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Abstract. This paper presents a comparative study of the different formulations used in research groups
in Liege and Mendoza, for the modelling of large plastic deformations. The comparison focused on a few
academic standardized problems. We analysed both the constitutive formulation (strain-stress relations)
and the finite element formulation (discretized mechanical balance equations).

In particular, we compared two constitutive formulations, both hyperelastic, but resulting from dif-
ferent theoretical approaches. We also compared different types of finite elements (4-noded quadrangles
and 6-noded triangles), in axisymmetric and plane strain settings.

These comparisons show that both approaches yield very similar results. Computations also show
that models based on 6-noded triangles give good results. The only limitation suggested by the results
obtained is that triangles appear to be more sensitive to large distorsions than quadrangles.
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1 INTRODUCTION

Two different constitutive formulations were considered here: that of ZorgLib and that of
SoGDE. The formulation used in ZorgLib is described in detail©irtiz and Stainie(1999. It
is a fully variational formulation, based on the minimization of an incremental energy, and set
in a total Lagrangean hyperelastic framework. The formulation used®D® is described in
details inGarda-Garino(1993. This formulation is set in an updated Lagrangean hyperelastic
framework. Among the main differences between the two formulations, one can note that in
ZorgLib, the plastic consistency condition is written in the intermediate configuration (no elastic
deformation), while in ®GDE it is written in the deformed configuration.

The finite element formulations used differ only in the case of bilinear quadrangles. In-
deed, in this case, particular caution must be taken in dealing with plastic incompressibility. In
ZorgLib, the formulation is based on a potential energy variational principle, augmented with
an additional term involving piecewise-constant pressure and volumic deformation fields. The
formulation in DGDE is slightly different, in that it does not follow strictly the variational
principle, but uses adhoc procedures in some of its parts.

For the quadratic 6-noded triangle, a standard isoparametric formulation (with 3 Gauss
points) is used in all cases.

2 FINITE DEFORMATIONS KINEMATICS

The kinematics of the problem is based on the very well known multiplicative decomposition
of deformation gradient tensdr in its elastic and plastic components (initially proposed by
Lee (1969 and since used by many others), as can be seen in Figuhere the intermediate

configuration is shown.
z’ Qﬂ
\F

Figure 1: Kinematics of large strain elastoplastic solid: configurations

F = F°F® (1)

The right Cauchy-Green tens6ras well as corresponding elas@t and plastiaC” tensors
respectively Green and Nagdhll965 Simo and Ortiz1985 are defined in eq.2j:

C=F'F
C*=F" F* )
c? = rT pr
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The Green Lagrange tenséir as well as the plastic and elastic Green Lagrange tef¥ors
and E“ can be written in terms of the right Cauchy Green tensors and metric ta@sansl G
in material and intermediate configurations respectively.

E=(C-G)

ﬁ:%@ﬁ-@ @3)
p_l P __

B = (" G)

whereG andG are the metric tensors in the material and intermediate configuratiarand
tQe° respectively.

It is important to note that while tenso€s,C”, E and E” are defined in the material config-
uration,C° and E“ are defined in the intermediate configuration. A detailed overview of the
kinematics of solids under large strain can be see@anda-Garino(1993; Simo and Ortiz
(1985.

In the deformed configuration is defined the Almansi strain teasord its elastic and plastic
componentg* ande?, respectively, in terms of the spatial metric tengpthe finger tensob !
and its elastic componeht ™!, as can be seen in equatiod¥ 4nd 6).

b—l — F—T F—l
be—l — Fe—T Fe—l (4)
1
-~ (g — b !
e=5I(9 )
1
et = § (g . be—l) (5)

el =e — €°

In recent literature of large deformation mechanics, push-forwarand pull-backy* op-
erators (sedlarsden and Hughed 983) are often used in order to transform strain tensors
between the different configurations:

E =¢"e
C=9¢'g

b! =¢.G (6)
E° — ¢*e

b =G

where¢* ¢, and ¢*¢ ¢S are associated t&' and F° deformation gradients respectively. A
detailed overview of this relations can be seefsarda-Garino(1993.

