (36)

Then, the first term in the r.h.s. of equati®@®) can be expressed in the matrix form

_ 1 _
AY = —5Aj=6F"N, Aq.
J

(37)

4.3.2 Computation of A%,

First, we need to determine
o087
- OE*
The component®, ., of the fourth-order tensaP of tangent moduli, together with the rotated
second Piola-Kirchhoff stress tens8r, are computed in the constitutive-equation software

module as a function of the rotated Green-Lagrange stfdin The tensorD* verifies the
following symmetries :

AS” AE* = D*AFE".

(38)

* _ *
Dmnkl - Dnmkl

— D*

mnlk»

(39)
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and can be mapped into a symmetric matrix in the following way :
[ Diin Dy Dhizs Dine Dies D ]
D3gs Digzz Digrg Digaz Doz
Dz Dz D Dz
D* — 3333 2312 2323 1331 40
D1212 D1223 D1231 ( )
symmetric Doy Dissy
L D§131 i
On the other hand, the variation &f is
1 1
AE;‘J. = 5A(E-ijk) =3 (AFFj, + Fi, AFyy) (42)
Using the differentiation rule for the inverse of a second order tensor, we obtain :
AFym = —FipAfpgFom- (42)
Introducing the latter equation intd 1), it takes the form
1
AE;} =73 (Fal fiun E Fi + Fit Fj A fim Fonk)
Aflmka + Afkmle
= _ngzAflmka = _[5kl 9 ) (43)
with
1
Iz'};kl = 5 (Filelc + szFjl) : (44)
In matrix form, the variation of the rotated Green-Lagrange strain tensor then results :
A
AE3,
— | AE
AE" = 2AEY,
2AE§3
i 2AE§1 ]
[ Ililll 11222 1157133 ]1§112 Il§123 Ilil?)l 17T leAflm
IQFQH ]2}7222 ]217233 I2F212 IQF223 IQF231 FmZAfQTn
— [3311 [3322 13333 13312 13323 13331 Fm3Af3m
20T, 20y, 2If3s 2105, 21055 210, FonAfom + FraAfim
215311 215322 215333 215?’)12 21;2’)23 215’)31 Fm?Af3m + Fm3Af2m
i 205111 20515, 213133 215, 205, 21513 | | FmsQfim + FriAfam |
= —I" Aa, (45)
with
[ Afir ]
[ Fi;, 0 0 Fy 0 0 Fy 0 0 ] 3?1
0 Fiua 0 0 Fpn 0 0 Fp 0 Af?’l
12
Aa—| 0 0 B 0 0k 00 B 1) (%0 e AF — BN, Aq.(46)

F12 Fll 0 F22 F21 0 F32 F31 0 AfQ
0 F13 F12 0 F23 F22 0 F32 F32 ¥

A
| Fis 0 Fu Py 0 Fu Fg 0 Fy | Aﬁi

| Afss
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Therefore, the variation a* takes the form
AE* = —I"F*N,Aq. (47)
and the second term in the r.h.s. of equat®¥) Can be expressed in the matrix form
A® = iTVAS* = —jIVD* T F*N Aq. (48)
4.3.3 Computation of A®),

First, let us rewrite the third term of the r.h.s. of equati@g) @s follows :

