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Abstract. In this paper a numerical model to evaluate the static response of damaged ropes is 

presented. In this study, damage corresponds to the complete rupture of one or more rope 

components in a particular rope cross-section. In particular, the proposed model couples the 

effects of two phenomena that rule damaged rope response:  strain localization and 

asymmetry in damage distribution. The proposed model relies on the finite element method 

in which the damaged rope is discretized along its length into 1D two-noded nonlinear cable-

beam elements with six degrees of freedom (dof) per node and Bernoulli´s kinematic 

hypothesis. These elements account for the helical structure of a rope (cable) as well as the 

axial-bending, axial-torsional, and bending-torsional interactions. Experimental static tensile 

test data reported in the literature of homogeneous ropes with nonlinear constitutive laws and 

overall diameters that range from 6 mm to 147 mm are used to validate the proposed model. 

Tested ropes are damaged at ropes midspan location with damage levels (percentage of the 

broken components of the damaged cross-section with respect to the intact rope) 

symmetrically and asymmetrically distributed on rope cross-sections that vary from 5% to 

55%. Comparison results indicate that the proposed model accurate predicts the static 

response of damaged ropes, considering a wide range of rope diameter and damage level 

values, achieving numerical robustness and computational efficiency. 
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1 INTRODUCTION 

 

Ropes experience damage throughout their loading history and from continued aggression 

of the environment (urban, industrial, marine, etc.). Damage to ropes degrades rope 

components properties, process that may induce the partial or complete rupture of some of 

the rope components, and eventually, compromise the safety and integrity of the structural 

system that the damaged ropes are part of. Hence, the understanding of the effects of damage 

on the mechanical behavior of ropes is essential to estimate rope service life at the design 

stage and to establish the appropriate rope inspection methods and discard criteria (Chaplin, 

2005). 

Previous researches (MacDougall and Barlett, 2006; Ward et al., 2006; Beltran and De 

Vico, 2015; and Beltran et al., 2018 among others) have shown that two of the main 

mechanisms that govern the response of damaged ropes are strain localization and asymmetry 

in damage distribution, in which bending deformation takes place in ropes due to the latter 

mechanism; thus, ropes eventually undergo changes in curvature. Under this condition, a 

flexible model (rope treated as a fiber element, i.e., slender body of negligible bending and 

torsional stiffness) is inadequate to accurately describe the mechanical behavior of the 

damaged rope. In this kind of problem, a richer model for the rope should be developed in 

which axial, torsion, and bending strains as well as axial-bending, axial-torsion, and bending-

torsion interactions need to be accounted for (the so-called stiff cable model) (Luongo and 

Zulli, 2013).  

In this paper a robust and computational efficient numerical model that couples the effects 

of strain localization and asymmetry in damage distribution on the static response of damaged 

ropes is presented. The proposed model relies on the finite element method in which the 

damaged rope is discretized along its length into 1D two-noded nonlinear cable-beam 

elements with six degrees of freedom (dof) per node and Bernoulli´s kinematic hypothesis. 

These elements account for the helical structure of a rope (cable) as well as the axial-bending, 

axial-torsional, and bending-torsional interactions. Experimental static tensile tests data 

reported in the literature on polyester ropes and metallic strands (diameters vary from 6 mm 

to 166 mm) asymmetrically damaged (initial cross-section damage level varies from 5% to 

55%) are used for validation purposes and also to interpret them based on the simulations 

provided by the proposed model. 

 

2 NUMERICAL ALGORITHM FOR THE ANALYSIS OF DAMEGED ROPES 

 

In this section, the proposed numerical algorithm that relies on the nonlinear finite element 

method considering the updated Lagrangian formulation is outlined. Hereafter, the proposed 

numerical model is termed NLCBM. 

Considering a generic straight prismatic two-noded cable-beam element b of length Lb 

depicted in Fig. 1. The element has a total of twelve degrees of freedom (dofs), in which x 

denotes the longitudinal axis and (y, z) the two principal axes of the cross-section. The 

displacements of a standard uniaxial two-noded cable-beam element in a 3D-space  consist 

of three translation u, v, and w in x, y, and z directions, and three rotations θx, θy, and θz, 

around axes x, y, and  z respectively, which are functions of the position x along the element.  

