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Abstract.
In recent years, disciplines such as transport, space, and civil engineering are using lighter structural

members to withstand the action of forces. On the one hand, this characteristic of structures results ad-

vantageous as smaller cross-sections are required, and therefore less material is used. On the other hand,

the reduction of self-weight added into the design load-state makes these elements prone to suffering

from strong undesired vibrations. Many different methods are addressed in the literature to mitigate

the effect of unwanted vibrations: the installation of mass-tuned-dampers, the addition of viscoelastic

materiales in the contact regions, friction dampers, or piezoelectric devices, among others. In this work

the coupling mechanism for a passive vibration system in a beam-like structure modelled via the special

theory of Cosserat rods is studied. The addition of a piezoelectric device in the mechanical structure is

considered as a means to reducing the unwanted vibration phenomena and leads to a coupled electrome-

chanical system. A procedure to derive the constitutive laws required for rod elements with mixed elastic

material and piezoelectric devices is herein discussed. The present methodology could also be used to

explore constitutive laws for different piezoelectric configurations, which could be of interest to control

unwanted torsional vibrations in rotating structures such as drill-strings.
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1 INTRODUCTION

Piezoelectric materials are widely used for many different applications in the area of vibra-

tion, measurement and control. The use of piezoelectric components can help achieve a desired

response of a structural member, as they can be used both as means to monitoring and con-

trolling flexible structures (Rao and Sunar, 2009). Many recent applications are also focused

in energy harvesting by means of piezoelectric devices such as MEMS, that capture ambient

vibrations (Erturk and Inman, 2011). Another interesting area of application is mechanical

vibrations, where these materials are being added to regular beam-like structures in order to

control unwanted vibrations, as shown in Ducarne (2009).

Two basic phenomena are involved in the behaviour of piezoelectric materials which allows

them to act as both sensors and actuators in a control system. The first one, the so-called

direct piezoelectric effect, implies that when a priezoelectric material is mechanically strained,

electric polarisation that is proportional to the applied strain is induced. Therefore, some charge

(or voltage) is induced under the application of a mechanical pressure. Conversely, the inverse

effect (sometimes also called converse or reverse effect) implies that some imposed charge or

voltage will provoke a reaction generating a mechanical strain (Erturk and Inman, 2011).

Piezoelectric components can be used in regular structures to reduce vibrations, and particu-

larly in conjunction with passive electrical circuits so as to obtain the same efficiency as active

vibration control, without the associated complexity and energy consumption (Ducarne, 2009).

Most of the applications of piezoelectric devices are limited to small strain and small dis-

placement conditions. The objective of this work is to describe the necessary foundations to

modelling piezoelectric devices in beam-like structures that can undergo large displacements,

such as the Cosserat rod theory. The main idea is to obtain the necessary equations to deal

with coupled electromechanical problems for this kind of structures. In a future work, it would

be interesting to investigate the effect of different piezoelectric configurations in the control of

axial, transverse and torsional vibrations, for which the constitutive relations can be derived in

an analogous manner. For the time being, only the case of a piezoelectric devise polarised in

the longitudinal axis will be analysed. Therefore the formulation provided can be used in the

analysis of axial-transverse vibrations. The present formulation will be derived from the known

3D linear constitutive relations by imposing a set of hypothesis on the kinematic displacements.

A rod-like structure formed of layers of either elastic material or piezoelectric components

is considered. For this reason, the constitutive expressions for both parts are described.

2 CONTINUUM MECHANICS NOTATION AND MATERIAL FORM OF ELECTRIC

EQUATIONS

In the present work, the constitutive relations for rods are derived parting from known 3D

constitutive expressions for linear piezoelectric materials. The objective is to obtain the relation-

ship between stress, strain, electric field, and electric displacement in a Cosserat rod medium,

considering large displacements and small strains. For this task it will be necessary to introduce

some notation from continuum mechanics. The book by Gurtin et al. (2009) provides a detailed

demonstration and definition of each of the magnitudes employed in the present work.

