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Abstract. We present an adaptive algorithm for solving linear parabolic equations using hierarchical

B-splines and the implicit Euler method for the spatial and time discretizations, respectively. Our de-

velopment improves upon one from 2018 from Gaspoz and collaborators, where fully discrete adaptive

schemes have been analyzed within the framework of classical finite elements. Our approach is based

on an a posteriori error estimation that essentially consists of four indicators: a time and a consistency

error indicator that dictate the time-step size adaptation, and coarsening and a space error indicator that

are used to obtain suitably adapted hierarchical meshes (at different time-steps). Even though we use

hierarchical B-splines for the space discretization, a straightforward generalization to other methods,

such as FEM, is possible. The algorithm is guaranteed to reach the final time within a finite number of

operations, and keep the space-time error below a prescribed tolerance. Some numerical tests document

the practical performance of the proposed adaptive algorithm.
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1 INTRODUCTION

In this article we propose an adaptive method for solving numerically equations of the type:

{

ut + Lu = f in ΩT , u = 0 on ∂Ω× (0, T )

u(·, 0) = u0 in Ω
(1.1)

where Ω ⊂ R
d is a Lipschitz domain, T > 0, ΩT = Ω×(0, T ), f ∈ L2(ΩT ) = L2(0, T ;L2(Ω)),

u0 ∈ L2(Ω) and L denotes the second order elliptic operator Lu = − div(A∇u) + cu, with

A : Ω→ R
d × R

d smooth, symmetric and uniformly elliptic, and c ∈ L∞(Ω) is nonnegative.

For the spatial error estimation we use the function based a posteriori error indicators for

hierarchical B-spline discretizations of elliptic problems introduced in Buffa and Garau (2018)

and follow the ideas in Kreuzer et al. (2012) and Gaspoz et al. (2018) for the design of the time

stepping adaptive method, which we improve in several aspects. We use the data structures and

some algorithms from Garau and Vázquez (2018) for the implementation.

In this article we will present the main ideas leading to the adaptive algorithm and its analysis,

and leave the details and most proofs to a forthcoming paper.

2 PROBLEM SETTING

We now introduce the weak formulation of problem (1.1). Let V := H1
0 (Ω) and B : V×V→

R be the bilinear form associated to the operator L:

B[u, v] =

ˆ

Ω

A∇u · ∇v + cuv, ∀u, v ∈ V. (2.1)

Let

W(0, T ) := {u ∈ L2(0, T ;H1
0 (Ω)) | ∂tu ∈ L2(0, T ;H−1(Ω))}, (2.2)

which is a Banach space equipped with norm ‖v‖2
W(0,T ) :=

´ T

0
(‖∂tv‖2H−1(Ω) + |||v|||

2) dt +

‖v(T )‖L2(Ω), where |||v|||2 := B[v, v] and ‖g‖H−1(Ω) := supv∈H1
0 (Ω)

〈g,v〉
|||v|||

.

We say that u ∈W(0, T ) is a weak solution of (1.1) if

(i) 〈∂tu(t), v〉+B[u(t), v] = 〈f(t), v〉Ω, ∀ v ∈ V and a.e. t ∈ (0, T ),

(ii) u(0) = u0. (This equality is well defined because W(0, T ) ⊂ C([0, T ];L2(Ω))).

3 SPACE-TIME DISCRETIZATION

The adaptive algorithm produces a partition 0 = t0 < t1 < · · · < tN = T of the time interval

into subintervals In = [tn−1, tn] with corresponding local time-step sizes τn = |In| = tn− tn−1,

n = 1, 2, . . . , N , which are obtained adaptively.

The algorithm starts with U0 = U∗
0 ∈ V

∗
0 = V0, an approximation of the initial value

u0, where V
∗
0 is a finite dimensional subspace of H1

0 (Ω). In this article we will work with

hierarchical spline spaces Vn := spanHn with Hn a hierarchical B-spline basis associated to

a hierarchical mesh Qn defined in Ω; but there is no essential impediment to work with other

discretizations offering the possibility to perform adaptivity through refinement and coarsening.

