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Abstract. Metamaterials, or locally resonant metamaterials, are a class of structures that have been used

to control and to manipulate acoustic and elastic waves with applications in vibration attenuation. A great

amount of research has been done on acoustic and structural metamaterials but very little attention has

been given to the effects of coupling conditions on structural assemblies, even though this is typical case

on mechanical engineering applications. In this work, the wave attenuation in a metamaterial beam as-

sembly is investigated considering uncertain connections. A beam, with attached resonators, undergoing

longitudinal and flexural vibration is connected to homogeneous beams at each end. It is assumed a

large enough number of identical resonators such that effective longitudinal and flexural wavenumbers

are derived. Wave modes are assumed unchanged by the attachments and analytical expressions can be

derived. A point connection is considered with an assembly angle such that wave mode conversion, be-

tween flexural and longitudinal waves, can happen. The reflection and transmission properties of the full

assembly are then calculated and it is shown that the connection angle has significant effects on the band

gap performance, which cannot be captured by a purely deterministic model of the straight assembly.

Furthermore, the effects of some stochastic models, derived based on the Maximum Entropy principle,

on the overall metastructure vibration attenuation performance are investigated. It is shown that the con-

nection angle can considerably widen the metastructure band gap and that the joint uncertainties can play

a major role on the vibration attenuation.
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1 INTRODUCTION

Metamaterials, or locally resonant metamaterials, are a class of structures that have been

used to control and to manipulate acoustic and elastic waves (Hussein et al., 2014) with several

applications, including vibration attenuation, e.g. (Sugino et al., 2017; Huang and Sun, 2009).

Although periodicity of the resonators positioning is not required, it is used for a cell-based

description of the wave propagation. In metamaterials, the attenuation effect is created due

to inclusions or attachments that work as internal resonators (Liu et al., 2000) and are able to

create band gaps at sub-wavelength frequencies, unlike the phononic crystals, which rely on

spatial periodicity and the Bragg scattering effect (Hussein et al., 2014).

The use of a resonator for vibration control is very common in engineering applications

(Den Hartog, 1985) but its efficacy is restricted to a very narrow frequency band. Some devel-

opment has been proposed to widen the frequency band of actuation using adaptive or non-linear

mechanisms (Brennan, 2006). The advantage of the concept introduced by locally resonant ma-

terials is that it is possible to widen the frequency band of attenuation by simply adding several

resonators while keeping the same mass ratio (Sugino et al., 2017). This concept is particularly

useful for lightweight vibro-acoustic metamaterial design are being recently explored in NVH

applications (Claeys et al., 2017; de Melo Filho et al., 2019).

The dynamics of joints has been investigated for many decades and several approaches have

been proposed in terms of energy flow (Beshara and Keane, 1997), vibrational modes (Ar-

ruda and Santos, 1993) and wave reflection and transmission coefficients (Zhang et al., 2010).

The modelling of joints in mechanical assemblies can be very challenging and usually requires

the inclusion of some level of uncertainty (Ibrahim and Pettit, 2005). Typically, the mechanical

properties of the joints are considered uncertain (Dohnal et al., 2009) and are handled by a para-

metric approach in which case a stochastic model of the parameters is used or a non-parametric

approach in which case the mechanical model itself is considered to be random (Fabro and

Mencik, 2018).

In this work, the wave attenuation in a metamaterial beam assembly is investigated con-

sidering uncertain connections. A beam, with attached resonators, undergoing longitudinal

and flexural vibration is connected to homogeneous beams at each end. A point connection

is considered with an assembly angle such that wave mode conversion, between flexural and

longitudinal waves, can happen. The reflection and transmission properties of the full assembly

are then calculated and it is shown that the connection angle has significant effects on the band

gap performance, which cannot be captured by a purely deterministic model of the straight as-

sembly. Furthermore, the effects of some stochastic models, derived based on the Maximum

Entropy principle, on the overall metastructure vibration attenuation performance are investi-

gated. It is shown that the connection angle can considerably widen the metastructure band gap

and that the joint uncertainties can play a major role on the vibration attenuation.

