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Abstract. Nowadays, it is of great interest to perform numerical simulations of soil structure interaction

(SSI) since they are applied to a wide range of engineering problems. These include the construction of

reliable earthquake resistant structures in seismic active areas, or to increase the comfort of buildings by

decoupling them from surrounding emissions like vibrations induced by traffic. To analyse SSI problems

taking unbounded soil domains into account a numerical implementation of a coupled finite element

method (FEM) and scaled boundary finite element method (SBFEM) approach is used in this work.

This approach fulfills the Sommerfeld’s radiation condition. The FEM is used to discretise the so called

near-field, i.e. the structure and its surrounding soil, while the infinite half-space or so called far-field is

realised by the SBFEM. Both methods are coupled at a common interface, where specific information like

nodal velocities and forces are required to be exchanged. Since computation of far-field solution demands

more effort than for the near-field, it is desirable to use fewer elements in the far-field discretization than

in the near-field. Therefore, a projection algorithm is needed to exchange information (i.e. nodal forces

and velocities) at the interface between the non-matching meshes. A projection method borrowed from

the fluid structure interaction framework is used in this work, namely the Nearest Neighbour projected

method. It is wrapped in a library which is called during the coupled FEM-SBFEM solution process. A

settlement SSI problem is considered to validate the implementation, as well as to evaluate the savings

in memory and computation time. Matching mesh results are taken as reference.
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1 INTRODUCTION

A numerical solution strategy to solve soil-structure interaction (SSI) problems through un-

bounded domains is presented in this work. SSI appears, for example, due to wave-propagation

induced by vibrations or impulse loads, usually caused by traffic or earthquakes. To analyse this

kind of problems both the structure and the surrounding soil must be considered (Meskouris

et al., 2007). In most practical situations there is no analytical solution available. Therefore, ap-

proximated solutions are computed, usually by the finite element method (FEM). On the other

hand, the solution computation for the infinite soil surrounding the structure has to be treated

with numerical methods which satisfy the Sommerfeld’s radiation condition, like the boundary

element method (BEM) or the scaled boundary finite element method (SBFEM) (Beer, 2001).

Like FEM, the SBFEM method does not require a fundamental solution and the coefficient ma-

trices which appear in the mathematical formulation are symmetric and can also be added to the

FEM matrices without changing their size. Besides, in linear analysis the SBFEM matrices do

not change even when the setup of the near-field is modified, therefore they are computed once.

In non-linear analysis this does not hold and the coefficient matrices have to be computed as the

simulation evolves. Due to this combination of advantages, the SBFEM method is chosen to

solve the far-field problem in this work. Then the solution strategy here presented couples both

the FEM and the SBFEM (Wolf, 2003) methods in a monolithic fashion (Hübner et al., 2004;

Walhorn et al., 2005). The numerical solution in the near-field (i.e. the structure, its foundation

and part of the surrounding soil) is computed with the FEM and the SBFEM is used to approx-

imate the solution in the far-field (i.e. the unbounded soil). In the rest of the manuscript, Ω will

denote the near-field and Γ will be the interface between the near- and the far-field.

The discretizations of the FEM and SBFEM subproblems are usually constrained to have

matching meshes at the interface Γ between subdomains. This is acceptable as long as the

geometrical complexity of the foundation and the surrounding soil are simple since the number

of degrees of freedom (DoF) is small and the problem can be solved in a standard desktop

PC. However, as the size and complexity of the discrete problem at the interface grow, and if

accurate results are needed, since both the memory size and time complexity requirements of the

SBFEM are square and cubic on the number of DoF, it becomes almost impossible to analyze

complex problems, even in a computer cluster. But if the matching discretizations constraint

at the interface Γ is removed, then the near-field can be modeled using a fine mesh and the

far-field can be modeled with a coarse mesh to keep the computation cost reduced. Taking this

into account, the main contribution of the present work is the introduction of computational

techniques which enable to solve SSI problems with a coupled FEM-SBFEM parallel code,

using different discretizations for the subdomains. The meshes will be non-coincident at the

near / far-field interfaces, so there appears the need to use algorithms to transfer the solution

from one subdomain boundary to its neighbor, as well as to track the displacement of their

boundaries. The algorithm is borrowed from the FSI framework, and it is based on a fast

Nearest Neighbor projected (NNproj) search.