For each n ∈ N, the algorithm then leads to a space Vn ⊃ V
∗
n−1 and computes Un ∈ Vn as

the solution of the following modified implicit Euler scheme :

1

τn
〈Un − U∗

n−1, V 〉Ω +B[Un, V ] = 〈fn, V 〉Ω, ∀V ∈ Vn, with fn :=

 

In

f(t) dt. (3.1)
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Once Un ∈ Vn has been computed, the algorithm adaptively coarsens the space Vn leading to

a space V
∗
n ⊂ Vn and a still suitable representation U∗

n ∈ V
∗
n of Un; the goal of this coarsening

step is to reduce the amount of data used to store Un, while keeping a good approximation.

Notice that choosing U∗
n as the L2-projection of Un onto V

∗
n we obtain the method presented

in Kreuzer et al. (2012); Gaspoz et al. (2018). However, we do not recompute U∗
n when the

space Vn+1 is being obtained through refinement of V∗
n, nor we store Qn in memory to keep

full information of Un. We only need to store U∗
n in the hierarchical space associated to Q∗

n

and refine this mesh to obtain Qn+1 and the corresponding space Vn+1. This is an essential

advantageous difference to Kreuzer et al. (2012); Gaspoz et al. (2018).

In order to measure the error we define the discrete solution U ∈W(0, T ) as

U(t) := t− tn−1

τn
Un +

tn − t

τn
Un−1, for t ∈ In, n = 1, . . . , N. (3.2)

4 A POSTERIORI ERROR ESTIMATION: UPPER BOUND FOR THE ERROR

The adaptive algorithm is based on the following a posteriori error indicators:

• Initial error indicator: E20 = ‖U0 − u0‖2L2(Ω).

• Coarsening error indicator: E2c (n) = 2τn
∣
∣
∣
∣
∣
∣U∗

n−1 − Un−1

∣
∣
∣
∣
∣
∣
2
.

• Time error indicator:

E2τ (n) = 2τn
∣
∣
∣
∣
∣
∣U∗

n−1 − Un

∣
∣
∣
∣
∣
∣
2
. (4.1)

• Spatial error indicator: We consider, for each β ∈ Hn,

E2Hn
(β) := τnCUaβh

2
β

ˆ

suppβ

|f − 1

τn
(Un − U∗

n−1) + div(A∇Un)− cUn|2β,

where Un ∈ Vn is the solution of the discrete elliptic problem

〈 1
τn
Un, V 〉Ω +B[Un, V ] = 〈 1

τn
U∗
n−1 + fn, V 〉Ω, ∀V ∈ Vn.

If un ∈ H1
0 (Ω) is the weak solution to the elliptic equation

− div(A∇un) +

(

c+
1

τn

)

un = f +
1

τn
U∗
n−1 in Ω, un = 0 on ∂Ω, (4.2)

then {EHn
(β)}β∈Hn

are the local error estimators from Buffa and Garau (2018) corre-

sponding to this elliptic problem and τn|||un − Un||| ≤
(
∑

β∈Hn
E2Hn

(β)
) 1

2
=: EH(n).

• Interpolation error indicator: E2I(n) = ‖Un−1 − U∗
n−1‖2H−1(Ω).

• Consistency error indicator: E2f (n) =
´

In
‖f − fn‖2L2(Ω) dt.

The total error is bounded by the above defined error indicators, as stated in the following

theorem, whose proof follows the same lines in (Gaspoz et al., 2018, Proposition 3.4).

Theorem 4.1. Let u be the weak solution to problem (1.1) and let U be the discrete solution

defined by (3.2). Then,

‖u− U‖2
W(0,T ) ≤ E20 +

N∑

n=1

E2τ (n) + E2c (n) + E2H(n) + E2I(n) + E2f (n). (4.3)
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5 CONTROLLING THE CONSISTENCY ERROR INDICATOR

The following result is a consequence of (Gaspoz et al., 2018, Lemma 4.4) and allows us to

control the consistency error indicator.