2 WAVE MODEL

The governing equation of motion of a general one-dimensional undamped system of dis-

tributed parameter can be given by L(x)w(x, t) + µẅ(x, t) = p(x, t), where L(x) is a lin-

ear homogeneous self-adjoint stiffness differential operator of order 2q, where q ≥ 1 is an

integer defining the order of the system, µ is the mass density per unity length, p(x, t) is

the force per unity length and w(x, t) is the displacement. For rods undergoing longitudi-

nal vibration L(x) = −d/dx [EA(x)d/dx], where EA(x) is the longitudinal stiffness, and

for beams undergoing flexural vibration, L(x) = d2/dx2 [EI(x)d2/dx2], where EI(x) is the
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flexural stiffness. Assuming harmonic motion such that w(x, t) = ei(ωt−kx), homogeneous

properties and free vibrations, where ω is the angular frequency and k is the wavenumber,

then it is possible to define the dispersion relation L(−ik) − µω2 = 0. Using the stiffness

operators for rods and beams leads to kl = (ρ/E)1/2
√
ω and kb = (ρA/EI)1/4 ω1/2, which

are the longitudinal and flexural wavenumbers, respectively. The displacement field in the

rod u(x, t) and in the beam w(x, t) is then given by u(x, t) =
(

a+l e
−iklx + a−l e

iklx
)

eiωt, and

w(x, t) =
(

a+b e
−ikbx + a+bNe

−kbx + a−eikbx + a−bNe
kbx

)

eiωt, where a±l , a±b and a±bN are the wave

amplitudes of the positive and negative going propagating and non-propagating longitudinal

and flexural waves, respectively. A linear transformation from the wave domain to the physical

domain can be given for a generalized displacement and generalized force, respectively, by

q = Φ+
q a

+ +Φ−

q a
−, f = Φ+

f a
+ +Φ−

f a
−, (1)

where Φ±

q and Φ±

f are, respectively, displacement and internal forces matrices. For a waveguide

undergoing both longitudinal and flexural waves, then q = [u w θ]T and f = [P V M ]T ,

where θ = dw/dx, P is the rod axial force, V is the beam shear force and M is the bending

moment, and the wave amplitude vectors are given by a± =
[

a±l a±b a±bN
]T

.

The equation of motion of a continuous system with S periodically attached resonators can

be given in the general form by (Sugino et al., 2017)

L(x)w(x, t) + µẅ(x, t)−
S
∑

p=1

kpup(t)δ(x− xp) = p(x, t), (2)

and one additional equation for each resonator mpüp(t) + kpup(t) + mpẅ(xp, t) = 0, where

up(t) is the displacement of each resonator attached at xp, with mass mp and stiffness kp and

δ(x) is the Dirac delta function. This expression was originally proposed for a modal analysis in

metastructures and allows the derivation of closed form expression for the band gap frequency

edges. In this work, it will be used for finding the dispersion equation. Also, assuming that the

wave modes are unchanged due to the resonators attachments, it provides a analytical frame-

work for calculating reflection and transmission coefficients. Note that it is similar to Eq. ?? and

thus a similar procedure can be applied for finding the dispersion equation. Assuming identical

resonators and a large enough number of attachments, it can be shown that

L(−ik)− µω2

(

1 + ǫ
1

1− Ω2
r

)

= 0, (3)

where Ωr = ω/ωr and ω2
r = kp/mp and ǫ = mp/µ∆l is the mass ratio for resonators spaced

by ∆l. Derivation details are shown in the Appendix. The suitable stiffness operators can be

applied to find the effective wavenumbers for longitudinal

krl =

√

ρ

E

(

1 + ǫ
1

1− Ω2
r

)

ω, (4)

and flexural waves

krb =
4

√

ρA

EI

(

1 + ǫ
1

1− Ω2
r

)√
ω. (5)
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Figure 1: Metamaterial beam assembly with one semi-infinite homogeneous beam at each end

undergoing longitudinal and flexural vibration.

This result is equivalent to (Gao et al., 2011) for a continuous neutralizer attached to the

beam, in which the mass ratio is given in terms of wave length. Assuming that the attached

resonators do not change the wave types, these wavenumbers can then be used to describe the

displacement field and the matrices Φ±

q , Φ±

f are the same as for the simple beam.

2.1 Metamaterial assembly

A metamaterial beam undergoing longitudinal and flexural waves is connected to two other

homogeneous beam, one at each end, as shown in Fig. 1. At the left end, the connection angle is

α1, b
±

1 are the amplitude of the incoming and outgoing waves. At the right end, the connection

angle is α2, a
±

1 are the amplitude of the outgoing and incoming waves. A scattering matrix can

be defined relating the incoming and outgoing waves of the assembly by (Harland et al., 2001;

Fabro et al., 2015)

[

a+
2

b−

1

]

=

[

r+ t+

t− r−

] [

a−

2

b+
1

]

, (6)

where r± are reflection matrices and t± are transmission matrices. They can be obtained from

the equilibrium and continuity conditions at the beams connections and the wave propagation

along the metamaterial beam. The full derivation is presented in the Appendix. Assuming a−

2 =
0, i.e., a incident wave on the left end only, then the scattering simplifies to a+

2 = t+b+
1 and

b−

1 = r−b+
1 . Therefore, the transmission coefficient t+ can be used as to access the vibration

attenuation of the metamaterial beam in the assembly.