The velocity gradient tensor in deformed configuration and its plastic counterpart in interme-
diate configuration, given in equationd @nd @) respectively, are used to characterize material
and plastic flow in constitutive equations:

l=FF! 7)
L? = FPFr! (8)
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The rate of deformation tensotsand D? are the symmetric component of the velocities
gradient tensot in the current configuratioff2 and L in the intermediate configuratidf®
respectively. Alternatively, rate of deformation tensors can be computed as the Lie derivatives
L, of deformation tensordarsden and Hughe$983.

3 HYPERELASTIC FORMULATION OF FINITE PLASTICITY

In this section a constitutive model able to model the behaviour of large strain elastoplastic
solids proposed barda-Garino(1993; Garda-Garino and Olive(1995 is briefly presented
here. The model is fully consistent with Continuum Mechanics and is derived in the context
Internal Variables theory.

3.1 Constitutive Model
3.1.1 Derivation of the model in the intermediate configuration

The free energy function is written in the intermediate configurdtisras:

& = O(F, F?, A) 9)

where A is a set of internal variables that accounts for plasticity effects, like hardening for
instance. Taking into account the multiplicative decomposition of deformation gradient tensor
given in (1) can be writtenF* = F°(F', F*), and equationg results:

$ = O(F°,A) (10)

It is important to note that the presencelof as an argument of free energy function can be
necessary in order to model kinematic hardening. In order to satisfy objectivity the dependence
of @ on F* is taken into account including a symmetric tensor like the elastic right stretch tensor
U*, or other strain tensors lik€“ or E¢

d=P(F°,A) = DU, A) = B(C°,A) = p(E°, A) (11)

Underuncoupled elasticithypothesis, the free energy function can be expressed as the sum
of its elastic and plastic components:

="+ = °(E°) + ¢"(A) (12)

The additive decomposition of the free energy in an elasticgsaand a plastic part? translates
the fact that the elastic response of some materials is independent of the internal processes of
plasticity, like is the case of metals for instance.

Plastic and Yield functions are written in the strain space. In order to satisBritheple of
EquipresenceMalvern, 1969 the same arguments of free energy function are included:

F=F(E°A) (13)
G = G(E°,A) (14)

The plastic component of rate of deformation tenBdris considered as the flow rule of the
model. This assumption has the inconvenience to define the intermediate configuration up to an
undefined rigid rotation, however if isotropic models are used this drawback has no effect.
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The evolution law of internal variables is written in terms of the flow rule as:

AY H(E* A) D" (15)
whereH is a proper tensor.
The stress tensor in the intermediate configuration can be computed from the elastic com-
ponent of free energy function as:

0 (E°)
= Po—r—" 16
S pO aEe ( )
The fourth order tangent elasticity tensor results from equatiéh (
aQWG(Ee)
= pPoe——— 17
PoOE @ OE° 17)

From the hyperelastic constitutive equatidi)(the elastic tensoE* can be rewritten in
terms of stress tens@. Then yield and potential functions given in equatioh3) @nd (L4)
can be expressed in stress space as:

G = G(S(E°),A) (18)
F = F(S(E°),A) (19)

The flow rule D? can be written in the stress space in terms of the Plastic Potential function
G as:

9G(S, A)
98

From the plastic consistency conditibhwritten in the intermediate configuration the elastoplastic
fourth order constitutive tensor results:

DP (20)

oF e
. {@A}@{A%

Ly(S) = |A° - 235 e D I°(S)= A:D (21)
o5 A ias T

where has been taken into account that for a scalar function (like F in this case) Lie derivative
resultsL,(f) = f (Marsden and Hughe$983 Schutz 1990

In order to verify that the Second Law of Thermodynamics is satisfied the Clausius Duhem
inequality can be written:

S:D —pop >0 (22)
if the uncoupled elasticity hypothesis is introduced results:

S: D — p,{¢*(E) +¢"(A)} > 0 (23)
taking into account the additive decomposition of rate of deformation tdser D€ + D? at

the intermediate configuration eg3) can be written as an equality given in e@4) plus an
unequality given inZ5), that accounts for the Plastic dissipatibf as:

S: D° — p,*(E°) = 0 (24)
Dr S DP — p,P(A) > 0 (25)
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3.1.2 Extension of the model to the deformed configuration

In this section the expresion of the model in the deformed configuration is derived from the
results obtained for the intermediate configuration. The Kirchhoff stress tensor can be computed
from the Doyle-Ericksen formulaDoyle and Ericksen1956. The free energy functiop®
given in eq. 12) is rewritten in terms of spatial variables as:

P(ES) = (F e F°) =y°(e, F¥) (26)
Taking into account the chain ruleybliner, 1985 results:
(e, F°) N 2 —
S e e 27
oe¢ OE° 27)

The Kirchhoff stress tensar can be obtained by computing the push forward of stress tensor
T = ¢¢S to the current configuration:

ove(E°)
OE®
where eq. 27) has been taken into account.
The elastic tangent tensor in the deformed configuration is obtained computing the elastic
push-forward of the tangent elastic tensor in the intermediate configuestionpS A°:

Oc(e, F*)

=¢°S =2p,F°-
T =0 p Dec

T = 2 po (28)

a?we(ee Fe)
e _ ) 2
e Po de’ ® de® (29)

The yield and potential functions become in deformed configuration:

9% g(r,, F°) (30)
FE f(r, e, F°) (31)

In the derivation of stress tensor from Doyle-Ericcksen formula, material symmetry restric-
tion has not been taken into account. In order to satisfy this requiSite replaced in equations
(26,30,31) by the elastic left stretch tens®f, or another symmetric tensor like the elastic left
Cauchy-Green tens@** or the elastic Finger tensdf ~*. Then, free energy, plastic potential
and yield functions are written as:

Y =°(ef, b + (e b (32)
g = g(T7aab6_1) (33)
f = f(Tv «, beil) (34)

The Kirchhoff stress tensor and the fourth order tangent elastic tensor results:

oe (e, b )

T = po (35)
Oec
. 0% (e, be_l)
G T P hee ® Oe® (36)
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The elastoplastic tangent tensor in the current configuration is:

of . . .. 09
{8_: a’t ® {a*: 8_}
L,(1) = |a°— Y% T |:d Ly1) =a:d (37)
ﬁ' a®: @ + H
or ~ orT
Plastic dissipation can be computed following a similar procedure to the intermediate con-
figuration:

D”dﬁf‘r:dp+p:o'420 (38)
o e T . . . . aw;n
wherep = ¢S P are the conjugate thermodynamic forces to the internal variaples:; .

3.1.3 Application to metals

For the case of metals under large strains, the elastic strains are negligible. In this case
the tensorF® approches to the ldentity and Cauchy stress teastands to Kirchhoff stress
tensorr in practice. Consequently tensbf ' tends to the spatial metric tensgr In this
case the distinction between intermediate and current configurations have no meaning. Then
it is possible to write the elastic component of free energy function as a quadratic function of
elastic component of Almansi strain tengdrand material constanfsandy as can be seen in
equation 89).

Yo = %/\ tr(e®)” + p (e : e (39)

From equations35) and @9) the Cauchy stress tensor results:

o=Atr(e®)1 + 2 pe° (40)

This model has been used previously by the auth@esda-Garing 1993 Garda-Garino and
Oliver, 1995 1996 as an alternative to the neohookean models proposed by another authors
(Simg, 1988ab; Simo and Ortiz1985.

Plasticity is taken into account by means of an associative flowfrale. The yield function
is the very well known Von Mises or J2 model given in equatiéi) (

flo,0y)=06—0,=0 (41)

wheres = ,/3s: s denotes equivalent stressjs the deviatoric stress tensor anglis the
current yield stress.

Flow rule can be written now in terms of yield criterfa

Sij
\/SkiSki
where(n : n = 1) is the unit outward normal to the yield surface and plastic multipliean

be computed plastic consistency condition.
The hardening law relates yield stressand the rate of the effective plastic strafrdefined

ase’ = ./% d? : d? as shown in equatiorg).
) 2
o, = hé = \/;h%y (43)
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andh is a material parameter that corresponds to the slope of the effective stress vs. effective
plastic strain curve under uniaxial loading conditions, also known as hardening module in the
case of linear hardening.

3.2 Numerical implementation

In this section the numerical scheme necessary to implement the discussed theoretical model
in a finite element code is derived following the ideassoho and OrtiZ1985; Simo (1988H.
This scheme is based orelasticpredictor plugplasticcorrector approach, derived in previous
works of Garca GarinGarda-Garino(1993; Garda-Garino and Olive(1996.