Theorem 5.1. Given f ∈ L2(0, T ;L2(Ω)) and TOLf > 0, let 0 = s0 < s1 < · · · < sM = T
be a partition of [0, T ] such that

M∑

m=1

ˆ sm

sm−1

‖f − f[sm−1,sm)‖2dt ≤
TOL2

f

2
, with f[sm−1,sm) :=

 

[sm−1,sm)

f(t) dt. (5.1)

Let tol2f :=
TOL2

f

2(M−1)
. If 0 = t0 < t1 < · · · < tN = T is any partition of [0, T ] that satisfies

ˆ tn

tn−1

‖f − f[tn−1,tn)‖2dt ≤ tol2f , n = 1, 2, . . . , N, (5.2)

then,

N∑

n=1

ˆ tn

tn−1

‖f − f[tn−1,tn)‖2dt ≤ TOL2
f . (5.3)

Remark 1. Given TOLf > 0, it is easy to build a partition 0 = s0 < s1 < · · · < sM =
T satisfiying (5.1). Using a greedy algorithm we even obtain a quasi-optimal partition; see

Algorithm 1. This algorithm entails a substantial improvement over the TOLFIND algorithm

presented in Gaspoz et al. (2018), which is very expensive from the computational viewpoint.

Algorithm 1 compute_local_tolerance

Input: f , T , TOLf

1: e2 =
´ T

0
‖f − f[0,T ]‖2L2(Ω)

2: Partition = {0, T} % (s0 = 0, s1 = T )

3: M = 1; % Number of sub-intervals

4: while e2 >
TOL2

f

2
do

5: i = argmax1≤j≤M

´ sj

sj−1
‖f − f[sj−1,sj ]‖2L2(Ω)

6: Partition← Partition ∪
{si−1 + si

2

}

% Insert
si−1 + si

2
as a partition point.

7: M ←M + 1;

8: e2 =
M∑

j=1

ˆ sj

sj−1

‖f − f[sj−1,sj ]‖2L2(Ω)

9: end while

10: tolf =
√

TOL2
f

2max(1,M−1)
;

end

Output: tolf

Remark 2. Given f ∈ L2(0, T ;L2(Ω)) and tolf , there is a lower bound on τ in order to

fulfill (5.2). In fact, if 0 = t0 < t1 < · · · < tN = T is a partition of [0, T ] satisfying
´ tn

tn−1
‖f − f[tn−1,tn)‖2dt ≤ tol2f /2, n = 1, 2, . . . , N , then for any interval I ⊂ [0, T ] with

|I| ≤ τ∗ := minn=1,...,N tn − tn−1 we have
´

I
‖f − fI‖2 dt ≤ tol2f .
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6 CONTROLLING THE TIME ERROR INDICATOR

The next result follows the same lines as in Corollary 3.4 from Kreuzer et al. (2012).

Theorem 6.1. Let N ∈ N and {tn}Nn=0 be arbitrary time instances. Let τn := tn − tn−1 be the

time step sizes and Un ∈ Vn be the discrete solutions of (3.1), with U∗
n−1 ∈ Vn satisfying

∣
∣
∣
∣
∣
∣U∗

n−1

∣
∣
∣
∣
∣
∣
2 − |||Un−1|||2 ≤ τn−1, n = 2, . . . , N. (6.1)

Then,

N∑

n=1

∣
∣
∣
∣
∣
∣Un − U∗

n−1

∣
∣
∣
∣
∣
∣
2 ≤ ‖f‖2Ω×(0,tN ) + |||U0|||2 + T. (6.2)

We have also the following auxiliary result, whose proof follows as in (Kreuzer et al., 2012,

Proposition 3.3).

Lemma 6.2. Let N ∈ N ∪ {∞} and 0 = t0 < t1 < · · · < tN ≤ T be arbitrary time instances.