Let B be a body in the reference configuration (which is arbitrary) in the euclidean space E ,

then the set of points that the body occupies are called material points and described by vector

X.

A motion of B is a smooth function χ that assigns a point to each material point at a given

time. The current point (current configuration) can then be described as x = χ(X, t) in the
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current space (or observed space). With this notation, the deformation gradient F and its deter-

minant J are defined as follows

F = ∇x, (F)ij =
∂xi

∂Xj

J = det(F) (1)

Then, the following relations between the Cauchy T, First Piola TR and Second Piola TRR

stress tensors exist.

TR = FTRR, T = J−1FTTR (2)

Next, the right Cauchy-Green tensor is defined in terms of the deformation gradient as C =
FTF, and the Green-St.Venant strain tensor is calculated as E = 1

2
(C−I), where I is the identity

matrix. In the previous notation, no superscript (·) is used to refer to pure spacial objects, and

the superscripts (·)R and (·)RR are used to refer to mixed objects and pure material objects,

respectively. The notation (·)RR is reserved to pullbacks of objects that originally belonged to

the current space, while the superscript (·)o is reserved to objects that belong to the material

space.

Later on, the constitutive relation for the piezoelectric layers will be expressed in its ma-

terial form. Following (Yang, 2005), the electric displacement D and the electric field E are

transformed from pure material to mixed and spacial fields, as expressed next.

D
R = FDRR, D

R = JF−1
D (3)

E
R = FERR, E

R = JF−1
E (4)

3 CONSTITUTIVE LAW FOR A COSSERAT MEDIUM WITH ELASTIC MATERI-

ALS IN CROSS-SECTIONS WITH DOUBLE SYMMETRY

In this section, a procedure to deduce a constitutive law for an elastic material in rod theories

following Linn et al. (2013) and Géradin and Cardona (2001) is presented. The law is derived

parting from a known 3-D constitutive relation for for hyper-elastic material, i.e. where the

stress-strain relation can be stated in terms of a strain energy density function. For such case,

the constitutive law can be stated in terms of the second Piola tensor TRR, the Green-St. Venant

tensor E, and the Lamé constants µ and λ (Gurtin et al., 2009).

TRR = 2µ E + λ tr(E) I (5)

The flowchart presented in Fig. 1 shows the steps involved in the derivation procedure.

3.1 Kinematic assumptions

The first step to deriving a constitutive model for rods is to introduce some kinematic as-

sumptions for the kinematics of the body. Those assumptions will help simplify the expressions

involved in the dynamics, and they are the key to describing the behaviour of a 3D body by

means of a 1D domain. A common hypothesis employed in many beam theories is adopted:

points that lie in the cross-section behave as rigid bodies. Therefore, cross-sections do not

change shape but only orientation. Then, the kinematics of the body can be described by defin-

ing the position of the centreline and the orientation of the cross-sections.
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Figure 1: Description of the required steps to find a constitutive relation for 1D rod type theories.

A sketch of the rod at different times in the current configuration is presented below. For the

current derivation, it is considered that the reference local frame coincide with the fixed frame,

and that the reference configuration coincides with the current configuration at time t = 0 s, as

shown in Fig 2.

r

d
1

d
3

d
2

C

L
z

ro

e
1
≡ d

1

e
3
≡ d

3

e
2
≡ d

2

zo

o

o

o

Figure 2: Sketch of the rod at different times, with the correspoding current local frames, and reference local and

fixed frames.

Next, the displacement field for the 3-D body is stated in terms of the generalised coordinates

that will be adopted for the rod theory.

In accordance to Fig. 2, let C and L be the centreline curves in the reference and cur-

rent space. The unit vectors do
i , di define a base in the reference and current space respec-

tively. These are local bases that change orientation at each point of the centreline, alike the

H.E. GOICOECHEA MANUEL, R. LIMA, R. SAMPAIO, F.S. BUEZAS, M.B. ROSALES738

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Frenet-Serret frame employed in differential geometry. Also, let ei define an inertial base in the

reference configuration.

