Asociación Argentina



de Mecánica Computacional

Mecánica Computacional Vol XXXVII, págs. 209-218 (artículo completo) A. Cardona, L. Garelli, J.M. Gimenez, P.A. Kler, S. Márquez Damián, M.A. Storti (Eds.) Santa Fe, 5-7 Noviembre 2019

# VIBRACIONES LIBRES DE VIGAS AFG SOBRE FUNDACIÓN PASTERNAK

# FREE VIBRATIONS OF AFG BEAMS ON PASTERNAK FOUNDATION

Gonzalo J. Gilardi <sup>a,b</sup>, Carlos A. Rossit <sup>a,b</sup> y Diana V. Bambill <sup>a,b</sup>

<sup>a</sup> Departamento de Ingeniería (UNS), Instituto de Ingeniería-II-UNS (UNS-CIC), Universidad Nacional del Sur (UNS), Avenida Alem 1253,8000 Bahía Blanca, Argentina, http://www.uns.edu.ar

<sup>b</sup> Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. gonzalo.gilardi@uns.edu.ar, carossit@criba.edu.ar, dbambill@criba.edu.ar

**Palabras clave:** Viga AFG, Viga Bernoulli-Euler, Vibración de vigas, Rayleigh-Ritz, Fundación Pasternak.

**Resumen**. Se estudia la vibración transversal libre de vigas Bernoulli-Euler embebidas, en toda su longitud, en un medio elástico. El modelo, de carácter general, considera a una viga cantiléver de sección transversal variable, que está constituida por un material cuyas propiedades varían de forma gradual en la dirección axial (AFG, por sus siglas en inglés). Se emplea el modelo de Pasternak con dos parámetros para describir el comportamiento de la interacción entre la viga y el medio que la contiene. La solución al problema se obtiene mediante el método energético de Rayleigh-Ritz. Se evalúan varios ejemplos numéricos, variando las propiedades del material, la sección transversal de la viga y los parámetros que caracterizan a la fundación elástica. Los resultados obtenidos mediante el enfoque propuesto, son validados mediante su satisfactoria comparación con casos particulares del modelo de análisis disponibles en la literatura técnico-científica.

**Keywords:** AFG beams, Bernoulli-Euler beam, Vibration of beams, Rayleigh-Ritz, Pasternak foundation.

Abstract. Free transverse vibration of Bernoulli-Euler beams resting, along their entire length, on an elastic medium is studied. The general model considers a cantilever beam of variable cross section. It is constituted by a material whose properties vary gradually in the axial direction (AFG). Pasternak's model with two parameters is used to describe the behaviour of the interaction between the beam and the medium that contains it. The solution to the problem is obtained by means of the Rayleigh-Ritz energy method. Several numerical examples are evaluated, the properties of the material, the cross section of the beam and the parameters of the elastic foundation are varied. The results obtained with the present approach are validated through its satisfactory comparison with particular cases of the proposed model available in the technical-scientific literature.

# 1 INTRODUCCIÓN

El modelo estructural de una viga embebida en un medio elástico ha sido motivo de numerosos estudios debido a que tiene aplicaciones en variadas situaciones ingenieriles, tales como: edificios, carreteras, ferrocarriles, tuberías de soporte continuo, etc. (Selvadurai, 1979).

Obviamente, una componente importante en el diseño y análisis de estos elementos resistentes reside en el conocimiento de sus características dinámicas. Para ello, es menester establecer una representación de la interacción estructura-suelo. El modelo más simple fue introducido por Winkler (Winkler et al., 1867), el cual supone desplazamientos verticales en las vigas y considera una resistencia proporcional del suelo, representada por resortes lineales independientes. Su principal inconveniente radica en que no puede representar a suelos con cohesión o capacidad cortante. Sin embargo, existen muchos problemas en la ingeniería para los cuales representa una idealización adecuada y precisa (Aristazábal-Ochoa, 2004).

Prácticamente un siglo más tarde, surgen los modelos de dos parámetros. Estos modelos permiten incluir el efecto de continuidad y cohesión del suelo, como una versión modificada del modelo precursor. El modelo de Pasternak (Pasternak, 1954) incluye la cohesión del suelo mediante una capa de corte de espesor unitario, rígida verticalmente, que conecta los resortes de la fundación Winkler y solo resiste el corte transversal puro. Kerr (1964) demuestra que la fundación Pasternak es la extensión más natural del modelo Winkler para fundaciones homogéneas.

El análisis dinámico de vigas sobre fundaciones elásticas ha recibido especial atención, por parte de diferentes autores, debido a la importancia que reviste en el diseño de diferentes estructuras. Con respecto al estudio dinámico de vigas homogéneas esbeltas sobre fundaciones elásticas tipo Winkler-Pasternak, se destacan los trabajos de Eisenberger y Clastornik (1987); Yokoyama (1991); Franciosi y Masi (1993); Naidu y Rao (1995); De Rosa y Maurizi (1998); Chen et al. (2004); Civalek y Öztürk (2010); Obara (2014); Rahbar-Ranji y Shahbaztabar (2017); Bezerra et al. (2017), entre otros, quienes obtuvieron resultados implementando la teoría de vigas Bernoulli-Euler o bien como casos particulares de la teoría de Timoshenko.

