Mecánica Computacional Vol XXXVII, págs. 1531-1531 (resumen) A. Cardona, L. Garelli, J.M. Gimenez, P.A. Kler, S. Márquez Damián, M.A. Storti (Eds.) Santa Fe, 5-7 Noviembre 2019

MODELING OF ROLLING AND SLIDING FRICTION OF SPHERICAL RIGID BODIES

Federico J. Cavalieria, Alejandro Cosimoa, and Alberto Cardona

^aUniversidad Nacional del Litoral - CONICET, CIMEC, Colectora Ruta Nac 168 / Paraje El Pozo, 3000 Santa Fe, Argentina, fcavalieri@santafe-conicet.gov.ar, acardona@unl.edu.ar, http://www.cimec.org.ar

^bUniversity of Liège, Department of Aerospace and Mechanical Engineering (LTAS), Chemin des Chevreuils, 1 (B52), 4000 Liège, Belgium, acosimo@uliege.be, http://www.ltas-mms.ulg.ac.be

Keywords: nonsmooth contact dynamics, time integration, friction, spheric rigid bodies

Abstract. This work investigates the dynamic motion of spherical rigid bodies which are subject to the effects of rolling and sliding friction. In this work, a spherical body is modelled as a rigid body with translational and rotational degrees of freedom, which allows to properly describe any general motion. The associated frictional contact problem is solved with a mixed dual formulation based on an augmented Lagrangian technique, whereas the equations of motion are integrated using the nonsmooth generalized-alpha scheme. In order to assess the numerical performance of the proposed methodology, the motion of two spheres over a plane is studied, where the impact between the two spheres is additionally considered.

Acknowledgements: This work has received financial support from: PICT2015-1067; PID-UTN-UTI4790TC; CAID50420150100024LI