Let τn := tn − tn−1 be the time step sizes and Un ∈ Vn be the discrete solution of (3.1), with

U∗
n−1 ∈ Vn, for n = 1, 2, . . . , N . Then, for m = 1, . . . , N, there holds

m∑

n=1

1

τn
‖Un − U∗

n−1‖2 +
∣
∣
∣
∣
∣
∣Un − U∗

n−1

∣
∣
∣
∣
∣
∣
2
+ |||Un|||2 −

∣
∣
∣
∣
∣
∣U∗

n−1

∣
∣
∣
∣
∣
∣
2 ≤ ‖f‖2Ω×(0,tm).

7 ADAPTIVE ALGORITHM

We now present the main adaptive algorithm, which constructs a sequence of time instants

0 = t0 < t1 < · · · < tN = T and discrete approximations Un, so that the right-hand side

of (4.3) is bounded by the desired tolerance.

The main algorithm is ASTIGM (Algorithm 2), and consists of the following steps.

• First, the tolerance TOL is split into three parts TOL0, TOLf and TOLQ to account for

the different sources of error. TOL0 will bound the approximation of the initial data,

TOLf will be used as an input fo the routine compute_local_tolerance to set a local

tolerance for controlling the consistency error indicator. TOLQ will be an upper bound

for the errors due to time and space discretization, and properly scaled will be the input

of space_and_time_adaptation (Algorithm 3).

• Given TOLf > 0 we first compute tolf > 0 using the routine compute_local_tolerance

as explained in Section 5, such that E2f (n) ≤ tol2f , n = 1, 2, . . . , N =⇒ ∑N

n=1 E2f (n) ≤
TOL2

f .

• We next call the module consistency which just sets τ1 as an upper bound for the first

timestep so that Ef (1) =
(
´ t0+τ1

t0
‖f − f1‖2L2(Ω) dt

) 1
2 ≤ tolf holds.

• The initialization step ends with a call to adapt_initial_mesh, which adaptively refines

the meshQinit to getQ0 = Q∗
0 and U0 = U∗

0 ∈ spanH0, whereH0 = H∗
0 is the hierarchi-

cal basis corresponding to Q0, such that

‖u0 − U0‖ ≤ TOL0 . (7.1)

• Next, we repeat the following steps.
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– Given a mesh Q∗
n−1, a hierarchical basis H∗

n−1, and the corresponding U∗
n−1 ∈

spanH∗
n−1 at time tn−1, and an initial guess τn satisfying

Ef (n) =
( ˆ tn−1+τn

tn−1

‖f − fn‖2L2(Ω) dt
) 1

2 ≤ tolf , (7.2)

we determine adaptively a time step τn and a meshQn associated to tn := tn−1+τn.

This is done inside the module space_and_time_adaptation, detailed in Algo-

rithm 3 below. It reduces the time step τn and refines the mesh Q∗
n−1 (if neces-

sary) giving rise to the mesh Qn in order to guarantee that E2τ (n) + E2H(n) is small

enough. More specifically, we start with the initial guess τn as large as possible

such that (7.2) holds, and in this module we will eventually reduce τn to decrease

the other error indicators; we notice that Ef (n) will not increase as τn is reduced, so

that (7.2) will continue to hold. Also, we start with a candidate mesh Qn = Q∗
n−1

obtained from a coarsening of Qn−1, and in this module we will update Qn only by

refinement.

– We next call consistency to compute the largest time step τn+1 such that (7.2) holds

for n+ 1.

– Finally, in the module coarsen we de-refine the meshQn and obtain a coarser mesh

Q∗
n and an approximation U∗

n such that

E2I(n+1)+E2c (n+1) ≤ E2τ (n)+E2f (n)+τn tol and |||U∗
n|||2−|||Un|||2 ≤ τn. (7.3)

Thus, no extra refinement will be needed to control E2I(n + 1) and E2c (n + 1) after

reducing τn+1 or refining the space, and the estimate (6.2) holds; coarsen can now

fix the initial term U∗
n of the n-th step without the need to modify it later, allowing

us to discard Qn from memory.

Algorithm 2 ASTIGM: Adaptive space-time isogeometric method

Input: Qinit, TOL > 0
1: t0 = 0
2: n = 0
3: Split TOL such that TOL2 = TOL2

0 +3TOL2
f +TOL2

Q.