Durante las últimas décadas, el uso de materiales con propiedades funcionalmente graduadas (FGM, por sus siglas en inglés) ha aumentado en el diseño de aplicaciones ingenieriles, debido a sus destacadas características de alta resistencia mecánica y térmica, así como de su distribución óptima del peso. Esta nueva clase de materiales avanzados, se obtienen de la combinación de dos o más materiales diferentes, cuyo contenido en porcentaje se hace variar mediante una ley distribución gradual, para obtener las propiedades requeridas en una o varias direcciones deseadas. De este modo, los FGM pueden superar algunas desventajas y debilidades de los materiales compuestos laminados, como lo son la delaminación y la concentración de esfuerzos, debido a que poseen una interfaz gradual en las propiedades del nuevo material (Koizumi, 1997).

La literatura técnico-científica evidencia que existen numerosos estudios sobre el análisis de vibración de las vigas que descansan sobre una base elástica, asumiendo distintos modelos de fundación. Sin embargo, sobre la fundación tipo Winkler-Pasternak todavía es limitado y para las vigas constituidas por FGM aún más. Sobre el estudio dinámico de vigas Bernoulli-Euler con FGM y propiedades variando en su espesor, aparecen los trabajos de Ying et al. (2008); Sahraee y Saidi (2009); Duy et al. (2014); Avcar y Mohammed (2018), entre otros.

Por otro lado, sobre elementos estructurales con propiedades variando en la dirección axial (AFG, por sus siglas en inglés), aparece el trabajo de Çetin y Şimşek (2011) sobre el estudio de vibración libre de una pila-columna AFG simplemente apoyada y embebida en medio elástico tipo Winkler-Pasternak y el estudio de Soltani (2019) sobre vigas AFG de sección

trasversal variable, sobre esta misma fundación y para distintas condiciones de borde clásicas.

El presente trabajo analiza la vibración libre de vigas AFG cantiléver embebidas en una fundación Winkler-Pasternak, por ser las que menos atención han tenido en la bibliografía, considerando que la sección transversal puede ser variable. La solución al problema se obtiene por medio del método energético de Rayleigh-Ritz (Ilanko et al, 2014).

# 2 GENERALIDADES DEL MODELO



Figura 1: Viga Bernoulli-Euler AFG cantiléver de sección variable sobre fundación Winkler-Pasternak.

El modelo de viga Bernoulli-Euler AFG que se emplea para el desarrollo del presente análisis, se expone en la Figura 1. La sección transversal se considera variable en su longitud L y de doble simetría (rectangular), con ancho b y altura h. La viga se encuentra constituida por material funcionalmente graduado con propiedades variando en la dirección axial. Se emplea el modelo de Pasternak con dos parámetros para describir el comportamiento de la interacción entre la viga y el medio elástico que la contiene, donde  $k_w$  es el módulo de la fundación Winkler y  $k_n$  es el módulo del medio elástico Pasternak.

El movimiento oscilatorio de la viga se referencia respecto de un sistema de ejes coordenados. El eje  $\bar{x}$  coincide con el eje de flexión (en la posición sin deformar) y es normal al eje  $\bar{y}$  en el baricentro de la sección transversal inicial, donde ambos tienen origen. Cada parámetro geométrico y del material se identifica con un subíndice que indica el extremo al que se está haciendo referencia, "0" para el extremo izquierdo y "*L*" para el derecho.

# 3 LEYES DE VARIACIÓN PARA EL MATERIAL Y LA GEOMÉTRIA

El hecho de considerar que la viga este constituida por material AFG y posea características geométricas variables, requiere definir una expresión genérica que permita contemplar ambas variaciones. Se define así:

$$R(\overline{x}) = R_0 f_R(\overline{x}). \tag{1}$$

donde  $R(\bar{x})$  representa una característica de la viga (geométrica o del material) que varía en su dirección axil, desde un valor inicial  $R_0$  y según una distribución  $f_R(\bar{x})$ . En particular se puede escribir:

$$E(\overline{x}) = E_0 f_E(\overline{x}), \rho(\overline{x}) = \rho_0 f_\rho(\overline{x}), A(\overline{x}) = A_0 f_A(\overline{x}), I(\overline{x}) = I_0 f_I(\overline{x});$$
(2)

donde *E* es el módulo de Young ,  $\rho$  es la densidad de masa, *A* es el área de la sección transversal e *I* es el momento de inercia respecto al eje de flexión. Al ser la sección rectangular y maciza,  $A_0 = b_0 \times h_0$  y  $I_0 = (b_0 \times h_0^3)/12$ , en la Ec. (2).