In the reference configuration, the position of any point can be described as

X = ro(so) + zo(ζ1, ζ2) = ζ1e1 + ζ2e2 + soe3 (6)

In the previous expression, so, ζ1, ζ2 are the components of the position vector of any point

on the reference configuration, expressed in the inertial frame ei.

Next, let Q(so) be a rotation matrix. Due to the kinematic assumptions, if the cross-sections

behave as rigid bodies, then the current configuration can be described in terms of the current

centreline position and the rotated coordinates of the points that lay on the associated cross-

section.

x = r(so) + Q(so)z0(ζ1, ζ2) (7)

3.2 The displacement gradient measure of deformation tensor

The displacement gradient measure of deformation tensor D introduced in Géradin and Car-

dona (2001), establishes a comparison in the material space between the position gradient be-

fore and after the deformation. This tensor provides a useful way to express the deformation

gradient, and to introduce the hypothesis of small-strain.

D = QT ∂x

∂X
− ∂X

∂X
= QTF − I (8)

For the given kinematic assumptions, the tensor D is expressed as

D =











| | |
0 0 D3

| | |











=











0 0 (D)31

0 0 (D)32

0 0 (D)33











(9)

with

D3 = QT ∂x

∂so
− ∂X

∂so
= QT

(∂ro

∂so
+

∂Q

∂so
zo
)

− ∂X

∂so
(10)

As presented in (Cao and Tucker, 2008; Goicoechea et al., 2019), the variation of the direc-

tors within the arc-length can be stated in the following form

∂di

∂so
= u × di,

∂Q

∂so
= u × Q (11)

It is then shown that the previous tensor QT (u×)Q is also skew-symmetric and can be written

in the form of (ũ×). The relation between u and ũ is stated next.

(QTu)× = QT (u)×Q = (ũ)× (12)

Introducing the notation vR =
∂r(so)

∂so
and vRR = QTvR, D3 is written as follows

D3 = vRR − e3 + (ũ×) zo (13)
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Next, from the previous definition for D, it is possible to find an expression for the deforma-

tion gradient F.

F = ∇x =
∂x

∂X
= Q

(

D + I
)

(14)

3.3 Right Cauchy-Green tensor

The right Cauchy-Green tensor is calculated in what follows, by employing expression (14).

C = FTF =
(

DT + I
)

QTQ
(

D + I
)

= D + DT + DTD + I (15)

A small deformation hypothesis implies that ||D||F → 0, where || · ||F =
√
D : D =

√
DTD

is the Frobenius norm. For a linear theory, only the terms that are of order o(||D||F)are kept. It

should be noted that the third term DTD introduces a quadratic term of order o2(||D||F) and is

negligible. Therefore C is expressed as

C = FTF ≈ D + DT + I (16)

3.4 Green-St. Venant strain tensor

Following, the Green-St.Venant tensor is calculated.

E =
1

2

(

C − I
)

=
1

2

(

D + DT
)

=







0 0 1

2
(D)31

0 0 1

2
(D)32

1

2
(D)31

1

2
(D)32 (D)33






(17)

3.5 3D constitutive for an elastic material

The derivation of the following 3D constitutive relation for an elastic material can be in any

textbook from continuum mechanics such as (Gurtin et al., 2009). The parameters Ey, µ = Gy,

λ, ν are elastic constants.

TRR = 2µ E + λ tr(E) I, µ =
Ey

2(1 + ν)
, λ =

ν Ey

(1 + ν)(1− 2ν)
(18)

3.6 First Piola Tensor - Elastic material

The expression for the first Piola stress tensor is obtaned in what follows. With the previous

hypothesis, the deformation gradient tensor is stated as

F = Q
(

D + I
)

≈ Q (19)

Then if ν = 0, the hypothesis is compatible with the fact that cross-sections behave as rigid

bodies, λ = 0 and µ = Ey/2 = Gy.