4: tolf = compute_local_tolerance (f, T,TOLf )
5: τ1 = consistency (f, t0, T, tolf )
6: [U∗

0 ,Q∗
0] = [U0,Q0] = adapt_initial_mesh (u0,Qinit,TOL0)

7: while tn < T do

8: n← n+ 1
9: [Un, τn, fn,Qn] = space_and_time_adaptation (U∗

n−1, f, tn−1, τn,Q∗
n−1,TOL2

Q /CT )
10: tn = tn−1 + τn
11: τn+1 = min{τn, T − tn}
12: τn+1 = consistency (f, tn, τn+1, tolf )
13: [Q∗

n, U
∗
n] = coarsen (Un,Qn, τn)

14: end while

end
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Algorithm 3 space_and_time_adaptation: Adapt the time step τn and refine the mesh Qn in

order to guarantee that E2τ (n) + E2H(n) are small enough

Input: Vn−1, f, tn−1, τn,Qn, tolQ, fixed parameter κ ∈ (0, 1)
1: Compute E2f (n)
2: while 1 do

3: In = [tn−1, tn−1 + τn]
4: Un = solve (Vn−1, fn, τn,Qn) % see (3.1)

5: Compute E2H(n), E2τ (n)
6: if E2τ (n) > tol2Q then

7: τn = κτn % reduce the time step τn
8: Compute E2f (n)
9: else if E2H(n) > E2τ (n) + E2f (n) + τn tolQ then

10: Qn = mark_and_refine ({EHn
(β)}β∈Hn

,Qn)
11: else

12: break

13: end if

14: end while

Output: Un, τn, fn,Qn

8 CONVERGENCE ANALYSIS FOR ASTIGM

Proposition 8.1 (Termination of ASTIGM). The adaptive algorithm ASTIGM terminates in

finite time and produces a finite number of time instances 0 = t0 < t1 < t2 < · · · < tN = T ,

meshes Qn and approximations Un ∈ spanHn such that






E0 ≤ TOL0,

N∑

n=1

E2f (n) ≤ TOL2
f ,

E2τ (n) ≤ tol2Q, E2H(n) ≤ E2τ (n) + E2f (n) + τn tolQ, n = 1, 2, . . . , N,

E2c (n+ 1) + E2I(n+ 1) ≤ E2τ (n) + E2f (n) + τn tolQ, n = 1, . . . , N − 1.

where tolQ =
TOL2

Q

CT
and CT =

[

9
√
T
(
‖f‖2L2(Ω×(0,T ))+ |||U0|||2+T

) 1
2 +2T

]

(see Theorem 8.2).

Proof. The call to compute_local_tolerance guarantees that tolf satisfies Theorem 5.1. After-

wards, ASTIGM calls the module consistency which selects τ1 > τ∗ such that (7.2) is satisfied.

The call to adapt_initial_mesh guarantees that the initial error satisfies E0 ≤ TOL0.

The while loop inside ASTIGM calls first the module space_and_time_adaptation which

starts with Qn = Q∗
n−1 and τn as the output of the last call to consistency, and entails another

while loop (Algorithm 3). Each iteration of this inner loop consists of two steps. First, a

discrete solution Un to (3.1) is computed on the current meshQn with the current time-step size

τn. Next, either the time step-size is reduced (if Eτ (n) > tolQ) or the actual grid is refined (if

Eτ (n) ≤ tolQ and E2H(n) > E2τ (n) + E2f (n) + τn tolQ). This is the only step of the algorithm

where τn could be reduced below τ∗. But notice that τn is only reduced if Eτ (n) > tolQ, i.e., if

1

τn
<

1

τn

E2τ (n)
tol2Q

=
2τn

∣
∣
∣
∣
∣
∣U∗

n−1 − Un

∣
∣
∣
∣
∣
∣
2

τn tol
2
Q

≤ 2

tol2Q

(

‖f‖2L2(Ω×(0,T )) + ‖∇U0‖2 + T
)

due to Theorem 6.1. This implies that always τn ≥ κ
2

tol2Q
‖f‖2

L2(Ω×(0,T ))
+‖∇U0‖2+T

, and also, that

line 7 of space_and_time_adaptation is executed finitely many times. Due to the fact that the
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adaptive algorithm for elliptic problems mark_and_refine converges into tolerance in finite

steps, also line 10 is executed a finite number of times, whence the while loop ends in finite

time.