# 4 MÉTODOS DE RAYLEIGH RITZ

De acuerdo con las ecuaciones diferenciales que gobiernan el problema de las vibraciones transversales libres de vigas, cuando la viga vibra según uno de sus modos normales, la energía del sistema puede expresarse a través del siguiente funcional:

$$J\left[\bar{V}\left(\bar{x}\right)\right] = U_{max} - T_{max} \tag{3}$$

donde  $U_{max}$  y  $T_{max}$  son las energías máximas de deformación y cinética, respectivamente (Laura, 1995). En la Ec. (3),  $\overline{V}(\overline{x})$  representa a la amplitud de la deflexión de la viga, en la dirección del eje  $\overline{y}$ , la cual tiene la siguiente forma:

$$v(\bar{x},t) = \bar{V}(\bar{x})\cos(\omega t) \tag{4}$$

con t como la variable temporal y  $\omega$  la frecuencia natural circular de vibración transversal de la viga. Además, para el desarrollo de los cálculos, se asume que la coordenada espacial  $\overline{x}$  y la amplitud  $\overline{V}(\overline{x})$  están adimensionalizadas con respecto a la longitud total L de la viga.

$$x = \frac{\overline{x}}{L}; \quad V(x) = \frac{\overline{V}(\overline{x})}{L}.$$
(5)

De esta manera, la expresión de la energía máxima de deformación  $U_{máx}$ , para la teoría de vigas de Bernoulli-Euler, en su forma adimensionalizada es:

$$U_{max} = U_{max(1)} + U_{max(2)}.$$
 (6)

El primer término es debido a la energía propia de la viga:

$$U_{máx(1)} = \frac{1}{2} \int_{0}^{1} \frac{E(x)I(x)}{L} \left(\frac{d^{2}V(x)}{dx^{2}}\right)^{2} dx, \qquad (7)$$

y el segundo es por considerar la presencia de la fundación elástica:

$$U_{max(2)} = \frac{1}{2} k_w \int_0^1 L^3 \left( V(x) \right)^2 dx + \frac{1}{2} k_p \int_0^1 L \left( \frac{dV(x)}{dx} \right)^2 dx.$$
(8)

La primera integral está asociada a la fundación Winkler y la segunda al efecto que introduce la fundación Pasternak sobre la anterior. En la Ec. (8) se evidencia que  $k_w$  y  $k_p$  se asumen constantes para toda la longitud *L* de la viga.

Por otra parte, la expresión de la energía cinética máxima  $T_{máx}$ , en su forma adimensionalizada e independizada de la variable temporal *t*, es:

$$T_{max} = \frac{1}{2} \omega^2 \int_0^1 \rho(x) A(x) L^3 (V(x))^2 dx.$$
 (9)

Seguidamente, para aplicar el método de Rayleigh-Ritz (Ilanko et al., 2014), resulta necesario aproximar la componente espacial de la solución de la siguiente manera:

$$V(x) \cong V_a(x) = \sum_{j=1}^{N_p} C_j \varphi_j(x)$$
(10)

donde  $C_j$  son las constantes arbitrarias que multiplican a las  $\varphi_j$  funciones coordenadas, y  $N_p$  es el número de términos a sumar. En particular, para las vigas en voladizo que se van a estudiar, las funciones coordenadas que se adoptan son:

$$\left\{\varphi_{j}\right\}_{j=1}^{N_{p}} = \left\{x^{j+1}\right\}_{j=1}^{N_{p}},\tag{11}$$

que satisfacen las condiciones de borde esenciales  $\varphi(0) = \varphi'(0) = 0$  en el empotramiento.

Luego, considerando las Ecs. (2), (7), (8) (9) y (10), el funcional de energía (Ec. (3)) puede escribirse como:

$$J[V_{a}] = \frac{E_{0}I_{0}}{2L} \int_{0}^{1} f_{E}f_{I} \left(V_{a}''\right)^{2} dx + \frac{k_{w}L^{3}}{2} \int_{0}^{1} V_{a}^{2} dx + \frac{k_{p}L}{2} \int_{0}^{1} \left(V_{a}'\right)^{2} dx - \frac{\omega^{2}\rho_{0}A_{0}L^{3}}{2} \int_{0}^{1} f_{\rho}f_{A}V_{a}^{2} dx$$
(12)

con  $V_a' = dV_a / dx$  y  $V_a'' = d^2V_a / dx^2$ . Multiplicando ambos miembros de la Ec.(12) por  $(2L)/(E_0I_0)$  y reagrupando términos, se obtiene:

$$\frac{2L}{E_0 I_0} J \left[ V_a \right] = \int_0^1 f_E f_I \left( V_a'' \right)^2 dx + K_W \int_0^1 \left( V_a \right)^2 dx + K_P \int_0^1 \left( V_a' \right)^2 dx - \Omega^2 \int_0^1 f_\rho f_A \left( V_a \right)^2 dx$$
(13)

donde  $K_w = (k_w L^4)/(E_0 I_0)$  y  $K_p = (k_p L^2)/(E_0 I_0)$  son los parámetros de las fundaciones Winkler y Pasternak, y  $\Omega = \omega L^2 \sqrt{(\rho_0 A_0)/(E_0 I_0)}$  son los coeficientes de frecuencia naturales.