AR = AL Sin = Hiipg AVp, (49)
where
Hpipg = (]k*mpqwn + ]lmpqvlm) Spans (50)
with the fourth-order identity tensor
1
Timpq = D) (5kp5mq + 5kq5mp) (51)
anddy, denoting the Kronecker delta.
The algorithmic matrix form of this term is then :
[ ]Alﬂmns;;k@n ] [ Hllll H1122 H1133 H1112 H1123 H1131 17T A‘/Il ]
]A]2V2mn5:;m H2211 H2222 H2233 H2212 H2223 H2231 A‘/22
A(3) — jAIggmnS:nn :j H3311 H3322 H3333 H3312 H3323 H3331 AVE%S
]Ajl‘gmns;knn H1211 H1222 H1233 Hl212 H1223 Hl231 A‘/12
jAIQ‘gmnS;vk@n H2311 H2322 H2333 H2312 H2323 H2331 A‘/in
R ZAVACA | Hsinn Hsize Hzizs Hzie Hzies Haiz | | AV |
=jHAV. (52)
Now, it is only missing to computé V. To this end, we begin by computingV? :
A(VirVij) = AVigVig + Vie AVij = Aijkm AVim, (53)
where
1
Aijkm = 5 (03 Vim + 655 Vi + 0im Vik + 8imVie) = Aijmk = Ajikom. (54)
In matrix form, equationg3) takes the form :
[ A‘/121 1 [ Allll A1122 A1133 2141112 2A1123 2A1131 171 A‘/ll 1
A‘/222 A2211 A2222 A2233 2142212 2A2223 2A2231 A‘/22
AV? — AV, _ | Assit Assz Assss 2Aszi 243303 2Assm AVzs
2A‘/122 2A1211 2A1222 2A1233 4A1212 4A1223 4141231 AVVIQ
2AVz 2A9311 2Ag30 2Ao3sz 4Az310 4Aozez 4Assz AV
L 2AV2321 | L 2143111 2A3122 2A3133 4A3112 4A3123 4A3131 1 L A‘/él ]
— AAV. (55)
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On the other hand, sindé? = 2E* — 1, its variation can also be computed as
AV?2 =2AE* = -2I"F*N _Aq. (56)
By making 65) and £6) equal, we obtain
AV = A7'AV2 = 2A7'TFF* N, Aq. (57)
Finally, the third term of the r.h.s. of equatia2g) takes the matrix form :

A®) = 2iHA'T"F*N ,Aq. (58)

4.3.4 Final form of 9a/0q

The form given to the terma® of the variation ofs allows the immediate determination
of the derivative o with respect to the nodal unknowgs
06 _ o o
a—” —6F'N,— jIVD'I"F'N, - 2jHA'I"F*N,. (59)
q

Therefore, the tangent stiffness matrix results
K - / B" (6F" — jIVD*I'F* — 2jHA'I"F*) N, do. (60)
B

Note thatK is non-symmetric, as it was already the case in refereri@esiidjee and Mihalic
1996 1999).

We remark that although not detailed in this work, the formulation can be easily extended to
account also for thermal loads.

5 APPLICATION
5.1 Validation test

Let us consider the simple problem of bending a beam under plane strain conditions. First,
we solve the direct problem, i.e., given the undistorted configur#jcas well as the kinematic
boundary conditions and the applied forces, we determine the distorted configusatime
problem is schematized in FiguPe The domain is discretized using trilinear hexahedral finite
elements. Even if itis essentially a 2D problem, 3D elements are used for the sake of generality.
In order to represent the plane strain state, a one-element-wide mesh is used, and the faces
normal to thek-axis are constrained to move in the their planes.

Table 1:Material data for the beam bending problem.

E, =500N/cn? | v = 0.3 | Gia = 192.31 N/en?
Ey = 1000N/cn? | 195 = 0.2 | Ga3 = 312.50 N/cn?
E; =750N/en? | 15 = 0.25 | Gy3 = 288.46 N/cn?

The bar is made of horizontal laminates with fibers disposed in-tieection. The mate-
rial has an orthotropic behavior, characterized by the Young mddylE,, Es, Poisson ratii
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L=48 cm P=100 N
By (domain of direct analysis) Orthotropic
IEesws e fa
e | . basis in By
R -
LA X5 h=16 cm
i i
T AL "4
gavSTarg KA
TR 9 A
jl—
k i

B (solution of direct analysis)

Figure 2:Direct problem.

l12, M23, p13, and shear ratiGi2, Ga3, G153 with respect to the orthotropy orthogonal axes
{u u® u®}. Tablel lists the values we assumed for these properties. Further, we adopt
the hyperelastic constitutive law :

S=DE, (61)
where
- 1-—vo3v39 Vi2+v32113 vi3t+rioves 0 0 0 7
aFoE3 aF1 E3 a1 Es
1—v13v31 Vo3+U21V13 0 0 0
aF3Es3 aFi1Es
_ —V12V21 0 0 0
D= a1 P2 , (62)
G2 O 0
symmetric Gos O
i Gz |
with
Ey Ej3 Ej3
Vo1 = V12 V31 = =113 Vg = — V23
El ) El ) EQ )
o — 1 — V19101 — Va3V3e — V1331 — 2V12V32013 (63)
E\Es B '

Here, the orthotropy axga:V, u?, u®} coincide with the Lagrangean principal axes, which
are also coincident with the Cartesian coordinate bisig, k}.