TR = F TRR = Q TRR = Q Ey E =







0 0 Gy(D)31

0 0 Gy(D)32

Gy(D)31 Gy(D)32 Ey(D)33






(20)
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Next, the traction vector t is obtained and integrated over the reference cross-section Ao, in

order to find the expressions for the internal forces n and moments m acting at each point of the

rod.

tR = TR
η
R = TR







0

0

1






= Q(so)







Gy (D)31

Gy (D)32

Ey (D)33






(21)

nR =

ˆ

Ao

tR dAo = Q

ˆ

Ao

tRR dζ1dζ2 = Q nRR (22)

From (13), the vector D3 has the following expression

D3 =
(

vRR − e3

)

+
(

ũ × zo
)

(23)

For the case of a cross-section with double symmetry with respect to {e1, e2}, the area inte-

gral of the third term of (23) results in an even function evaluated in symmetric boundaries, and

therefore vanishes.

ˆ

Ao

ũ × zo dζ1dζ2 = (ũ×)

ˆ

Ao

zo dζ1dζ2 = 0 (24)

and the following expressions also hold
ˆ

Ao

(vRR − e3) ζ1 dζ1dζ2 =

ˆ

Ao

(vR − e3) ζ2 dζ1dζ2 = 0 (25)

The internal forces and moments acting on the cross-section are calculated hereunder.

nRR =















ˆ

Ao

Gy (D)31dζ1dζ2
ˆ

Ao

Gy (D)32dζ1dζ2
ˆ

Ao

Ey (D)33dζ1dζ2















=











Gy A
(

(vRR)1 − (e3)1

)

Gy A
(

(vRR)2 − (e3)2

)

Ey A
(

(vRR)3 − (e3)3

)











=











Gy A
(

(vRR)1 − 0
)

Gy A
(

(vRR)2 − 0
)

Ey A
(

(vRR)3 − 1
)











(26)

mRR =















ˆ

Ao

Ey (D)33ζ2dζ1dζ2

−
ˆ

Ao

Ey (D)33ζ1dζ1dζ2
ˆ

Ao

(

Gy (D)32ζ1 −Gy (D31)ζ2

)

dζ1dζ2















=







Ey J11 (ũ)1

Ey J22 (ũ)2

Gy J0 (ũ)3






(27)

Finally, nRR and mRR are the desired constitutive relations expressed in the material frame,

as expressed in (26) and (27).

4 CONSTITUTIVE FOR A COSSERAT ROD WITH A LINEAR PIEZOELECTRIC

MATERIAL

The 3D constitutive relations for some piezoelectric materials are presented in (Yang, 2005).

TRR = C
EE − eTERR

D
RR = eE + ǫEERR

(28)
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Regular notation (·)ij or (·)kl: (·)11 (·)22 (·)33 (·)23 or (·)32 (·)13 or (·)31 (·)12 or (·)21
Voigt notation (·)p or (·)q : (·)1 (·)2 (·)3 (·)4 (·)5 (·)6

Table 1: Index notation convention to represent Cijkl, eikl into the reduced Voigt notation form Cpq , eiq .

In general, the form of the constitutive law can be expressed as in (28), where C
E is the

elastic moduli tensor, e is the piezoelectric constants tensor, and ǫS are dielectric constants. The

superscript E in C
E indicates that the independent electric constitutive variable is the electric

field. The superscript eE indicates that the mechanical constitutive variable is the strain (Green-

St. Venant) tensor E.

Next, the previous equations are expressed in matrix form. For this task, the following

compact notation Cijkl → Cpq and eikl → eip has been employed, where the indices ij or kl are

transformed into p or q indices following the Voigt notation indicated in Table 1.

For the particular case of a ceramic poled along the x-axis (or 1-axis in our current notation),

the constitutive relation is expressed in matrix below.





