3.2.1 Elastic Problem
In this problem the plastic quantities remain frozéit2t Fr™" — ¢ F?). The trial Elastio
component of the deformation gradient tensor results:
t—i—AtFeTR — t—i—AtF (t+AtFpTR)—l — f tF (tFp)—l — f tFe (44)
wheref is the incremental deformation gradient tensor. The predictor value of the elastic Finger
tensor 21 M js:
tJrAtbe—lTR — (t+AtFe—T t+AtFe—1 )TR _ f*T tbe—l f*l (45)

Finally, the trial stresses”” are computed from eg@) in terms of the predictor value of

elastic Aimansi straifi®'e*”# = 1(**4lg — t+Arye 1T

It is important to note that the elastic problem is reduced to the computation of a closed
expression. In this way numerical integration of rate equations, typical of hypoelastic models
and usually very expensives, is completely avoided. On the other hand it is not necessary to
compute explicitely multiplicative decomposition of deformation gradient tehsor

3.2.2 Plastic Problem

In this problem the current configuration remains fixed and the internal variables are updated
in order to satisfy the constitutive law. For this probl&mo (19881 has proposed to integrate
the flow rule in the original configuration:

C'=2¢d"=2 )\ d'n=2\ N (46)
Equation @6) is integrated using a Backward-Euler scheme:

t+Atcp o tcp — 92\ t+AtN (47)

where) accounts for the numerical counterpart of plastic multipjiePushing eq.47) forward
the spatial configuration, the updated Finger tensor is found:

t—l—Atbefl _ t+Atbe71TR + 2\ t+Atn (48)

The factor2 \ t+2tn is computed by means of the radial return algorithm.
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4 VARIATIONAL FORMULATION OF FINITE PLASTICITY
4.1 Model formulation

Here, we recall the main features of the variational formulation of finite plasticity proposed
by Ortiz and Stainie(1999.

The plastic deformatio#™ is an internal variable, which represents the effect of permanent
deformations in the crystal lattice. In Von Mises-type models of plasticity for polycrystalline
materials, it is assumed that plastic flow does not generate any rotation or volume change in the
material, which translates into a flow rule of the type:

L? =M with M cSymM - -M = ;, andtr[M] =0 (49)

The direction of plastic flow is not specified further, since it will be determined by the variational
principle described in the following. The internal varialafe(cumulated plastic strain) will
describe the hardening of the material.

We postulate the existence of a Helmholtz free energy density of the form

W(F,F?,&) = W¢(F) + WP(F?,&) (50)

From Obijectivity conditions and uncoupled elasticity hypothesis, as has been discussed for the
hyperelastic model, the free energy becomes:

W(F, F?,&) = We(C*) + WP(F?, &) (51)

Physically,W? represents the stored energy due to the plastic working of the material. The free
energy density allows to define the forces thermodynamically conjugate to the state variables

{F,F? é}:
P B (1) o
oW . QWP
T=—m = F'P- (53)
oW ow? ow?
y:_%:(TFPT).M— 5 = (889 M- =2 (54)

In deriving equation4), we took into account the constraint betwaBhande? arising from
the flow rule @9). In this same equation, we observe the appearance of the Mandel stress tensor
S = F*"PF"" and its corresponding backstress= 2 7.

In order to complete the model, we need to provide kinetic equations for the internal vari-

ables. Following a standard thermodynamic framework, we will consider a relation of the type:

& = f(Y;e) (55)
More precisely, we will assume that the kinetic relation derives from a convex dissipation
pseudo-potential:

o= Y

oy
Convexity ofy)(Y) then ensures the positiveness of internal dissipativa: Ye? > 0. A dual
pseudo-potential can be defined by recourse to a Legendre-Fenchel transform:

(P e) = sup [Yer —y(Y;e)] (57)

(Y;€) (56)
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with the property that
o™

aép (gp’ Ep)

(58)
Example: the case of rate-independent plasticity, which we will consider in the applications,
can be derived from the following dissipation pseudo-potential:

Joo ify <y
W)—{ oo Y oy (59)

whereY; is a material parameter corresponding to a yield stress. The dual potential is then
given by:

. Yoer ifer >0
(&) = -2 60
v {+oo if & < 0 (60)

In this case, the dissipation pseudo-potentials are quasi-convex, but this does not pose any
formal problemsoreay 1976 Rockafellar 1970.