Along the kinematic variables previously mentioned, their corresponding nodal forces are 

also depicted in the figure for both nodes (node I and J), in which Fr and Mq refer to a force 

in the r direction and a moment around the q direction respectively.  
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It is assumed that the generic cable-beam element obeys the Euler-Bernoulli kinematic 

hypothesis. As such, the displacements {um}(x,y,z) of a material point m with coordinates 

(y,z) at a section with distance x from the origin  of the reference frame, that describe the 

rigid body motion of the section plane, are given by the following expressions 

 

���(�, �, �) = ��(�) − �
�(�) + �
�(�)� cos �� + ��� + �� 
�(�) sin ��     (1a) 

���(�, �, �) = �(�) − �
�(�)                                           (1b) 

���(�, �, �) = �(�) + �
�(�)                                           (1c) 

 

where ut
m corresponds to the displacement in the t direction of the material point m that is 

part of a fiber oriented in an angle β relative to the x axis. In this way, the orientation of the 

rope components, that in their initial configurations correspond to a circular helix curve,  that 

form the rope are accounted for (Fig. 1). The transverse displacements uy
m and uz

m of the 

material point m are assumed to be small based on previous works on asymmetrically 

damaged ropes (Beltran and De Vico, 2015; and Beltran et al., 2018); thus, the same 

transverse displacements of a fiber aligned along the longitudinal axis of the rope are 

considered for the case of a fiber inclined relative to the latter due to its initial helical 

geometry along with neglecting their contributions to ut
m. In the above expressions, it is 

important to point out that the following kinematic relations hold: θz(x) = dv(x)/dx and θy(x) 

= dw(x)/dx, where d(∙)/dx is the first derivative operator acting on the corresponding function.  

Rope components are assumed to behave as fiber elements; as such the only term of the 

updated Green strain increment tensor accounted for the computation internal virtual work 

in Eq. (3) is given by 

���� = �� !
�� + "

� #��� !
�� �� + ���$!

�� �
�

+ ���%!
�� ��&                                    (2) 

 

where ut
m,  uy

m, and uz
m are the displacement fields given by Eqs (1).  

It is important to point out that the displacement and rotation functions u(x) and θp(x) (p 

= x, y, and z) respectively, depend on the variable x (longitudinal axis of the rope); thus, 

computation of the derivatives with respect to t (local longitudinal axis of the rope 

components) in the above equation, gives rise to the terms cosβ, cos2β, cos3β, cos2βsinβ, and 

sinβcosβ in the expression for εtt
m due to the helical nature of the rope components. Therefore, 

the expression for εtt
m in terms of the derivatives with respect to x is given by 

 

���� = �� !
�� cos �� + "

� #��� !
�� �� + ���$!

�� �
�

+ ���%!
�� ��& (cos ��)�                     (3) 

 

Following the notation proposed by Yang and Kuo (1994), the principal of virtual works 

in an incremental form yields 

 

' ((�))*"∆,)-)*",./)*" +0123 ' 4)*"-)*"5./)*" = 6)*"
) − 6)*"

)*"
0123               (4) 

 

where e, and  correspond to the linear and nonlinear terms of the updated Green strain tensor 

respectively  and Δej is the increment of the linear term for the j-th step of the analysis; (Et)j-

1, Vj-1, and σj-1 are the tangent  modulus, the volume of the component over which energy is 
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computed, and the normal axial stress in the j-1 step of the analysis respectively; the operator 

ẟj-1 refers to a virtual variation of the variable operated upon based on the (j-1) configuration. 

The right-hand side of the above equation (Fj-1
j and Fj-1

j-1) denote the virtual work done bythe 

external loads (surface tractions and body forces) acting on the body at j and (j-1) 

configurations respectively. 

 

 By utilizing a standard finite element procedure, the virtual work equation (Eq. 4), applied 

to a generic element b that is part of the rope discretization, can be turned into an incremental 

algebraic equation for the generic element from the step of the analysis j-1 to j as 

 

(789: + 78;:))*",<
)*" =.�>)*",<

) = ?@)*"
) − @)*"

)*"A<                            (5) 

 

where [kL]b and [kG]b are the local linear and geometric stiffness matrices of element b, 

respectively; {u}b increment in nodal displacement vector of element b; and (fj-1
j –fj-1

j-1 )b is 

the increment in nodal forces vector from the step of the analysis j-1 to j of element b, in 

which both quantities are referred to the deformed configuration of the element b related to 

j-1 step of the analysis. Following the procedure established by Yang and Kuo (1994) and 

using Eq. (4), the aforementioned stiffness matrices and nodal load vector can be derived 

using for the trial kinematic variables functions v(x), w(x), θz(x), and θy(x) and their 

corresponding virtual forms correspond to the well-known Hermite cubic polynomials and 

for the case of u(x) and θx(x) linear interpolations functions are used for trial and virtual ones. 

Details of the computations of the aforementioned entities can be found in Beltran and Bravo 

(2019). 