A continuación, el funcional J es minimizado respecto de cada constante arbitraria

$$\partial J[V_a] / \partial C_j = 0 \quad , \quad j = 1, 2, \dots, N_p; \tag{14}$$

dando origen a un sistema de ecuaciones lineales, que escrito en forma simbólica es:

$$\mathbf{R}\left\{C_{j}\right\} = \left\{0\right\} \operatorname{con} \, \mathbf{R} = \mathbf{K} - \Omega^{2} \, \mathbf{M} \,.$$
(15)

Donde **K** y **M** son las matrices de rigidez y de masa, respectivamente; las cuales están expresadas en función de los elementos  $k_{ij}$  y  $m_{ij}$ ; que para la viga AFG Bernoulli-Euler sobre fundación Winkler-Pasternak adoptan las siguientes formas:

$$k_{ij} = \int_{0}^{1} f_{E}(x) f_{I}(x) \varphi_{i}^{"} \varphi_{j}^{"} dx + K_{W} \int_{0}^{1} \varphi_{i} \varphi_{j} dx + K_{P} \int_{0}^{1} \varphi_{i}^{'} \varphi_{j}^{'} dx,$$

$$m_{ij} = \int_{0}^{1} f_{\rho}(x) f_{A}(x) \varphi_{i} \varphi_{j} dx.$$
(16)

Para que el movimiento vibratorio sea posible, es necesario y suficiente cumplir con la condición de no-trivialidad, es decir, que el determinante de **R** (Ec. (15)) sea igual a cero. De esta manera el problema de autovalores queda expresado como:

$$\left|\mathbf{K}\mathbf{M}^{-1} - \boldsymbol{\Omega}^{2} \mathbf{I}\right| = \left|\mathbf{B} - \boldsymbol{\beta} \mathbf{I}\right| = 0$$
(17)

con  $\beta = \Omega^2$  como los autovalores de la matriz **B** e **I** la matriz identidad.

# 5 RESULTADOS NUMÉRICOS

Para el estudio se considera un material AFG compuesto por dos materiales constitutivos "a" y "b". Las propiedades del material resultante varían mediante la siguiente ley asimétrica:

$$R(x) = R_a + (R_b - R_a)x^n \text{ con } n \ge 0 \text{ y } x \in [0,1],$$
(18)

donde el exponente *n* es el parámetro de heterogeneidad. Se observa que en x=0 la sección transversal estará totalmente constituida por el material "*a*",  $R_0 = R_a$ ; mientras que en el extremo libre (x=1) lo estará por el material "*b*". El contenido porcentual del material "*a*" en cada sección transversal incrementa en la medida que *n* aumenta. Debe tenerse presente que cualquier valor de *n* fuera del rango [1/3; 3] no es deseado (Nakamura et al., 2000), ya que el material AFG contendría demasiado de uno de los materiales constituyentes.

Respecto a la geometría se contemplan 4 situaciones: viga de sección constante  $b = b_L = b_0$ y  $h = h_L = h_0$  (Caso A), viga de ancho variable  $b(x) = b_0(1-\alpha x)$  y altura constante  $h = h_L = h_0$  (Caso B), viga de ancho constante  $b = b_L = b_0$  y altura variable  $h(x) = h_0(1-\alpha x)$  (Caso C), y viga de ancho y altura variable:  $b(x) = b_0(1-\alpha x)$ ,  $h(x) = h_0(1-\alpha x)$  (Caso D).

# 5.1 Casos de comparación

El primer caso de comparación corresponde a una viga cantiléver homogénea que descansa sobre una fundación elástica Winkler-Pasternak. Los primeros dos coeficientes de frecuencia calculados para distintas combinaciones de parámetros de fundación  $K_W$  y  $K_P$ , se contrastan en la Tabla 1 con los obtenidos por Wang et al. (1998), implementando el método de parámetros iniciales con funciones de Green.

|               | $K_W =$    | = 0     | $K_W =$ | =100      | Solución          |  |
|---------------|------------|---------|---------|-----------|-------------------|--|
| Ω             | $K_{_P}$ / | $\pi^2$ | $K_P$   | / $\pi^2$ |                   |  |
|               | 0          | 2,5     | 0       | 2,5       |                   |  |
| $\Omega_{_1}$ | 3,51602    | 9,91309 | 10,6001 | 14,0808   | M.R-Ritz          |  |
|               | 3,51600    | 9,91305 | _       | _         | Wang et al.(1998) |  |
| $\Omega_{_2}$ | 22,0345    | 35,0896 | 24,1975 | 36,4867   | M.R-Ritz          |  |
|               | _          | _       | 24,1975 | 36,4864   | Wang et al.(1998) |  |

Tabla 1: Coeficientes de frecuencia de viga cantiléver homogénea embebida en fundación Winkler-Pasternak.