When space_and_time_adaptation ends, ASTIGM calls the module consistency which

selects a timestep τn such that (7.2) is satisfied, but according to Remark 2, either τn > τ∗ or

tn = T . This sets the maximum timestep for this n and thanks to the choice of tolf , the overall

consistency error will be bounded by TOLf . Finally, the module coarsen leads to a mesh Q∗
n

with an associated hierarchical basisH∗
n such that spanH∗

n ⊂ spanHn−1 and (7.3) is satisfied.

Since every space_and_time_adaptation ends in finite steps and τn > τ∗, the final time

is reached. The estimates follow from the fact that the break statement is executed in both

algorithms, whence Eτ (n) ≤ tolQ, E2H(n) ≤ E2τ (n) + E2f (n) + τn tolQ and (7.3) holds.

Theorem 8.2 (Convergence into tolerance). The algorithm ASTIGM computes a suitable par-

tition 0 = t0 < t1 < t2 < · · · < tN = T and for each n = 1, 2, . . . , N , the discrete value

Un ∈ spanHn, where Hn is the hierarchical basis associated to a hierarchical mesh Qn such

that

‖u− U‖W(0,T ) ≤ TOL,

where U ∈W(0, T ) is the discrete approximation of u obtained from {Un}Nn=0 through (3.2).

Proof. From Theorem 4.1 we only need to bound the term E :=
∑N

n=1

[

E2τ (n) + E2c (n) +

E2H(n) + E2I(n) + E2f (n)
]

, which, due to Proposition 8.1 satisfies

E ≤
N∑

n=1

[

3E2τ (n) + 3E2f (n) + 2τn tolQ

]

≤ 3
N∑

n=1

E2τ (n) + 3TOL2
f +2T tolQ .

Using (4.1), (6.2) and Proposition 8.1 we get, for δ =

(

T

‖f‖2
L2(Ω×(0,T ))

+|||U0|||
2+T

) 1
2

tolQ
2

,

N∑

n=1

E2τ (n) =
∑

τn>δ

E2τ (n) +
∑

τn≤δ

E2τ (n) ≤
T

δ
tol2Q +2δ

N∑

n=1

∣
∣
∣
∣
∣
∣Un − U∗

n−1

∣
∣
∣
∣
∣
∣
2

≤ T

δ
tol2Q +2δ

(

‖f‖2L2(Ω×(0,T )) + |||U0|||2 + T
)

≤ 3
√
T
(

‖f‖2L2(Ω×(0,T )) + |||U0|||2 + T
) 1

2
tolQ .

Finally, E ≤
[

9
√
T
(
‖f‖2L2(Ω×(0,T )) + |||U0|||2 + T

) 1
2 + 2T

]

︸ ︷︷ ︸

=CT

tolQ +3TOL2
f = TOL2

Q

+3TOL2
f , which proves the assertion.

9 NUMERICAL TESTS

We present two numerical tests to assess the efficiency of the method. In both cases, and for

simplicity, in problem (1.1) we set c = 0 and A = I is the identity matrix, the spatial domain is

Ω = (−1, 1)2, and the final time is set to T = 1.