(TRR)11

(TRR)22

(TRR)33

(TRR)23

(TRR)13

(TRR)12

(DRR)1

(DRR)2

(DRR)3





































=





































C
E

33 C
E

13 C
E

13 0 0 0 −e33 0 0

C
E

13 C
E

11 C
E

12 0 0 0 −e13 0 0

C
E

13 C
E

12 C
E

11 0 0 0 −e13 0 0

0 0 0 C
E

66 0 0 0 0 0

0 0 0 0 C
E

44 0 0 0 −e15

0 0 0 0 0 C
E

44 0 −e15 0

e33 e31 e31 0 0 0 ǫE33 0 0

0 0 0 0 0 e15 0 ǫE11 0

0 0 0 0 e15 0 0 0 ǫE11









































































(E)11

(E)22

(E)33

(E)23

(E)13

(E)12

(ERR)1

(ERR)2

(ERR)3





































(29)

The beam will be considered built in multiple layers as shown in Fig. 3. The position of the

face i-th interface between layers is denoted by κi.

κ
N

κ
N-1

κ
0

κ
1

κ
i

e
1

e
3

e
2

Figure 3: Sketch. Piezoelectric layers in a Cosserat rod.

Now, going back to tensor notation, the second Piola stress TRR and the material pullback of

the traction vector tRR can be written as follows

TRR =







C
E

13(E)33 − e33E
RR
1 0 C

E

44(E)13

0 C
E

12(E)33 − e31E
RR
1 C

E

66(E)23

C
E

44(E)13 C
E

66(E)23 C
E

11(E)33 − e31E
RR
1






(30)
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tRR = TRR
η
R







C
E

44(D)31

C
E

66(D)32

C
E

11(D)33 − e31(E
RR)1






=







C
E
44(D)31

C
E
66(D)32

C
E
11(D)33






+







0

0

−e31(E
RR)1






(31)

Integrating the previous expression for the cross-section, the constitutive relations for the

internal forces in a Cosserat medium are obtained.

nR =

ˆ

Ao

tR dAo = Q

ˆ

Ao

tRR dζ1dζ2 = Q nRR (32)

The traction tRR is composed of a mechanical term and an electrical term, as shown in (31).

In particular, the first integral has already been solved for the case of a pure elastic rod in (26),

so only the second term remains to be analysed. Remembering that the electric field can be

derived from a potencial function, ERR
1 = − ∂φ

dζ1
, and that the electric field is constant

ˆ

Ao

−e31E
RR
1 dζ1ζ2 =

ˆ

Ao

e31
∂φ

dζ1
dζ1ζ2 =

∑

i

ekb Vk (33)

nRR =











C
E
44 A

(

(vRR)1 − 0
)

C
E
66 A

(

(vRR)2 − 0
)

C
E
11 A

(

(vRR)3 − 1
)











+









0

0
∑

i

ekb Vk









(34)

Next, the moments produced by the previous stresses are calculated.

mRR =

















ˆ

Ao

(

C
E

11(D)33 − e31(E
RR)1

)

ζ2 dζ1dζ2
ˆ

Ao

−
(

C
E

11(D)33 − e31(E
RR)1

)

ζ1 dζ1dζ2
ˆ

Ao

(

−
(

C
E

66(D)31

)

ζ2 +
(

C
E

44(D)32

)

ζ1

)

dζ1dζ2

















(35)

Once again, the previous expression can be divided into a mechanical and an electrical effect.

The mechanical term has already been solved in (27). Then, considering that ERR
1 is constant

within each layer, and that each piezoelectric patch is located at κi−1 ≤ ζ1 ≤ κi and −bi/2 ≤
ζ2 ≤ bi/2, with hi = κi − κi−1, i = {0, 1, ..., N}, and li ≤ S0 ≤ lj , where li and lj define the

location of the piezoelectric patch in relation to the reference arc-length.

−
∑

i

ˆ κi

κi−1

ˆ bi/2

−bi/2

e31(E
RR)1ζ1dζ2dζ1 =

∑

i

biei
∂φ

∂ζ1

ζ22
2

∣

∣

∣

∣

∣

κi

κi−1

=
∑

i

eibi
κi−1 + κi

2
Vi (36)

mRR =







Ey J11 (ũ)1

Ey J22 (ũ)2

Gy J0 (ũ)3






−











0
∑

i

eibi
xi−1 + xi

2
Vi

0











(37)

Equations (34) and (37) provide the coupled electro-mechanical constitutive equations for

the linear and momentum balances in Cosserat rods.
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Finally, to complete the derivation, the required constitutive relations for the electrical circuit

are sought. The hypothesis that e15 = 0 is used, which is consistent with the material PIC151

(PICeramic, 2018) employed in (Ducarne, 2009).