 Beltran and De Vico (2015) established that the effect of asymmetric damage distribution 

on ropes can be represented by unbalanced sinusoidal loads (qy and qz) acting in two 

perpendicular (principal) planes (i.e., rope subjected to biaxial bending). As such, in the 

proposed finite element algorithm-based, nodal forces Pi, and Qi associated to qz and qy are 

given by 

=B>< = ' CDE%FG
9H I�,<.J;  =M>< = ' NDE$OG

9H I�,<.J                         (6) 

 

Lb 

Figure 1.Generic two-noded stiff cable-beam element b in a 3D-space. 
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where the row vectors [Nθz] and [Nθy]  correspond to the Hermite cubic polynomials functions 

used to approximate v(x), w(x), θz(x), and θy(x) (Fig. 1); superscript T refers to the transpose 

operator; and subscript b refers to a generic cable-beam element. The corresponding nodal 

forces are depicted in Fig. 1 with their corresponding dof. Expressions for qy and qz for 

different rope constructions types are given by Beltran and De Vico (2015) and Beltran et al. 

(2017). 

The finite element-based model proposed to study damaged rope response, relies on the  

ability of broken rope components to carry their proportionate share of axial loads over a 

distance measured from the failure region, which is referred as the recovery length (rl) 

(Raoof, 1991). Along this length, the model accounts for the potential continuous increment 

of the contribution to damaged rope response of the broken components along with the fact 

that the asymmetry of the rope cross-section is diminished.  As long as the broken rope 

components do not fully develop their recovery length values, the formulation of the 

proposed model accounts for the strain localization and asymmetry in damage distribution, 

as well as their interactions,  effects on rope response. 

According to Beltran and Williamson (2010), the recovery length value (rl) of a helical 

broken rope component can be estimated as 

 

PQ = "
RST

ln NRSTGV
S3

+ 1O                                                  (7) 

 

where a  Coulomb friction model is considered in which Ts is the tension in the broken rope 

component; μ is the friction coefficient; Ci (i = 1,2) are constants related to the normal force 

acting on such components whose values are discussed in detail in Beltran and Williamson 

(2010) and Beltran and Bravo (2019). For the case of a broken core (straight rope 

component), the recovery length can be estimated as  

 

                                                              PQ = GX YZ[ \T
R]T^3,T

                                                            (8) 

 

where n2  is the number of the unbroken rope components in layer 2 that possess a helix angle 

β2, and g1,2 is the line contact force (radial force) exerted by the core on one rope component 

of the second layer (Beltran and Williamson, 2010). 

A standard nonlinear finite element procedure is implemented to assess static damaged 

ropes responses. In a general case, damaged rope discretization strongly relies on the rl value 

of the rope due to the nonuniform axial strain distribution along this length which results in 

an axial strain localization around the fracture zone. This nonlinear finite element procedure 

is based on an iterative displacement control algorithm for each increment of the rope axial 

displacement. The incremental-iterative equation of global equilibrium in a nonlinear finite 

element procedure has the following form: 

 

7_`a:)*"b*"=.uuuu>)b = =.d>)b + =e>)b*"                                 (9a) 

7(_9)`a +  (_;)`a:)*"b*"=.uuuu>)b = =.d>)b + =e>)b*"                          (9b) 

 

where [Kdr] is the tangent stiffness matrix of the damaged rope in which the first contribution, 

(KL)dr, is the linear stiffness and the second contribution, (KG)dr, is the geometric stiffness; 

{du} increment in the displacement vector; {dQ} is the increment in the external load vector; 
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{R} is the residual load vector (difference between internal and external loads); and subscript  

j and superscript k represent  the step of the analysis and the number of iterations in that step 

respectively. The entities [Kdr], {dQ}, and {R} are referenced to a fixed global coordinate 

system and they are obtained utilizing standard assembly procedures for the damaged rope 

stiffness and load vectors. 

 As previously commented, as asymmetry of rope cross-section diminishes along the 

recovery length, the unbalanced transverse sinusoidal loads get smaller in magnitude as well; 

hence, strain localization and asymmetry in damage distribution phenomena have less 

influence on rope response toward rope ends as depicted in Fig. 2. The numerical algorithm 

implemented to solve Eqs. 9 and the procedure to compute the nodal forces are explained in 

detail in Beltran and Bravo (2019). 

 

3 EXAMPLES OF ESTIMATES OF DAMAGED ROPE RESPONSE 

 

In Fig. 3 the analysis of the response of a small-scale polyester rope is presented based on 

the results provided by NLCBM, whose results are validated with the one given by 3D FE 

simulations (Beltran and Vargas, 2012). Rope´s diameter is equal to 6 mm and five out of 

nine rope components are initially cut prior testing to rupture (colored black). Hence, 55% 

of the cross-section is initially damaged in which damage has a symmetric distribution (Fig. 