The manuscript is organized as follows: in section 2, the governing equations of the SSI

problem are described, as well as the FEM-SBFEM monolithic solution scheme that is solved.

In section 3, the NNproj method to perform the solution projection is described. Then, in sec-

tion 4 it is mentioned how the projection method is introduced in the solution procedure. Later

in section 5, the coupled FEM-SBFEM method together with the projection method are ap-

plied to solve a simple SSI benchmark problem where the FEM and the SBFEM discretizations

do not match at Γ, namely an hemispheric settlement problem. This is aimed to evaluate the
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advantages of using the non-conforming mesh projection method in terms of accuracy and com-

putational effort. Results are compared to those obtained with the same coupled FEM-SBFEM

methodology but with coincident meshes. Finally, conclusions are made on the results and

future research is outlined.

2 COUPLED FEM-SBFEM APPROACH

At an arbitrary time step the equation of motion in a displacement-based FEM can be written

as

M
d2u

dt2
+C

du

dt
+Ku = p, (1)

where the matrices M, C and K denotes mass, damping and stiffness, respectively. Here, vector

u and its derivatives in time du
dt

= u̇ and d2u
dt2

= ü represent the nodal displacement, velocity

and acceleration. The vector p represents the applied nodal forces. Consider the time period T

divided into n constant size time steps ∆t = T
n

; then the application of the implicit Newmark

time integration scheme yields (Newmark, 1959)

Mütn+1
+Cu̇tn+1

+Kutn+1
= ptn+1

. (2)

To couple the FEM with the SBFEM, the entries of the matrices in eq. (1) have to be split

into the near-field and far-field, which results in the following equation

[

MΩΩ MΩΓ

MΓΩ MΓΓ

]

ü+

[

CΩΩ CΩΓ

CΓΩ CΓΓ

]

u̇+

[

KΩΩ KΩΓ

KΓΩ KΓΓ

]

u =

[

pΩΩ

pΓΓ

]

−
[

0

pb

]

(3)

Blocks with subscript “ΩΩ” contain nodes only at the near-field while blocks with subscript

“ΓΓ” comprise nodes only at the far-field. The coupling of near- and far-field nodes is repre-

sented in those blocks marked with the subscripts “ΩΓ” and “ΓΩ”. Vector pb acts only at the

boundary Γ and denotes the response of the infinite half space, so that the far-field influence on

the near-field can be applied to the FEM subdomain as a load.

The second part of this substructuring approach is the far-field represented by the SBFEM.

The forces pb at the interface are given by the convolution integral

pb(t) =

t
∫

0

M∞(t− τ)ü(τ)dτ (4)

where M∞(t) is the acceleration unit-impulse response matrix, also known as the influence ma-

trix. To solve the convolution integral equation in time domain, a piecewise constant influence

matrix is assumed. Hence eq. (4) can be rewritten in discrete form as

pb(tn) =
n

∑

j=1

M∞

n−j

j∆t
∫

(j−1)∆t

ü(τ)d(τ). (5)

This equation is then transformed using Newmark time integration scheme into

pb(tn) = γ∆tM∞

0 ün +
n−1
∑

j=1

M∞

n−j (u̇j − u̇j−1). (6)
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where γ is a parameter of the Newmark scheme. The coupling of FEM and SBFEM is done

at the interface of both subdomains with the SBFEM part given by eq. (6) being added to the

sorted FEM part in eq. (3) (Wolf and Song, 1996):

[

MΩΩ MΩΓ

MΓΩ MΓΓ + γ∆tM∞
0

]

ü+

[

CΩΩ CΩΓ

CΓΩ CΓΓ

]

u̇+

[

KΩΩ KΩΓ

KΓΩ KΓΓ

]

u =





pΩΩ

pΓΓ −
n−1
∑

j=1

M∞
n−j (u̇j − u̇j−1)



 .

(7)

In this manner, the discretization is completely described. The formulation of the SBFEM in

time domain as well as the computation of the influence matrices M∞(t) needed in equations (4)

to (7) are fully described in Schauer et al. (2012).

3 PROJECTION METHOD

Since the objective of this work is to use independent discretizations of the far-field and

near-field subdomains, both meshes will be non-coincident at the interface. Therefore, the

forces computed with the SBFEM method at the boundary of the far-field (ΓSBFEM) have to be

projected to the boundary of the near-field (ΓFEM). Also, the velocities have to be projected in

the other way. Here, the so called Nearest Neighbor projected (NNproj) method is used with

this end and will be described next. Subscripts 1 and 2 will be used to make reference either to

the near-field or the far-field.