Il
As shown inOrtiz and Stainie(1999, the above constitutive relations can be recast in the
form of a minimization problem. Consider the following functional:

D(F,& M;F,F* &) =P -F -Y & +"(&;&) = W(F,FF,&) + ¢*(é;&) (61)

where P andY are computed by relation®%) and 64). In the rate-independent case, this

functional D corresponds to the power of external work, but this is not the case otherwise. Then
the solutions to the minimization problem:

. . _ 3
D" (F, F,F? &) = inf D(F,& M;F,F? &) with M - M = > andtr[M] =0 (62)
M ép

verify the following relations:

mj&x(Y &) with M- M = ; andtr[M] =0

o
oer

(63)

Y +

0 (64)

Relation ©3) states the principle of maximum plastic dissipatibalgliner, 1990. In this case,
the solution can be obtained analytically, and yields:

3 dev[S — S
M =4/= 65
2 ||dev]S — S| (65)

This corresponds to the normality rule of classical Von Mises theory of plasticity (expressed in
the intermediate configuration). Relatid&¥y is obviously identical to%8).
In addition, we have the following property:

Deff .
R ?)

P=

(66)
showing that the functionab®™ plays the role of a rate-potential for stresses. The significance
of this property will appear more clearly in the framework of incremental constitutive updates.
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4.2 Constitutive updates

In the incremental setting, we are concerned with the following problem. Consider a generic
time interval|t,, t,.1]. Let the initial state{ F',,, F? e} and the updated deformatios, . ;
be given. We then seek to compute updated values for the internal varfdtles, €, . , }.

The first step in effecting an integration of the constitutive relations is to provide an incre-
mental rule to updat#™” in a manner compatible with the flow rulég). We take this rule to
be of the form:

F} | = exp[Ae’ M|F? (67)

whereexple| is the exponential mapping operator for symmetric square tensora\ahd-
é ., — é. The exponential mapping has been applied to the integration of finite-deformation
flow rules byWeber and Anand1990, Eterovic and Bath€1990), Cuitifio and Ortiz(1992),
Miehe and Steir{1992 andMiehe (1996. A particularly appealing aspect of the exponential
mapping is that it satisfies exactly the finite-deformation extension of kinematic constraints
operating onM . For instance, sincd1 is traceless, in keeping with plastic incompressibility,
the plastic deformatiod™ . , computed through&(7) has a determinant of one, as required.

A variational constitutive update algorithm can be modelled after the rate variational prin-
ciple (62). To this end, we define the incremental energy density:

W(FTL+17FTL7Fn7 n) —
AeP
nt [WEan P ) - W ) + 000 (550, )]

& M
with M - M — ; andtr[M] = 0 (68)

wheree, . = (1 — a)é + ae, ., is function of the algorithmic parameterec [0, 1]. Evid-
ently, the choice of incremental energy density is not unique. The particular forn6g)
adopted above is motivated by the midpoint rule for numerical integration. The stationarity
condition with respect té) , , yields

ow . 81/1 . o™ _
a?(FnJrlaFﬁ—i-la £+1) (96 (At’ fz—l—a) = Yn+1+ oer (At’ Z+a) =0 (69)

which is an incremental version of the kinetic relati@8)( The stationarity condition with
respect toM yields an incremental version of the principle of maximum plastic dissipation
(63).

In the examples below, we will consider an elastic free energy density of the specific form:

We(C®) = f(J¢) + plle]>  with e = dev[e‘] ande® = log[V'C®| = Llog[C*]  (70)

wherey is the shear modulus antf = det F© = v/det C° is the elastic Jacobian. Using
(67), we can write

C¢,, = exp[AFM] TF?"C,  F? ' exp[A@ M|
= exp[A& M| C} Y explAe” M
where we introduced a predictor elastic right Cauchy-Green deform@tjdh, i.e. the elastic

deformation which would be obtained at the end of the step if the increment were entirely elastic
(Ae? = 0). Using theansatzthat C'Y", and M share the same eigenvectors, we then can write

(71)