In this case, the reflection and transmission matrices are size 3×3 and relate the longitudinal,

propagating flexural and non-propagating flexural (near field) wave amplitudes at the both sides

of the assembly. For α1 = α2 = 0, i.e., a straight assembly, no wave mode conversion is ex-

pected and these matrices are diagonal. However, for α1 6= 0 and α2 6= 0, they are full matrices

and wave mode conversion plays a role on the metamaterial vibration attenuation performance.

Moreover, asymmetries in the assembly can be given by differences in the connection angle, i.e.

α1 6= α2, and also play a role on the reflection coefficients r±, while t+ = t− due to reciprocity.

3 PROBABILISTIC MODELLING

Two cases are considered in the analysis. In the first, it defined that the first connection angle

α1 is fixed while α2 = α1 + θ, where θ is a sample of the random variable Θ. In the second

case, it is considered that both connection angles α1 and α2 can be modelled by the random

variables A1 and A2, respectively. For each analysis case, some probabilistic models are defined
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in the following section such that the probability distribution of the random variables take in to

account typical physical constrains of the problem.

3.1 Maximum Entropy based probabilistic models

Typically, manufacturing processes can only guarantee minimum θ1 and maximum θ2 values

from the tolerances in the assembly process. It is also reasonable to assume that the angles in

both connections are not correlated. Given the lack of any experimental information, the Max-

imum Entropy principle (J.N. Kapur and H. K. Kesavan, 1992; Cursi and Sampaio, 2015) for

modelling a random variable namely is applicable. In this sense, two possible probability den-

sity functions (PDF) are derived from this principle for increasing level of available information,

considering only the upper and lower bounds, the mean value and the standard-deviation.

The first model is given by the Uniform distribution, for the case when only the lower bound

θ1 and the lower bound θ2 of the random variable are know. The PDF of the random variables

Θ, A1 and A2 is defined by

f
(1)
Θ,A1,A2

(x) =
1

θ2 − θ1
, θ1 ≤ x ≤ θ2, (7)

The second model assumes, the Beta distribution of the first kind, is found from the Maxi-

mum Entropy principle when the statistical moments E[ln x] and E[ln(1−x)] are known, where

E[·] is mathematical expectation. They allow the description of the problem in terms of a mean

value µ̄ and a standard-deviation σ̄, which are more practical for engineering applications. The

Beta distribution of the first kind is given by

f
(2)
Θ,A1,A2

(x) =
(x− a)α−1(b− x)β−1

B(α, β)(b− a)α+β−1
, a ≤ x ≤ b, (8)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the Beta function, Γ(z) =
∫

∞

0
xz−1 exp(−z)dx is the

Gamma function and α and β are real positive shape parameters. Typical functions for Beta

distributed sampling usually generate random samples for a = 0 and b = 1, given the shape

parameters α and β. In this case, a rescaling is necessary such that α = ((1− µ)/σ2 − 1/µ)µ2

and β = α(1/µ − 1), where µ = (µ̄ − a)/(b − a) and σ = σ̄/(b − a). The generated samples

are then added of a after being multiplied by (b− a).

4 NUMERICAL RESULTS

In this section, numerical results are presented considering the metamaterial beam assembly.

Both bare beams and metamaterial beam are assumed to be composed of polyamide. It is

assumed that the presented metastructure has similar design and proprieties of the metamaterial

beams proposed by Beli et al. (2019).

Figure 2 presents the real and imaginary part of the longitudinal and flexural wavenumber

for the metamaterial beam and the absolute value of the transmission coefficient, considering

α1 = α2 = 0, i.e., a straight assembly. For a lossless waveguide, the wavenumber can be real,

leading to a propagating wave, imaginary, giving a decaying or evanescent wave, or complex,

which has both behaviours, i.e. propagating and decaying. The imaginary part of the dispersion

curve (negative values) shows the frequency band in which there is vibration attenuation for

each wave mode, i.e. the band gap for longitudinal and flexural waves. Note that the wave

types do not interact because the axial and flexural vibration are considered uncoupled at the

metamaterial beam. This is also noticed in the absolute value of the transmission coefficient,

Mecánica Computacional Vol XXXVII, págs. 639-648 (2019) 643

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



which shows a very low transmission at the band gap frequencies for each individual wave

mode. Additionally, from the dispersion curve it can be seen that the group velocity cg = ∂ω/∂k
is zero at the resonator frequency and it is negative at the band gap, meaning that the velocity of

energy transport is in the negative direction and therefore can be interpreted as a negative-going

wave (Mace, 2014). A similar behaviour is found from the analysis of the propagation constant

of the equivalent periodic structure (Beli et al., 2019) and it is usually observed in homogeneous

structures (Graff, 1991).
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Figure 2: (left axis) Real and imaginary parts of the longitudinal (red) and flexural (black)

wavenumbers for the bare beam (solid line) and metamaterial beam (dashed line) and (right

axis) absolute value of the transmission coefficient considering α1 = α2 = 0.