3); thus it is expected that the strain localization phenomenon rules rope response. The core 

(central straight rope component) is the only broken component that develops a finite 

recovery length value because is confined by the unbroken rope components of the second 

layer of the rope. Rope specimen has length (L) equal to 610 mm (approximately 8p, p is the 

pitch distance) and based upon Eq. 8, the recovery length value of the broken core of the rope 

analyzed is 220 mm. This value was computed assuming a friction coefficient equal to 0.1 

(Beltran and Vargas, 2012), contact between rope components only in the radial direction, 

and a small level of rope deformation (10% of the specified failure axial strain).  

In Fig. 3a the axial strains of the central node of the core of the rope analyzed are plotted 

at different positions along the rope length (x variable) from the rupture zone for different 

levels of rope axial strain. The x variable is normalized by one half of the rope length (L/2) 

due to symmetry of the results obtained where the parameter x/L/2 equal to 1 corresponds to 

the fractured zone (rope midspan) and x/L/2 equal to 0 corresponds to one end of the rope.  

Results plotted in this figure indicate that strains are maximum at x/L/2=1 inducing a strain 

localization zone and start decreasing ,due to the transferring of axial load from the unbroken 

Figure 2. Damaged rope discretized into two-noded stiff cable-beam elements 
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components to the broken core by friction, until the recovery length of the broken core is 

fully developed(constants strain values). Along rl, five two-noded cable-beam elements are 

used to capture the strain localization phenomenon, and according the results shown in Fig. 

3a, the recovery length value is well estimated by Eq. 8 as well as the axial strain values 

developed in this region (relative to the results given by the 3D FE models) in which the 

average maximum value is about 25% greater than the ones outside of this region.  

In Fig. 3b, capacity curves estimated by NLCBM and 3D FE compare quite well between 

each other although the former overestimate the residual strength and deformation capacity 

in 15% and 10% respectively relative to the 3D FE results. Experimental data for this rope 

specimen, agree with predicted values only for small rope axial strain values (less than 

0.025). For greater strain values, experimental data gets more flexible than the predicted one 

due to the progressive damage, and eventually failure, of some of the rope components 

around rope terminations as commented by Li et al (2002). 

The estimated and measured response of a 19.9 mm diameter aluminium damaged strand 

is presented in Fig. 4. The damage is asymmetrically distributed on strand surface (two out 

of nineteen wires broken); thus, according to Beltran et al (2018), asymmetric damage 

distribution governs damaged strand response. Axial strains developed by unbroken wires 

were measured using strain gauges (S.G.) and despite of some local nonlinear response of 

the measured strain values, especially for low values of axial load, both measured and 

predicted (ES-Wi in Fig. 4a) values suggest that a gradient in axial strain distribution is 

developed in which greater strains take place adjacent to damage and smaller strains opposite 

to damage (Fig. 4a). The ratio values between the maximum and minimum strains are 1.85 

and 1.6 for the measured and estimated cases respectively. In addition, relative to the virgin 

simulation (undamaged strand), ratio values for the minimum and maximum cases are [0.72, 

0.74] and [1.33, 1.18] for the measured and estimated cases respectively.  

Regarding the capacity curves presented in Fig. 4b, measured and estimated (NLBCM and 

3D FEM) curves are compared for both virgin and damaged strand cases.  In particular, 

NLCBM underestimates the measured strength capacity of virgin and damaged strand in 13%, 

accurately predicts virgin deformation capacity and overestimates in 8% this value for the 

damaged case. In terms of the elastic stiffness, NLCBM model slightly overestimates the 

virgin measured value (1.5%) and in 7% the average measured one. 3D FEM provides similar 

results to the ones given by NLCBM that were previously discussed but with a higher 

computational cost involved.  

Figure 3. (a) Strain distribution along the broken core; (b) capacity curves: measured and predicted 

(NLBM and 3D FEM) values for a rope with initial damage of 55%. 
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Asymmetry in damage distribution also induces a lateral deflection in the damaged strand 

(Fig. 5a). To validate the NLCBM, the waviness of two commercial steel strands (diameters 

equal to 3.5mm and 22.2 mm) is studied using the proposed model and 3D FEM with one (1-

D), two (2-D) and six (6-D) wires cut in their linear regime responses (Fig. 5). The results 

presented by both numerical models compare quite well between each other in which the 

values predicted by the NLBM are in the range of [-15%,+12%] relative to the ones predicted 

by the 3D FEM (Fig. 5b,c).  