For the discretization, we use biquadratic hierarchical B-splines with C1 continuity, which

allows to neglect the jump terms across elements in the spatial estimators. We use the spatial
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Figure 1: Meshes and approximated solution at times t ≈ 3 · 10−4, t ≈ 0.49, t ≈ 0.5, t = 1. The finest level of the

hierarchical mesh at each step is, respectively, 6, 6, 3 and 6, and the number of elements is 427, 553, 34 and 673.

a posteriori error estimator introduced in Buffa and Garau (2018) for hierarchical B-splines,

and for spatial refinement we use the maximum strategy, with parameter equal to 0.5 for refine-

ment. For coarsening, the first coarsening step is done using a minimum strategy based on the

spatial estimator, with a parameter equal to 0.75, and refinements of this coarsened mesh are

obtained based on the coarsening estimator. The method is implemented in the Matlab code

GeoPDEs, see Vázquez (2016), using the same algorithms and data structures detailed in Garau

and Vázquez (2018) for refinement. For coarsening, from the set of marked functions we mark

active elements such that all the functions of its level have been marked, and then de-refine an

element if all its children are marked. This guarantees that non-marked functions will remain

active, see also Carraturo et al. (2019). During coarsening, the approximation U∗
n−1 is computed

as the L2 projection of Un−1 into the coarsened mesh, and the estimator EI is replaced by the

term ‖Un−1 − U∗
n−1‖L2(Ω).

Example 1: moving peak. As a first numerical test we use the same example presented in

Chen and Feng (2004), see also Kreuzer et al. (2012). The right-hand side f , the boundary con-

dition and the initial data u0 are chosen such that the exact solution of the continuous problem

is given by

u(x, t) = α(t)e−β[(x1−t+0.5)2+(x2−t+0.5)2], with α(t) = (1− e−γ(t−0.5)2),

with the constants β = 25 and γ = 104. The solution consists of a peak that moves at constant

speed along the diagonal of the square domain Ω, with a rapid exponential drop before time

t = 0.5. At that time the solution flattens to a constant zero value, and then it experiences a

rapid exponential recovery.

We choose the parameters TOL2
0 = 10−6 and TOL2

f = 10−3, and TOLQ is chosen such

that tol2Q = 10−3. In Figure 1 we present several meshes and the corresponding solutions at

different time steps, which show how the mesh adequately follows the moving peak, applying

coarsening after the peak has passed by, and also when the solution is flattened to zero.

In Figure 2(a) we plot the number of degrees of freedom and the time step sizes. We observe

that both quantities remain almost constant during the simulation, except around t = 0.5 where

the mesh is coarsened and the time step needs to be refined. Moreover, we show in Figure 2(b)

the value of the time, space and consistency error indicators, along with the total one.

Example 2: rough initial data. The second example is taken from Kreuzer et al. (2012), and

considers a problem with homogeneous boundary conditions and rough initial data. We use a
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Figure 2: Results of the example of the moving peak.

Figure 3: Meshes at times t ≈ 2 · 10−7, t ≈ 10
−4, t ≈ 10

−3, t = 1. The finest level of the hierarchical mesh at

each step is, respectively, 11, 11, 9 and 2, and the number of elements is 60412, 52954, 17299 and 16.

vanishing load function f ≡ 0 and as initial data a function with checkerboard pattern in Ω, and

which is given by the values u0 ≡ 1 in Ω1 = (−1, 0)× (0, 1) ∪ (0, 1)× (−1, 0), and u0 ≡ 0 in

Ω \ Ω1. During time evolution, the jumps of the initial data are smoothed out, and the solution

tends to a constant steady state, which however is still not reached at time T = 1.

As in Kreuzer et al. (2012) we choose TOL2
0 = 10−3 in (7.1), and TOL2

f = 10−3, although

this is not relevant because f = 0. The other tolerance is chosen such that tol2Q = 8 · 10−3. In

Figure 3 we depict four meshes at different time steps, which show how the mesh is initially

refined at the discontinuity regions, and then it tends to be coarsened until it becomes uniform.

In Figure 4(a) we plot the number of degrees of freedom and the time step, which confirms

that both the mesh and the time step sizes are coarsened during the simulation. Finally, we plot

in Figure 4(b) the evolution of the total error indicator, along with the time and spatial error

indicators. As can be seen, the time error indicator is the one who contributes the most to the

total error indicator. There are however some steps, corresponding to peaks in the total error,

in which the coarsening and interpolation error indicators (not shown) give a more important

contribution.
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