D
RR =







e31(E)33 + ǫE33(E
RR)1

0

e15(E)13






=







e31(E)33 + ǫE33(E
RR)1

0

0






(38)

The charge Qk of the k-th piezoelectric patch is, by definition, the amount of free electrical

charges within one of the electrodes. For every patch, the superior electrode is chosen to perform

the calculation.

Applying the Gauss theorem in terms of charge displacement, the following equation holds

Qk =

‹

D
RR · ηRdAo =

˚

ρRv dΩ
R (39)

The vector DRR vanishes inside the electrode. In order to calculate the previous integral, a

Gaussian pillbox in the vicinity of the surface of the electrode at κ− < κk < κ+ is considered.

In the present analysis, it is considered that the piezoelectric patches are placed in such way that

electrodes are not shared among piezoelectric layers, nor in contact with an insulator where a

non-negligible charge displacement exists. With such considerations, the previous integral van-

ishes at every face of the pillbox but the lower side, whose exterior normal is ηR = (−1, 0, 0)′.

Qk =

¨

−(DRR)1dζ2ds
o

= −
¨

(

e31(E)33 + ǫE33(E
RR)1

)

dζ2ds
o = I1 + I2

(40)

In what follows, the following reduced nomenclature will be used for the material properties

of the k-th layer: ek = e31k, ǫk = ǫ33
E
k , Ck =

ǫklkb

hk

, Ξk = bek.

I2 = −
ˆ lj

li

ˆ bi/2

−bi/2

ǫE33(E
RR)1dζ2ds

o =

ˆ lj

li

ǫkb
dφ

dζ1
dso (41)

I1 = −
ˆ lj

li

ˆ bi/2

−bi/2

e31(E)33dζ2ds
o

= −
ˆ lj

li

ˆ bi/2

−bi/2

e31

(

vR − e3

)

3

dζ2ds
o −
ˆ lj

li

ˆ bi/2

−bi/2

e31

(

ũ × zo
)

3

dζ2ds
o

= I1A + I1B

(42)

I1A = −
ˆ lj

li

ˆ bi/2

−bi/2

bek(v
R − e3)3ds

o

= −
ˆ lj

li

Ξk(v
R − e3)3ds

o

(43)

I1B = −
ˆ lj

li

ˆ bi/2

−bi/2

e31

(

ũ × zo
)

3

dζ2ds
o

=

ˆ lj

li

bek(ũ2)ζ1ds
o

(44)
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Qk = I1A + I1B + I2

= −
ˆ lj

li

Ξk(v
R − e3)3 dso +

ˆ lj

li

Ξkζ1(ũ)2 + ǫklkb
dφ

dζ1

(45)

Integrating over the height of the patch, an expression for the potential difference generated

by the presence of the piezoelectric is obtained. This is the constitutive relation (coupling term)

that will be introduced in an electrical circuit that is connected to the patch.

Vk =
1

Ck

Qk +
1

Ck

ˆ lj

li

Ξk(v
RR − e3)3ds

o − 1

Ck

ˆ lj

li

Ξk
xi + xi−1

2
(ũ)2ds

o (46)

5 CONCLUSIONS

The constitutive relations for both an elastic medium and a piezoelectric layer have been

derived, which allows modelling a rod with both elastic materials and piezoelectric patches. The

expressions for the constitutive relations the elastic layers are given by (26) and (27), and for

the piezoelectric patches (or layers) they follow (34), (37) and (46). Furthermore, it is observed

that the mathematical expressions for the constitutive relations on a piezoelectric patch has the

same structure as that of an elastic material, if the coupled electrical terms are neglected.
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