€. = 310g[C] — A M = €}, — A?M (72)

n+1
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In the case of the above elastic potentidD)( and assuming that the plastic potential does
not explicitely depend o™ (isotropic hardening), the minimization with respecti then
reduces to

inf [u]les®, — AeM?] with M - M = g andtr[M] = 0 (73)
The solution may readily be obtained by recourse to Lagrange multipliers, yielding:
e,pr
— §e’;—$} (74)
2|le, 3l

Once the optimal direction of plastic flow for the step has been determined, the increment in
effective plastic strain follows from the problem:

-
inf [uleif — M+ wries, ) + e (5 ) 75)
€n+l

Note thatAe” must satisfy the constraidte” > 0 by virtue of ©0). The valueAé” = 0, which
corresponds to an elastic step, defines a non-smooth point of the objective fu&jiormA(
conventional mean of sidestepping this difficulty is to first investigate the soldti@n= 0,

which corresponds to a purely elastic update, or elastic predictor. If the attendant driving force
Y — Y, > 0 then one must havAe? > 0 instead, and the solid is loaded plastically. Since the
function (75) of Ae? is smooth away from the origin, the case of plastic loading may be solved,
e.g. by a local Newton-Raphson iteration, by finding the root of

F(A&) — K(E,) ~ Yo =0 (76)

where
_ 3 . _
g = \/; (2ullent — Ae?M||) (77)

is the equivalent stress in the intermediate configurationsdgfl, ;) = OW?*/0e” is an addi-

tional contribution to the yield stress. In the particular case of the elastic poterfjaltiie

variational update is thus mostly equivalent to the traditional radial return algorithm.
Imagine now perturbindg’,,,; — F,, .1 + 0F. The corresponding variation 0¥ is

oW = a_W(Fn+1JFfL+17€}:L+1) OF + oV 0€p 41+ g_]\)/)_}, :

o SM (78)

=4
86n+1

But the last two terms vanish by virtue of the stationarity conditionfwith respect to
{€, .1, M}, and {8) reduces to

W =P, -0F (79)
Sinced F is arbitrary, this implies that
ow
P, = F, ,F, F? & 80
n+1 aFn+1( TL+17 n»y n? En) ( )

Equation 80) furnished a stress update, and in addition, we observéthatts as a pseudo-
hyperelastic potential faP,, ;.
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5 NECKING OF A CYLINDRICAL BAR
5.1 Numerical model

The numerical simulation of necking in a cylindrical bar in tension,Gagia-Garino et al.
(2006 20049 and references therein is the first benchmark studied in this work . The model
used here reproduces the sample used in experimental te€sibylea(1985. The bar is
75 mm long and has a diameter of 16.2 mm. The numerical model only considers one half of
the bar and uses the axial symmetry, resulting in the finite element meshes shown in Figure
2. In all meshes, a small imperfection is introduced in the central section, where the radius is
reduced by 1.8518%. The radius varies linearly between the extremity and the central section.
Stress distribution at necking section, previously discussed in the cited woBa d&-Garino
et al.(2006 2004 as well as load histories like discussedrynthot(1995; Simo (1988Hh are
analysed here.

‘ 37.5 37.5

28.1 28.1 28.1

0 Zz X o—¥ i \z;x 0 ] \z;x
(a) quadrangles [Q1] (b) unstructured triangles [T2a] (c) structured triangles [T2b]

Figure 2: Finite element meshes of the bar

In the following we will compare the results obtained with bilinear quadrangles (and the
mixed formulation briefly presented in the previous section), using the mesh in Fig. 1(a), and
with quadratic triangles (and a standard isoparametric formulation). We used two triangular
meshes: a first one, Fig. 1(b), completely unstructured, and a second one, Fig. 1(c), with a
regular arrangement of triangles in the central zone, and labelled as structured. All meshes are
refined in the zone where necking will occur. For information, the characteristics of all three
meshes are summarized in TalilleNote that all meshes roughly present the same number of
nodes (leading to systems with similar number of unknowns), but that triangular meshes, with
guadratic elements, present about half the number of elements compared to the quadratic mesh.

The material is an aluminium, with the following elastic properties:

E =67000 MPa v =10.3
while the hardening law is given by

Y(E)=Ab+&)" =Yo(1+ He’)" (81)
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Table 1: Summary of mesh characteristics

| Mesh | Q1 | T2a| T2b|
# nodes 412 | 396 | 465
# elements 419 | 203 | 236

with A = 181.7 MPa,n = 0.159 andb = 2.98910~* (such thatY;, = 50 MPa) Goicolea
1985.