3.1 Nearest Neighbor projected method

Let u be a continuous scalar or vector field on domain Ω1, being Γ1 its approximation to

boundary Γ, û1 the discrete approximation of u on Ω1, and û
(i)
Γ1

its value at vertex-i on Γ1 (i.e.,

the data of the projection problem). Let q be a vertex of the mesh on Γ2, with coordinates xq and

qp its normal projection on Γ1, with coordinates xqp . The discrete approximation of u at point

q can be computed by interpolation, considering the values of the usual FEM shape functions

N
(j)
1 (xqp) and the nodal values û

(j)
Γ1

corresponding to the vertices of the element in Γ1 which

hosts qp (e.g. element e6 in fig. 1).

e7

e6
e5

e4 e3

e2 e1
nq

q

qp

Ω1

Ω2

Γ

Γ1

Γ2

Figure 1: Nearest Neighbor projected scheme in 2-D.

To apply this projection method, it is required to compute the element on Γ1 which hosts the

normal projection of point q, hereafter called "host element". A procedure for its solution is

described next.
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3.1.1 Host element problem

The host element problem can be efficiently solved in two steps, as it is proposed in (de Boer,

2008) or (Löhner, 2008). The first step consists in building a list lq of m-nearest neighbors

and probable host elements to query point q, sorted them by increasing distance to q. This is

accomplished in the present work in approximate fashion, i.e. admitting a small tolerance in

the search and thus significantly reducing the time complexity if compared to an exact search,

using the ANN (Approximate Nearest Neighbor) library (Arya and Mount, 2010). The second

step finds the host element iterating on lq. In 2-D, for each query point, each iteration consists

in solving the intersection problem between the straight line that passes through both vertices

of the element es, for s = 1, 2, . . . ,m, and the boundary normal at the query point (nq) to find

its normal projection qp. If intersection exists, then it is determined whether it falls or not in es
applying the following condition

min(N
(i)
1 (xqp), 1−N

(i)
1 (xqp)) ≥ 0, ∀vi ∈ V (8)

where N
(i)
1 (xqp) is the shape function at vertex vi of es, evaluated at qp, and V is the set of

es vertices. If condition given by eq. (8) is satisfied, then es hosts qp and û
(q)
Γ2

is computed as

follows

û
(q)
Γ2

=
∑

vi∈V

N
(i)
1 (xqp)û

(i)
Γ1

. (9)

In 3-D, the plane π that passes through all the vertices of es is considered. If intersection

exists between the normal nq and π, then both qp and es are projected onto the most parallel

coordinate plane to π. Then, eq. (8) is applied like in 2-D, as it is suggested in O’Rourke (1998).

For triangles, barycentric coordinates are used to ascertain that the point is inside the element

with condition given by eq. (9). If the point is outside of triangle es, the algorithm has to iterate

on the next element in lq. On the other hand, inverse bilinear mapping method presented in Buss

(2003) is used to compute N
(i)
1 (xq′p

) together with eq. (9) for quadrangles.

4 NEAR-FIELD FAR-FIELD INTERFACE IMPLEMENTATION

The coupling of the near-field and far-field is done at the interface Γ. The nodal information

at Γ has to be extracted from the near-field and the far-field (see eq. (7)). Here ndof is the

number of degrees of freedom, which is the number of nodes (nnod) at the subdomain times the

number of unknowns at the nodes. Therefore, ndof defines the size of the subdomains and so

the size of their vectors and matrices. In the following ndofFEM, ndofSBFEM and ndofΓ are used

to describe the size of near-field, far-field and interface. The near-field velocity

u̇Γ = u̇Γ,FEM (10)

is needed to compute the response of the infinite half space

pb,Γ = pb,SBFEM (11)

at the interface. The basic algorithms to conduct the time domain analysis using matching or

non-matching meshes are introduced next.
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4.1 Matching Interface

In this case, the main procedure is shown in alg.(1) where time step size ∆t and total sim-

ulation time T are defined as input. At the beginning the FEM-SBFEM interface is initialized

(alg. 2). Afterwards the computation of the coupled problem is performed within a time loop,

0 ≤ t ≤ T , where the response of the far-field has to be computed (alg. 3) before the time

integration scheme is applied to calculate the state variables of the next time step. Then, the

velocities have to be updated at the interface (alg. 4) and the loop can proceed with the next

time step.