El segundo caso de comparación corresponde a una viga AFG en voladizo de sección trasversal ahusada (Caso B). La viga AFG está compuesta por zirconia  $(ZrO_2)$  y aluminio (Al), cuyas propiedades (Ec. (19)) varían con la ley asimétrica de la Ec. (18) y con n = 2.

$$\operatorname{ZrO}_2: E_0 = 200 \text{ GPa}, \rho_0 = 5700 \frac{\text{kg}}{\text{m}^3} \text{ y Al: } E_L = 70 \text{ GPa}, \rho_L = 2702 \frac{\text{kg}}{\text{m}^3}.$$
 (19)

Los primeros tres coeficientes de frecuencia para este caso, los obtuvieron Šalinić et al. (2018) implementando el método simbólico-numérico de parámetros iniciales (SNMIP, sus siglas en ingles). La Tabla 2 muestra coeficientes de frecuencia calculados en comparación con los obtenidos por estos autores.

| α    | $\Omega_{_1}$ | $\Omega_{_2}$ | $\Omega_{_3}$ | Solución             |
|------|---------------|---------------|---------------|----------------------|
| 0.20 | 4,57215       | 23,7147       | 62,3311       | M.R-Ritz             |
| 0,20 | 4,57215       | 23,7146       | 62,3315       | Šalinić et al.(2018) |
| 0.50 | 5,20240       | 24,7990       | 63,4839       | M.R-Ritz             |
| 0,50 | 5,20241       | 24,7989       | 63,4844       | Šalinić et al.(2018) |
| 0,70 | 5,88827       | 26,0601       | 64,9406       | M.R-Ritz             |
|      | 5,88827       | 26,0600       | 64,9411       | Šalinić et al.(2018) |

Tabla 2: Coeficientes de frecuencia de viga cantiléver AFG (ZrO2-Al) ahusada.

En general, se puede apreciar que la correlación es muy buena para los dos casos comparados. La precisión se obtiene de usar  $N_p = 20$  términos de polinomios.

#### **5.2** Casos propuestos

Se estudia el comportamiento dinámico de vigas AFG en voladizo ahusadas sobre un medio elástico Pasternak. Los parámetros de la fundación elástica que se emplean corresponden a los implementados por Yokoyama (1991). Dependiendo de la rigidez en la fundación Winkler, el comportamiento de la viga puede clasificarse como rígida para  $K_W < 10$ , semi-rígida para  $10 \le K_W < 1000$  y flexible para  $K_W \ge 1000$  (Selvadurai, 1979). Notar que cuando  $K_p = 0$  el modelo de Pasternak se corresponde con el modelo de Winkler.

El material a emplear es el propuesto por Su et al. (2013), el cual está constituido por alúmina ( $Al_2O_3$ ) y acero (Ac), y cuyas propiedades son:

Alum: 
$$E_0 = 390 \text{ GPa}, \rho_0 = 3960 \frac{\text{kg}}{\text{m}^3} \text{ y Ac: } E_L = 210 \text{ GPa}, \rho_L = 7800 \frac{\text{kg}}{\text{m}^3}.$$
 (20)

Los coeficientes fundamentales para distintas combinaciones de  $K_w$  y  $K_p$ , se exponen en las Tablas 3 y 4 para las vigas homogéneas, y en las Tablas 5 y 6 para las vigas AFG. Para las vigas AFG, las propiedades del material varían con la ley asimétrica de la Ec. (18), de forma lineal, es decir, con n = 1.

| Caso | α    | $K_W = 0$     |         |         | $K_W = 1$       |         |         | $K_w = 10$      |         |         |
|------|------|---------------|---------|---------|-----------------|---------|---------|-----------------|---------|---------|
|      |      | $K_P / \pi^2$ |         |         | $K_{P}/\pi^{2}$ |         |         | $K_{P}/\pi^{2}$ |         |         |
|      |      | 0             | 1       | 2,5     | 0               | 1       | 2,5     | 0               | 1       | 2,5     |
| Α    | 0    | 3,51602       | 7,13598 | 9,91309 | 3,65546         | 7,20570 | 9,96340 | 4,72889         | 7,80526 | 10,4053 |
|      | 0,25 | 3,83643       | 7,90059 | 10,9533 | 3,99643         | 7,97867 | 11,0094 | 5,22014         | 8,64972 | 11,5021 |
| В    | 0,50 | 4,31517       | 8,99478 | 12,4237 | 4,50572         | 9,08477 | 12,4880 | 5,95167         | 9,85758 | 13,0518 |
|      | 0,75 | 5,14571       | 10,7411 | 14,7239 | 5,38845         | 10,8497 | 14,8005 | 7,21005         | 11,7812 | 15,4722 |
|      | 0,25 | 3,63624       | 7,80320 | 10,8486 | 3,80490         | 7,88221 | 10,9052 | 5,07657         | 8,56052 | 11,4022 |
| С    | 0,50 | 3,82378       | 8,74262 | 12,1847 | 4,03955         | 8,83493 | 12,2501 | 5,61932         | 9,62569 | 12,8233 |
|      | 0,75 | 4,17659       | 10,2528 | 14,3253 | 4,48468         | 10,3655 | 14,4035 | 6,63049         | 11,3281 | 15,0883 |
| D    | 0,25 | 3,95671       | 8,61740 | 11,9645 | 4,15078         | 8,70569 | 12,0275 | 5,60227         | 9,46317 | 12,5798 |
|      | 0,50 | 4,62515       | 10,8651 | 15,1031 | 4,92449         | 10,9822 | 15,1848 | 7,06198         | 11,9829 | 15,9000 |
|      | 0,75 | 5,82307       | 14,6288 | 20,2265 | 6,38363         | 14,7897 | 20,3349 | 9,95181         | 16,1530 | 21,2807 |