5.2 Results

The tensile test consists in elongating the bar by 10 mm at each extremities. Because of the
defect, an instability appears, and the bar starts necking. The deformed geometries obtained
with both the quadrangular and the structured triangular meshes, as well as the related distribu-
tions of plastic strain, are shown on Figute

HEEEEN
Eq. plastic strain Eq. plastic strain X
0 0.915 1.83 0 0.955 191 Y |z

Figure 3: Final deformed geometries and equivalent plastic strain distributions for Q1 and T2b meshes

In order to compare a little more precisely the different formulations, we will start by looking
at macroscopic quantities. Figuteshows the reduction of radius in the central section in func-
tion of elongation. Curves obtained with the fully variational formulation of quadrangles (Zorg-
Lib Q1/P0) and with the standard formulation of quadratic triangles (ZorgLib T2a/b) compare
rather well both with the solutions obtained bp&DE and with a reference solution obtained
in Abaqus. Note that the necking appears slightly less pronounced witin§ a result which
will be confirmed by further comparison. Next, Figus€ompares the tensile force as a func-
tion of the logarithmic strain in the neck. Indeed, from the incompressibility of the plastic flow,
and neglecting the elastic deformations in the neck zone, the diamatan be linked to the
logarithmic strain in the neck.: b

€. = —2log Do (82)

Finally, Figure6 shows the average axial stress in the neck as a function of the same log-
arithmic strain. In both cases, all formulations considered here coincide, which show that they
reproduce the same macroscopic tensile behaviour, the only difference being in the prediction
of the onset of the necking instability. In other words, the stress-strain path in the necking
zone seems to be unique, which can be explained by the theoretical developniimds)ofan
(1964). But the different models end up at different locations on this path for a given elongation
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Figure 4: Diameter reduction in central section as a function of elongation

(at least in the post-critical part, after the onset of the necking instability). This results agree
very well with the ones reported Barda-Garino et al(2004) .

24000 . .
ABAQUS ——
SOGDE(Q1/P0) ---e---
SOGDE(T2b) - -4~

ZorgLib (Q1/P0) - -&- -
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18000

rgLib (T2b) - -o- -
=
< 12000
o -
.."U\
6000
om

0 02 04 06 08 1 1.2 14 16 1.8

74

Figure 5: Tensile force as a function of logarithmic strain in the neck

These results show that neither the constitutive formulation (variational total Langrangean
hyperelastic formulation of ZorgLib, updated Lagrangean hyperelastic formulatioo®@b&§
or hypoelastic formulation of Abaqus), nor the finite element formulation (mixed formulation
with bilinear quadrangles or standard formulation with quadratic triangles) leads to significant
differences in terms of macroscopic quantities. At this global level, all formulations appear
equally valid.

5.3 Stress distribution in the neck

In order to compare the different formulations a little deeper, it is interesting to look at
local quantities. For example, one can get a qualitative comparison by examining maps of
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Figure 6: Axial stress as a function of logarithmic strain in the neck

equivalent plastic strain at the end of the simulation, as in Figum@r in the necking zone
(which is of most interest), as in Figuie Note that in this last figure, the 6-noded quadratic
triangles have been subdivided in four 3-noded triangles for the purpose of representation. We
can readily observe that the more regular quadrangular mesh yields a smoother strain field
than the triangular meshes, but this is also in large part a post-processing effect. On the other
hand, the triangular meshes, and more specially the structured mesh T2b, perform better at
representing the curvature at the neck. Thus, in the necking regime, the quadrangular mesh
appears somewhat stiffer than the triangular meshes, which is also translated in the maximal
value of plastic strain reached at that point.

oss2 PRI TEHNY NIRRT
0.63 4,"‘ i W/MV‘W NANNT AL
0.504 Elﬂm()%»/é q’lﬂy;

0.378 M"ﬂ%ﬂ%’éw

7
0.252 (N7 m,‘m{f}dﬂ

W

Eq. plastic strain Y Eq. plastic strain Y Eq. plastic strain Y

- 2 x

(a) Q1: quadrangles (b) T2a: unstructured triangles (c) T2b: structured triangles