Algorithm 1 (Time domain analysis).

Input: time step size ∆t, maximum time T

Output: x(t), σ(t), etc.

[ 1.1] initialize interface (Algorithm 2)

[ 1.2] while t < T ; t+ = ∆t

[ 1.3] compute far-field response pb(t) (Algorithm 3)

[ 1.4] solve Mü+Cu̇+Ku = p+ pb

[ 1.5] update state u̇(t) at interface (Algorithm 4)

When matching meshes are used, the far-field nodes at the interface are coincident with those

of the near-field, therefore nnodΓ,SBFEM = nnodΓ,FEM. As a consequence, the correspondence

at the interface of the FEM nodes with those of the SBFEM has to be determined only once,

when the interface is initialized, and it is shown in alg.(2) which identifies the matching nodes

of FEM and SBFEM.

Algorithm 2 (Interface_init).

Input: FEM, SBFEM nodes and connectivities

Output: mapping

[ 2.1] Loop node
(k)
Γ,SBFEM k = 0, ..., nnodΓ,SBFEM

[ 2.2] Loop node
(ℓ)
FEM ℓ = 0, ..., nnodFEM

[ 2.3] if (node
(k)
Γ,SBFEM==node

(ℓ)
FEM)

[ 2.4] then mapping[k] = node
(ℓ)
FEM.id

The far-field response pb,Γ(t) given by eq. (6) is calculated before the time integration

scheme is applied to the equation of motion. In order to compute the response the interface

velocity u̇Γ(t) and the interface acceleration üΓ(t) are required. Both can be obtained from

the near-field state by applying the mapping information of alg.(2). Since pb,Γ(t) has the same

size as the far-field, the information has to be mapped to the near-field, by again applying the

mapping information (pb,Γ(t) → pb,FEM(t)).
After the time step integration of the equation of motion is done, the interface velocity has

to be updated and stored for each time step to provide this information to solve the convolution

integral (see eq. (6)) at any further time step. This is shown in alg.(4), where the interface ve-

locity u̇Γ(t) is extracted from the near-field velocity u̇FEM(t) and stored into a vector of vectors

u̇n, which has size nnodSBFEM × T
∆t

.
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Algorithm 3 (Interface_response).

Input: u̇Γ,üFEM(t), M
∞
n , mapping

Output: pb,Γ(tn)
[ 3.1] extract üΓ(t) out of üFEM(t) with mapping

[ 3.2] compute pb,Γ (see equation (6))

Algorithm 4 (Interface_update).

Input: u̇FEM(t), mapping

Output: u̇Γ(t)
[ 4.1] extract u̇Γ(t) out of u̇FEM(t) with mapping

[ 4.2] store u̇Γ(t) at interface

4.2 Non-matching interface

The previously described methodology is no longer applicable in this situation. To avoid a

redevelopment of the existing code the projection library is introduced into the existing code

interface adding a few lines to the original implementation. Since now the far-field nodes are

not in coincidence with those of the near-field, the interface nodes have to be determined and

used for the mapping of the FEM nodes. This yields to different numbers of degrees of freedom

for each domain at the common interface. The sizes of the near-field and far-field are given by

nnodΓ,FEM 6= nnodFEM, nnodΓ,SBFEM = nnodSBFEM, respectively, but nnodΓ,FEM 6= nnodΓ,SBFEM

since ΓFEM and ΓSBFEM do not coincide. This circumstance demands to project the state from one

domain boundary to its neighbor and vice versa. In alg.(2) a new object, which is responsible

for the state projection is introduced, as well as the two domain boundaries ΓFEM and ΓSBFEM.

Algorithm 2 (Interface_init_mod).

Input: FEM, SBFEM nodes and connectivities

Output: mapping

[ 2.1] new stateProjection

[ 2.2] ΓFEM = stateProjection.domain1

[ 2.3] ΓSBFEM = stateProjection.domain2

[ 2.4] Loop node
(k)
Γ,FEM k = 0, ..., nnodΓ,FEM

[ 2.5] Loop node
(ℓ)
FEM ℓ = 0, ..., nnodFEM

[ 2.6] if (node
(k)
Γ,FEM==node

(ℓ)
FEM)

[ 2.7] then mapping[k] = node
(ℓ)
FEM.id

Algorithms 3mod and 4mod stay nearly untouched, except for the state projection calcula-

tions. Since the nodal velocities u̇, accelerations ü and forces pb can not be mapped directly

from one domain to the other, a state projection needs to be carried out, applying the NNproj

presented in sections 3.1.
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Algorithm 3 (Interface_response_mod).