The distorted configuratiof computed as solution of the direct analysis and shown in Figure
2 becomes the domain of the inverse design analysis. The inverse problem is schematized in
Figure3. The objective of the computation is to verify if we are able to recover the original
undistorted configuration as solution.

Regarding material properties, the orthotropy axes coincide now with the Eulerian principal
axesv”) = Ru'”, whereR is the rotational part of the deformation gradiditand varies
throughout the domain. Although in this case the position of these axes can be exactly deter-
mined from the previous direct analysis, it could also be estimated from the distorted geometry
taking into account the laminated nature of the body.
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By (solution of inverse analysis)
IBeaws
A
S S
iSIaIays
IS avs
AL AL 7
RS S A
AL AT
R A 2
P
; T
J
Orthotropic
basis in B
k i

B (domain of inverse analysis)

Figure 3:Inverse problem.

Nodal displacements (DX,DY,DZ): Displacement modulus

Geometric scale
10.

S
Numerical scale: 1/3.044469
Deformation scale: 1.00

23.01
. 20.71
18.41
1611

13.81

11.51

Figure 4:Displacement modulus from the inverse analysis.

The Eulerian counterpart of the constitutive equati®t) (akes the form
S* = D*E*, (64)

where D* is the matrix of elastic moduli given in preferred directions coincident with the Eu-
lerian or spatial axes, whose form is given by equati) and it is identical taD.

Figured shows a plot of the inverse solution, displaying a map of the magnitude of the
displacements = x — ().

The error of the inverse model is defined as the distance between the nodes of the mesh
used for the direct analysis and those of the undistorted mesh obtained as solution of the in-
verse analysis. After solving the equilibrium equatid)(with a very small residue norm
|R|| < 1.6 x 107! (the Ly,-norm of the residue vectdR), we obtained a maximum error of
26.6 um at the nodes where the concentrated forces are applied. By comparing this value with
the magnitude of the displacement at these nodes (23.01 cm), we note that the relative error
is less than 0.01%, which demonstrates the excellent accuracy of the inverse model SFigure
shows the evolution df R|| along the iterative solution of the nonlinear equatibg)( We note
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=N
o
o

-
o
=}

o

Residue norm
s 3

10

T 2 3 4 5 6 7 8
[teration

Figure 5:Evolution of the residue norm during the inverse analysis.

that after the B iteration, when the trial solution entered into the convergence radius of the
solution, an optimal (quadratic) convergence rate is observed validating the computation of the
tangent matrixk.

5.2 Industrial application

The inverse model is applied now to a real case : the design of a laminated turbine blade,
subjected to pressure and centrifugal forces. The blade has a complex shape determined by
the fluid mechanics design for the loaded configuration. The objective of the computation is to
determine the initial unloaded shape so that the blade shape in operation matches that imposed
by the fluid mechanics design.

The material behavior is described using an hyperelastic constitutive law. The piece given in
its desired distorted configuration is discretized using 40993 trilinear hexahedral finite elements,
resulting a mesh of 52030 nodes. Fig@reffers three views of the distorted blade geometry.

In Figure'7, the undistorted shape obtained from the inverse analysis is superposed to the
distorted mesh. Let us note that geometrical and deformation scale are coincident in/-igure
so that it gives an idea of the large magnitude of the deformations involved by the problem.

In order to solve the nonlinear equatioh?), it was necessary to increase gradually the
loading in four steps (the final step corresponding to the whole pressure and centrifugal loading
applied to the blade), the solution of each step taken as initial guess for the following step. The
inverse analysis has converged with an average of 3.5 iterations per step.

6 CONCLUSIONS

The present work introduces a finite element model for the inverse design analysis of three-
dimensional geometrically nonlinear statics problems with hyperelastic materials.

Anisotropic materials can be treated without modifying the constitutive-equation software
module developed for the classical (direct) large deformation elastic analysis.

The exact computation of the tangent matrix makes possible to obtain an optimum conver-
gence rate.

An example showed the excellent accuracy of the model, measured by its ability to recover
the original mesh of the corresponding direct analysis. Also, an example of application to the
computation of the initial shape of a turbine blade subjected to pressure and centrifugal loads
has been shown.
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Figure 6:Inverse analysis of the turbine blade. Distorted shape from different points of view.
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Figure 7:Inverse analysis of the turbine blade. Distorted vs. undistorted shapes and displacement modulus.
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