Tabla 3: Coeficiente fundamental de viga cantiléver homogénea embebida en fundación Winkler-Pasternak.

| Caso | α    | $K_{W} = 10^{2}$                     |         |         | $K_{W} = 10^{3}$ |         |         | $K_{W} = 10^{4}$    |         |         |
|------|------|--------------------------------------|---------|---------|------------------|---------|---------|---------------------|---------|---------|
|      |      | $K_{\scriptscriptstyle P}$ / $\pi^2$ |         |         | $K_P / \pi^2$    |         |         | $K_{P}$ / $\pi^{2}$ |         |         |
|      |      | 0                                    | 1       | 2,5     | 0                | 1       | 2,5     | 0                   | 1       | 2,5     |
| Α    | 0    | 10,6001                              | 12,2850 | 14,0808 | 31,8176          | 32,4179 | 33,1401 | 100,062             | 100,254 | 100,490 |
| В    | 0,25 | 11,8310                              | 13,6513 | 15,5940 | 35,4988          | 36,0149 | 36,7257 | 108,565             | 109,145 | 109,781 |
|      | 0,50 | 13,6360                              | 15,5924 | 17,7222 | 40,0663          | 40,6811 | 41,4896 | 116,038             | 116,853 | 117,969 |
|      | 0,75 | 16,5780                              | 18,6097 | 20,9951 | 44,7620          | 46,2281 | 47,6566 | 123,569             | 124,606 | 124,710 |
|      | 0,25 | 11,7745                              | 13,5929 | 15,5188 | 35,4747          | 35,9772 | 36,6839 | 108,350             | 108,970 | 109,654 |
| С    | 0,50 | 13,5288                              | 15,4305 | 17,5450 | 39,5692          | 40,4382 | 41,3269 | 115,273             | 116,169 | 117,384 |
|      | 0,75 | 16,2825                              | 18,2453 | 20,6723 | 43,3138          | 45,2806 | 47,0651 | 121,834             | 123,078 | 124,767 |
| D    | 0,25 | 13,1338                              | 15,0634 | 17,1462 | 39,0529          | 39,6318 | 40,4108 | 114,820             | 115,629 | 116,711 |
|      | 0,50 | 17,1594                              | 19,2194 | 21,7453 | 45,8421          | 47,7790 | 49,5312 | 127,008             | 128,287 | 130,046 |
|      | 0,75 | 22,0389                              | 25,4177 | 28,7704 | 52,7147          | 55,7739 | 59,1601 | 138,797             | 140,614 | 143,103 |

Tabla 4: Coeficiente fundamental de viga cantiléver AFG (Alum-Ac) embebida en fundación Winkler-Pasternak.

|      | α    | $K_w = 0$                            |         |         | $K_W = 1$           |         |         | $K_{W} = 10$  |         |         |
|------|------|--------------------------------------|---------|---------|---------------------|---------|---------|---------------|---------|---------|
| Caso |      | $K_{\scriptscriptstyle P}$ / $\pi^2$ |         |         | $K_{P}$ / $\pi^{2}$ |         |         | $K_P / \pi^2$ |         |         |
|      |      | 0                                    | 1       | 2,5     | 0                   | 1       | 2,5     | 0             | 1       | 2,5     |
| А    | 0    | 4,78428                              | 10,1928 | 14,2636 | 4,99363             | 10,2947 | 14,3373 | 6,58450       | 11,1693 | 14,9843 |
|      | 0,25 | 5,22115                              | 11,3124 | 15,8128 | 5,46235             | 11,4269 | 15,8953 | 7,28203       | 12,4097 | 16,6196 |
| В    | 0,50 | 5,88112                              | 12,9330 | 18,0343 | 6,17029             | 13,0658 | 18,1294 | 8,33282       | 14,2050 | 18,9639 |
|      | 0,75 | 7,05186                              | 15,5766 | 21,5980 | 7,42507             | 15,7389 | 21,7129 | 10,1827       | 17,1294 | 22,7202 |
|      | 0,25 | 4,92094                              | 11,1711 | 15,6766 | 5,17582             | 11,2871 | 15,7599 | 7,06748       | 12,2813 | 16,4902 |
| С    | 0,50 | 5,13855                              | 12,5813 | 17,7352 | 5,46806             | 12,7177 | 17,8318 | 7,83272       | 13,8844 | 18,6791 |
|      | 0,75 | 5,56319                              | 14,9291 | 21,1076 | 6,04374             | 15,0974 | 21,2247 | 9,30230       | 16,5341 | 22,2502 |
| D    | 0,25 | 5,35403                              | 12,3722 | 17,3551 | 5,64865             | 12,5023 | 17,4480 | 7,81550       | 13,6172 | 18,2632 |
|      | 0,50 | 6,21673                              | 15,7830 | 22,2141 | 6,68007             | 15,9578 | 22,3363 | 9,91456       | 17,4513 | 23,4072 |
|      | 0,75 | 7,78268                              | 21,7393 | 30,4439 | 8,69023             | 21,9856 | 30,6109 | 14,2757       | 24,0772 | 32,0707 |