Input: u̇Γ,SBFEM, üFEM(t), M
∞
n , mapping

Output: pb,FEM(tn)
[ 3.1] extract üΓ,FEM(t) out of üFEM(t) with mapping

[ 3.2] project üΓ,FEM(t) to üΓ,SBFEM(t) (ΓFEM → ΓSBFEM)

[ 3.3] compute pb,SBFEM (see equation (6))

[ 3.4] project pb,SBFEM to pb,FEM (ΓSBFEM → ΓFEM)

Algorithm 4 (Interface_update_mod).

Input: u̇FEM(t), mapping

Output: u̇Γ,SBFEM(t)
[ 4.1] extract u̇Γ,FEM(t) out of u̇FEM(t) with mapping

[ 4.2] project u̇Γ,FEM(t) to u̇Γ,SBFEM(t) (ΓFEM → ΓSBFEM)

[ 4.3] store u̇Γ,SBFEM(t) at interface

5 APPLICATION

To show the benefits of employing the state projection method within the FEM-SBFEM cou-

pling, the proposed approach is applied to a simple settlement problem. The savings in memory

and computation time with respect to the matching meshes coupled solution are evaluated, as

well as the accuracy of the proposed methodology. The problem also introduces difficulties such

as a curved interface, with parts of the near-field intersecting those of the far-field due to differ-

ent discretizations, as well as a non-plane wave propagating through the interface. The compu-

tations were carried out on a compute server with two Intel(R) Xeon(R) CPU E5-2699A v4 @

2.40GHz and 256 GB RAM running on Linux CentOS with kernel 3.10.0-514.21.2.el7.x86_64.

5.1 Setup of the problem

The settlement problem has been chosen since it has a steady state solution. The results are

compared with those of the original (i.e. matching meshes) coupling implementation.

r q

(a) Problem definition.

(b) Interface discretization for non-

coincident meshes (SBFEM - Blue,

FEM - Black).

Figure 2: Settlement problem.
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A load q = 70 [kNm−2] is applied on a square region of 152.4 × 152.4 [m2]. The radius

from the center to the nodes at the interface is 190.2 [m] (cf. figure 2a). The infinite half-

space material is assumed homogeneous linear elastic with the following properties: Young’s

modulus E = 37150.0 [kNm−2], Poisson’s ratio ν = 0.48 and density ρ = 1800.0 [kgm−3]. The

chosen material leads to p-wave and s-wave speed of cp = 425.8 [ms−2] and cs = 83.5 [ms−2],

respectively. The time step size ∆t = 0.0125 [s] is chosen so that neither ∆tFEM
krit = ℓmin

cp
nor

∆tSBFEM
krit = r

30cp
are exceeded (Borsutzky, 2008). The simulation is carried out for a time

period of 30 [s]. During the first 10 [s] the applied load is increased from q = 0 [kNm−2] to

q = 70 [kNm−2] and then remains constant (cf. figure 3a). The far-field’s influence is taken into

account by 500 unit acceleration impulse response matrices (6.25 [s]), which are computed in a

preprocess step using the same ∆t than in the coupled simulation. All other matrices needed to

conduct the full simulation are extrapolated during the calculations (Lehmann, 2005).

Matching meshes In this case, the FE and SBFE nodes are coincident at the interface. To

analyze the convergence of the implemented approach, the given setup is refined several times

from coarse mesh M1 to fine mesh M8. In table 1 the number of degrees of freedom of the near-

field DoFFEM and the degrees of freedom of the coupled far-field DoFSBFEM are summarized.

Table 1: Mesh discretization with different number of DoF. The meshes correspond to Schauer

et al. (2012).

Mesh M1 M2 M3 M4 M5 M6 M7 M8

DoFFEM 396 738 1314 3096 6030 9033 14655 19818

DoFSBFEM 123 219 291 480 843 1083 1515 1827
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o
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−
2
]

q

(a) Applied load over time.
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0.3

Time [s]

D
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p
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m
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t
[m

]

M1 M2

M3 M4

M5 M6

M7 M8

(b) Settlement over time.