The discard criteria specified by ISO 4309 (2010) for a damaged strand related to strand 

waviness, established that the gap between a straightedge and the underside of the helix (Fig. 

5a) should not be greater than 1/3d or 1/10d, being d the diameter of the strand, if the strand 

never runs through a sheave or spools on to the drum or if it does respectively. For the 

examples presented in this study, the maximum radial displacement values for the 3.5 mm 

and 22.2 diameter strands are 1.4%  and 1.7% of their diameter values respectively, 

considering in both cases six wires cut (6-D), values that are lower than the two 
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aforementioned critical values. Hence, asymmetry in damage distribution slightly perturbs 

initial straight strands configuration. 

Lastly, the analysis of the static response of a polyester jacketed rope with parallel sub-

ropes construction with specified breaking stress equal to 700 tonnes (6865 kN) is presented 

in Fig. 6. Rope´s diameter is equal to 147 mm and the rope has 20 sub-ropes in which each 

sub-rope is built by twisting three strands together. The initial damage inflicted to cross-

section was set to 10% and the ratio L/d is equal to 40 (Ward et al., 2006); thus, considering 

that the recovery length of the broken strands was estimated in 2950 mm (Eq. 7) due to the 

jacket confinement (Beltran and Bravo, 2019), rope´s length is not long enough to allow them 

to fully develop their recovery length values. Hence, rope cross-section does not retrieve their 

symmetry although transverse sinusoidal loads diminish in magnitude as approaching to the 

rope ends and consequently strain localization and asymmetry in damage distribution 

phenomena are present along the entire rope. Exp. data curve (Fig. 6a) shows some individual 

strand failures that soften its response prior to its complete rupture. Based on an estimate 

given by Beltran et al. (2017), the damage level increased to 20% distributed to five sub-

ropes. After the individual strand failures occurred (strain greater than 0.05), Exp. data curve 

is bounded by the SLM (20%) and NLCBM (20%) in a narrow region in which the latter lies 

in the solution space and underestimates the measured residual strength and deformation 

capacity in 6% and 3% respectively (Fig. 6b), in which SLM solely accounts for the strain 

localization phenomenon (Beltran et al., 2017).  For low strain values (less than 0.025), Exp. 

data curve matches well with the ADDM (10%) curve (solely accounts for the asymmetric 

damage distribution phenomenon), after which the former experiences a stiffening process 

which results in a slightly stiffer response than the upper bound curve (SLM) that ends up 

with the individual strand failures previously commented.  

In Fig. 6b, the deformed configuration of the rope for two levels of axial strain (0.021 and 

0.062) is depicted. Results indicate that the maximum lateral deflection located at rope 

midspan is equal to 0.5% and 1.3% of the rope´s diameter (147 mm) respectively. Rope 

deflection, which is basically an inclined helix with decreasing amplitude, slightly perturbs 

the initial rope straight configuration. 

4 FINAL REMARKS 

In this paper, the response of damaged polyester ropes and metallic strands whose diameter 

values range from 3.5 mm to 147 mm with a wide variety of damage levels were studied. To 

this end, a finite element-based procedure that couples the effects of strain localization and 

Figure 6. (a) Capacity curves and (b) deformed configurations of initially damaged rope with SBS 

equal to 700tonnes  

(a) (b) 
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asymmetry in damage distribution on damaged rope response was used.  For analysis 

purposes, damaged ropes/strands were discretized along their lengths into uniaxial two-

noded nonlinear cable-beam elements with six degrees of freedom (dof) per node and 

Bernoulli´s kinematic hypothesis. The proposed generic cable-beam element accounts for the 

helical structure of a rope (cable) as well as the axial-bending, axial-torsional, and bending-

torsional interactions. 

Comparisons with experimental data and simulations from 3D FEM indicate that the 

proposed algorithm is capable of accurately predicting damaged rope/strand response that 

includes capacity curve, axial strain field along rope´s length, and deformed configuration. 

In addition, the proposed algorithm seems to be a promising computational tool to estimate 

damaged rope/strand response and interpret and extend experimental data due to its 

robustness and computational efficiency since most of the simulations were obtained in less 

than five minutes on a standard multi-core processor laptop (Intel Core i7-16 Gb RAM). 

Despite the good performance shown by the proposed algorithm, additional comparisons 

with other well-accepted numerical technique (e.g. 3D FEM) and experimental data of 

ropes/strands comprised of diverse  materials and construction types are needed to establish 

the range of applicably of this algorithm. 
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