Tabla 5: Coeficiente fundamental de viga cantiléver AFG (Alum-Ac) embebida en fundación Winkler-Pasternak.

| Caso | α    | $K_{W} = 10^{2}$ |         |         | $K_{W} = 10^{3}$   |         |         | $K_{W} = 10^{4}$    |         |         |
|------|------|------------------|---------|---------|--------------------|---------|---------|---------------------|---------|---------|
|      |      | $K_P / \pi^2$    |         |         | $K_{_P}$ / $\pi^2$ |         |         | $K_{P}$ / $\pi^{2}$ |         |         |
|      |      | 0                | 1       | 2,5     | 0                  | 1       | 2,5     | 0                   | 1       | 2,5     |
| Α    | 0    | 15,0744          | 17,6709 | 20,3483 | 45,1977            | 46,5524 | 47,8960 | 140,264             | 141,519 | 142,823 |
|      | 0,25 | 16,8770          | 19,7026 | 22,6194 | 50,9354            | 52,1841 | 53,4865 | 159,406             | 160,415 | 161,369 |
| В    | 0,50 | 19,5690          | 22,6359 | 25,8675 | 59,2029            | 60,1021 | 61,3241 | 183,903             | 184,347 | 185,352 |
|      | 0,75 | 24,1263          | 27,3392 | 31,0173 | 68,9343            | 70,7429 | 72,4831 | 201,175             | 202,638 | 204,647 |
|      | 0,25 | 16,7759          | 19,6235 | 22,5256 | 50,8576            | 52,1535 | 53,4488 | 159,233             | 160,350 | 161,328 |
| C    | 0,50 | 19,3816          | 22,4297 | 25,6559 | 59,1133            | 59,9894 | 61,2165 | 183,404             | 184,652 | 185,169 |
|      | 0,75 | 23,7932          | 26,9066 | 30,6420 | 67,2389            | 69,9232 | 72,0185 | 199,400             | 201,164 | 203,456 |
| D    | 0,25 | 18,7836          | 21,8318 | 24,9928 | 57,1809            | 58,2103 | 59,4602 | 179,957             | 180,245 | 180,650 |
|      | 0,50 | 24,9744          | 28,2881 | 32,1860 | 71,2336            | 73,7099 | 75,7121 | 208,726             | 210,554 | 212,980 |
|      | 0,75 | 33,2333          | 38,5449 | 43,7615 | 84,0850            | 89,0801 | 94,2049 | 232,446             | 235,378 | 239,299 |

Tabla 6: Coeficiente fundamental de viga cantiléver AFG (Alum-Ac) embebida en fundación Winkler-Pasternak.

Los coeficientes de frecuencia obtenidos para las vigas AFG, están referenciados a una viga patrón homogénea de acero (Ac), de sección transversal constante con:  $A = A_0 = b_0 \times h_0$  y  $I = I_0 = (b_0 \times h_0^3)/12$ .

$$\Omega = \omega L^2 \sqrt{\rho_{\rm Ac} A_0 / E_{\rm Ac} I_0} \,. \tag{21}$$

La precisión de los resultados se obtiene de implementar  $N_p = 20$  términos de polinomios.

#### **6** CONCLUSIONES

En general se puede apreciar que al considerar las vigas embebidas en un medio elástico, los coeficientes de frecuencias naturales aumentan. Esto se debe a que la fundación elástica aporta energía de deformación al sistema. Por lo cual, en la medida que los parámetros elásticos de la fundación  $K_w$  y  $K_p$  aumenten, los coeficientes de frecuencia también lo harán.

De las Tablas 3 a 6, puede notarse que el efecto de rigidizar la fundación se hace más significativo, en cuanto al incremento de los coeficientes de frecuencia, para valores de  $K_W \ge 100$ . Además, se evidencia que el efecto de la fundación Pasternak es más notable para valores pequeños de  $K_W$ , ya que cuando la fundación Winkler es más rígida  $(K_W \to \infty)$  el efecto de  $K_P$  se vuelve despreciable (se obtienen los mismos coeficientes de frecuencia).

De las Tablas 3 a 6, el efecto de la geometría que emerge claramente es que cuando la sección se ahúsa hacia el extremo libre, los coeficientes fundamentales aumentan. Esto se debe a que la masa inercial se reduce en las zonas de mayor desplazamiento, y por ende, la energía cinética disminuye. El mayor efecto se logra cuando se hacen variar al ancho b y la altura h (Caso D). Comparando los Casos B y C, si bien el momento de inercia I y el área A de la sección transversal disminuyen, la energía de deformación desciende más cuando varía h que cuando varía b, pues h varía al cubo en I. En el área A el efecto es lineal, por lo que la energía cinética se reduce de igual manera en ambos casos. Por ende en el balance energético, tiene mayor efecto de rigidización dinámica disminuir el ancho b que disminuir la altura h.