4.1 Stochastic analysis

The effects of uncertainties on α1 and α2 at the wave mode conversion and the band gap

performance are also investigated. For both considered cases, i.e. models with random variables

Θ and A1 and A2, each probabilistic model considered that α1 = α2 = 0, i.e. a straight assembly,

with θ1 = −π/10, θ2 = π/10 for the uniform PDF f
(1)
Θ,A1,A2

(x) and θ1 = −π/10, θ2 = π/10,

µ̄ = 0, σ̄ = 0.05π for the Beta of the 1st kind PDF f
(2)
Θ,A1,A2

(x). Moreover, for the stochastic

analysis, 5,000 MC samples are used which is enough for the mean-square convergence.

For the first considered case, i.e. random variable Θ, Figures 3 to 4 present the estimated

PDFs of the absolute value of the longitudinal and flexural transmission coefficient as a function

of the frequency assuming f
(1)
Θ (x) and f

(2)
Θ (x), respectively. These results were obtained using

the Matlab function ksdensity. The light-grey colours represent the most probable values for the

coefficients while the dark-grey colours indicates the least probable values. It can be noticed

that the nominal response is not representative of the most probable values of both coefficients

in all of the frequency band but at the band gap. Therefore, the deterministic analysis is not

representative of the typical behaviour of the transmission coefficient outside of this regions.

In fact, the results show that the nominal response gives the upper bounds of the MC samples

outside the band gap regions in both cases, while it is representative of the mean response in the

band gap regions. The nominal model cannot capture the wave mode conversion occurring due
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to the random variation of the connection angles and it cannot predict the improved attenuation

features observed in these cases.

For the second case, i.e. assuming random variables A1 and A2, Figures 5 and 6 show the

estimated PDFs of the absolute value of the transmission coefficients.

Moreover, the choice of sets of random variable played a much more important role in the

results than the probabilistic models for the random variables. Note that changing from uni-

form to Beta of the first kind affects the mean values and the tails of the distribution of the

results. The model considering both connection angles and uncertainty introduced qualitative

changes on the response, with frequency bands with increased attenuation performance. This

is because the wave mode conversion between longitudinal and flexural waves could occur at

both connections.
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Figure 3: PDF and mean value (blue line) of the absolute value of the longitudinal (left) and

flexural (right) transmission coefficients considering α1 = α2 = 0 and Θ. Uniform PDF f
(1)
Θ (x).

5 CONCLUDING REMARKS

The wave attenuation performance of a metamaterial beam assembly is investigated consid-

ering uncertain connections. It is assumed a large enough number of identical resonators such

that and effective longitudinal and flexural wavenumbers are derived. Wave modes are assumed

unchanged by the attachments and then analytical expressions can be derived. The reflection

and transmission properties of the assembly are be calculated and it is shown that the angle of

the assembly has a significant effect on the band gap performance.

The uncertainty analysis focus on the variability of the connection angles and ensemble

statistics are investigated. Monte Carlo sampling is used as the stochastic solver. It is shown

that the deterministic analysis is not representative of the typical behaviour of the transmission

coefficient outside the band gap region. In this case, the nominal response gives the upper

bounds of the MC samples outside the band gap regions in both cases, while it is representative

of the mean response in the band gap regions.

Most importantly, it is shown that the nominal model, which does not include variability in

the connections, cannot capture the wave mode conversion occurring due to the randomness of

the connection angles and it cannot predict the improved attenuation features observed in these
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Figure 4: PDF and mean value (blue line) of the absolute value of the longitudinal (left) and

flexural (right) transmission coefficients considering α1 = α2 = 0 and Θ. Beta of the first kind

PDF f
(2)
Θ (x).
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Figure 5: PDF and mean value (blue line) of the absolute value of the longitudinal (left) and

flexural (right) transmission coefficients considering the random variable of both connection

angles, A1 and A2. Uniform PDF f
(1)
A1,A2(x).

cases. Moreover, the choice of sets of random variable played a much more important role in

the results than the probabilistic models for the random variables.
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