Figure 3: Applied load (q) and settlement (s) over time using different discretizations Mi.

The displacement in time at the center of the applied load is shown in fig.(3b). It can be seen

that with increasing number of degrees of freedom the simulation converges to the semi-analytic

solution

s =
4qb

πE

(

1− ν2
)

ln

√
2 + 1√
2− 1

= 0.248 [m] (12)

given by Harr (1966).
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Figure 4: (a) Compute time and memory consumption of far-field computation (M∞
n ), (b) Time

and memory consumption with respect to the DoFSBFEM and (c) compute time of coupled FEM-

SBFEM computation for different discretizations Mi.

As explained in the introduction the computational effort of the SBFEM is very high com-

pared to that of the FEM. Figure 4a shows the memory consumption to store the M∞ matrices

as well as the time required to compute them. The ratios of memory consumption and comput-

ing time to the number DoF2
SBFEM is shown in fig.(4b). It can be seen that the computation of

the infinite far-field matrices has memory storage and calculation complexities O(DoF2
SBFEM)

and O(DoF3
SBFEM), respectively. The compute time of the coupled FEM-SBFEM computation

to solve the settlement problem is shown in fig.(4c). This does not include the time needed to

compute the unit impulse response matrices shown in fig.(4a). The first graph ’overall’ includes

the total compute time as well as input and output. The second graph ’interface’ represents the

time needed to solve eq. (6).

Non-matching meshes As already shown for the matching meshes, the computation of the

M∞ is O(DoF3
SBFEM). As a consequence, it is important to keep the number of far-field nodes

as low as possible. Therefore, SBFEM discretizations coarser than those of FEM are used next

(see fig.(2b)).

Table 2: Non-matching mesh discretization with different number of DoF in near-field and

far-field.

Mesh DoFFEM DoFSBFEM

M1i 396 123 219 291 480 843 1083 1515 1827

M2i 738 123 219 291 480 843 1083 1515 1827

M3i 1314 123 219 291 480 843 1083 1515 1827

M4i 3096 123 219 291 480 843 1083 1515 1827

M5i 6030 123 219 291 480 843 1083 1515 1827

M6i 9033 123 219 291 480 843 1083 1515 1827

M7i 14655 123 219 291 480 843 1083 1515 1827

M8i 19818 123 219 291 480 843 1083 1515 1827

Only results for M1i, M4i and M8i configurations (see table 2) are discussed since they

are similar for the others. Also, displacements are normalized with respect to the numerical

solution computed with the corresponding matching meshes, denoted with boldface in table 2.
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Figures 5a to 5c show the normalized displacement over time. On the other hand, the relative

error is shown in figures 5d to 5f. The reference curves are shown in solid black. For all M1i

simulations, a steady state solution is attained, with relative error ranging from 0.1% to 2%. In

case of M4i and M8i not all near-field / far-field couplings lead to a steady state solution. It

can be seen that for M41 and M42 as well as M81, M82 and M83 solutions start to oscillate after

20 [s]. The relative error of the steady state solutions is within the same range as before.
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(a) Normalized disp. M1i.
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(b) Normalized disp. M4i.
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(c) Normalized disp. M8i.
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(f) Relative error M8i.

Figure 5: Normalized displacement and relative error over time for discretizations M1i, M4i and

M8i.

It is likely that the increasing oscillations for some near- / far-field mesh configurations is due

to the fact that a too coarse far-field discretization is not able to properly transmit to infinity the

high frequencies which are incorporated by the relatively more refined near-field. Consequently,

it seems that Sommerfeld’s radiation condition is fulfilled only for the lower frequencies but not

for the higher ones.

6 CONCLUSIONS

It is shown that the state projection strategy coupled to the FEM-SBFEM approach can

achieve accurate results. The projection strategy is introduced by modifying how the inter-

face velocities and forces are evaluated within the coupled approach (cf. section 4). The use

of projection allows to get computational and memory costs benefits, with few changes to the

original interfaces of the FEM and SBFEM codes. The biggest reduction in time and memory

consumption comes from the computation of the influence matrices. Finally, it is found in the

settlement problem that if the SBFEM mesh is too compared to that of FEM, then it is not able

to properly transmit the high frequencies to infinity and the Sommerfeld’s radiation condition

is not fully satisfied.
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