En cuanto a la rigidización lograda de implementar el material AFG, los coeficientes fundamentales evidencian un aumento del 33% al 67%, dado que estos se incrementan con el ahusamiento  $(b_L \rightarrow 0 \text{ y } h_L \rightarrow 0)$  y con la rigidización de la fundación elástica  $(K_w \rightarrow \infty)$ .

Quedó demostrado que el método de Rayleigh-Ritz es una herramienta precisa y eficiente para obtener resultados en esta clase de problemas.

### AGRADECIMIENTOS

Los autores agradecen el patrocinio del presente trabajo a la Universidad Nacional del Sur (UNS), al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC). El mismo se llevó a cabo en el Departamento de Ingeniería y en el Instituto de Ingeniería de la UNS.

### REFERENCIAS

Avcar, M. y Mohammed, W.K.M., Free vibration of functionally graded beams resting on Winkler-Pasternak foundation. *Arabian Journal of Geosciences*, 11(10), 2018.

Aristazábal-Ochoa J.D., Estructuras de vigas sobre suelos elásticos de rigidez variable. *Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil,* 3(2): 157–174, 2004.

Bezerra, W.K.S., Soares L.S. y Hoefel, S. S., Free vibration analysis for Euler-Bernoulli beam

on Pasternak foundation.24th ABCM International Congress of Mechanical Engineering (COBEM), 1–9, 2017.

- Çetin, D. y Şimşek, M., Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium. *Struct. Eng. Mech.*, 40(4): 583–594, 2011.
- Chen, W.Q., Lü, C.F. y Bian, Z.G., A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. *Appl. Math. Modelling*, 28:877–890, 2004.
- Civalek, Ö. y Öztürk, B., Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation. *Geom. Eng.*, 2:45–56, 2010.
- Duy, H.T., Van, T.N. y Noh, H.C. Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation. *Structural Engineering and Mechanics*, 52:1033–1049, 2014
- Eisenberger, M. y Clastornik, J., Beams on variable two-parameter elastic foundation. *ASCE J. Eng. Mech*, 113(EM10): 1454–1466, 1987.
- Franciosi, C. y Masi, A., Free vibrations of foundation beams on two-parameter elastic soil. *Computers and Structures*, 47: 419–26, 1993.
- Ilanko, S., Monterrubio, L.E. y Mochida, Y., *The Rayleigh-Ritz Method for Structural Analysis*. Wiley & Sons, 2014.
- Kerr, A.D., Elastic and viscoelastic foundation models. J. Appl. Mech., 31:491-498, 1964.
- Koizumi M., FGM activities in Japan. Composites Part B, 28:1-4, 1997.
- Laura, P.A.A., Optimization of Variational Methods. Ocean Eng., 22(3):235-250, 1995.
- Naidu, N.R. y Rao, G.V., Vibrations of initially stressed uniform beams on a two-parameter elastic foundation. *Computers and Structures*, 57:941–943, 1995.
- Nakamura, T., Wang, T. y Sampath, S., Determination of properties of graded materials by inverse analysis and instrumented indentation. *Acta Materialia*, 48:4293–4306, 2000.
- Obara, P., Vibrations and stability of Bernoulli-Euler and Timoshenko beams on twoparameter elastic foundation. *Archives of Civil Engineering*, 60:421–440, 2014.
- Pasternak, P.L., On a new method of analysis of an elastic foundation by means of two foundation constants. Gos. Izd. Lip. po Strait i Arkh. Moscow, (in Russian) 1954.
- Rahbar-Ranji, A. y Shahbaztabar A., Free vibration analysis of beams on a Pasternak foundation using Legendre polynomials and Rayleigh-Ritz method. *Odessa Polytechnic University*, 3(53): 20–31, 2017.
- Sahraee, S. y Saidi, A.R., Free vibration and buckling analysis of functionally graded deep beam-columns on two-parameter elastic foundations using the differential quadrature method. *Proc. IME, Part C: J. Mech. Eng. Sci.*, 223:1273–1284, 2009.
- Soltani, M. y Asgarian, B., New hybrid approach for free vibration and stability analyses of axially functionally graded Bernoulli-Euler beams with variable cross-section resting on uniform Winkler-Pasternak foundation. *L.A.J.S.S.*, 16(3) e173:1–25, 2019.
- Su, H., Banerjee, J.R. y Cheung, C.W., Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Composite Structures, 106:854–862, 2013.
- Selvadurai, A.P.S., *Elastic Analysis of Soil-Foundation Interaction*. Developments in Geotechnical Engineering, Vol. 17, Elsevier Science, 1979.
- Wang, C.M., Lam, K.Y. y He, X.Q., Exact Solutions for Timoshenko Beams on Elastic Foundations Using Green's Functions. *Mech. Struct. & Mach.*, 26:(1):101–113, 1998.
- Winkler, E., Die Lehre von der Elastizität und Festigkeit. H. Dominicus, Prague, 1867.
- Ying, J., Lü, C.F. y Chen, W.Q., Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. *Composite Structures*, 84:209–219, 2008.
- Yokoyama, T., Vibrations of Timoshenko beam-columns on two-parameter elastic foundations. *Earthquake Engineering and Structural Dynamics*, 20:355–370, 1991.