Figure 7: Details of equivalent plastic strain distribution in neck

In order to get a more quantitative comparison of stress distribution in the neck, we can go
back to the analytical theory &ridgman(1964). Considerations on the strain state in the neck
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yield that the stress state must be of the form:

o 0 0
co=|(0 o. 0 (83)
0 0 o,

where the stress components are expressed in the axisymmetric coordinate system. Von Mises
yield criterion then becomes:

o,—0, =Y (84)
Further analytical developmen®Br{dgman 1964 lead to the following expression for the axial
stress in the neck:
R P A (85)
7= *\" DR TR

where D is the bar diameter at the neck,the curvature radius of the neck, andhe radial
distance from the symmetry axis (the indexhere corresponds to the axial direction in the
axisymmetric coordinate system 6, z). The diameterD can easily be measured from the
computations, but it is more difficult to obtain an expression for the curvature r&dioiseven

to measure it precisely from the computational res@tsdgman(1964) proposed the following
expression:

= 2V, — 01  (e.>0.1) (86)

Alternatively, the radiug? can be measured directly from the computational results, by fitting a
circular arc through two boundary nodes (see B)gA certain level of uncertainty is associated
to this method, though, since the choice of the two nodes can lead to significant differences in
the value of the computed radius (especially in the case of quadratic triangles, where one can
hesitate between a mid-node and a vertex). This is nonetheless the option we will take, with the
results listed in Tabl@. The first node considered is of course the boundary node located on
the longitudinal symmetry axis. The circle must pass through this node and we also know that
its center must lie on this symmetry axis. For the quadrangular mesh, the second node through
which the circle must pass is taken as the next node on the boundary, sharing the same element
with the first one. In the case of the triangular mesh, we considered two possibilities for the
second node: either it is the mid-node on the boundary edge, either it is the other vertex of this
edge (Fig.8 shows the first option). In any case, the position of this second node completely
defines the circle from which we measure the curvature radius.

The numerical simulation of stress distribution at necking zone shown slight discrepancies
with results due t@ridgman(1964), as was reported iGarda-Garino et al(2006. In order to
clarify this pointGabalan (1999 suggested to compare distribution of deviatoric component
of stress tensor as well as pressure at necking zone. A very good agreement for deviatoric
components but discrepancies for pressure distribution were faisrdé-Garino et al.2004).
There is no clear explanation available for this point, and the finite element approximation
used was one of the possible cause addressed. This result suggests to review the deviatoric
components and pressure distributions in this work. In order to do that, analytical distributions
are derived. Accounting foB@), the hydrostatic stress (pressure) is given by

20, + 0, 2

=o0,— =Y (87)

p 3 3
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Figure 8: Numerical measure of the curvature radius in the neck (with a mid-node in this case)

Table 2: Measured curvature radius and neck diameter for successive elongations

| | ZorgLib (Q1/P0) | ZorgLib (T2b) |
Al [mm] R D/2 €. RD | R® | D/2 €.
6.0 || 27.743 | 6.8320 | 0.303 || 21.356 | 12.417 | 6.8152 | 0.308
7.0 || 19.356 | 6.2511 | 0.481 || 14.053 | 9.224 | 6.2279 | 0.488
8.0 || 10.559 | 5.5088 | 0.734 || 7.349 | 5.264 | 5.4788 | 0.745
9.0 || 5.351 | 5.5860 | 1.100 || 3.997 | 3.097 | 4.5431 | 1.119
10.0 || 2.833 | 3.4433 | 1.673 || 2.272 | 1.974 | 3.3659 | 1.719
(1) radius measured with first boundary vertex
(2) radius measured with first boundary mid-node

and thus, usingdb), we can write

p 1 r? D

===+l 11— —+ —
y 38 ( DR " 4R) (88)

while the deviatoric stress components are
= 1Y (89)
Sy = 3
2

P ==Y 90
=3 (90)

It is important to note that while, ands, are constants, pressure distribution depends on the
curvature radius in the neck, a variable that it is difficult to model. In this sense it is important
to point that Bridgman proposed a function fobased on various simplificative assumptions.
The resulting distributions are illustrated in the following figures, for the various meshes and at
successive loading steps. In all cases, the agreement is excellent for deviatoric stresses. In the
case of the quadrangular mesh (Fj. there is a difference in the pressure distribution, more
marked as the loading level increases. But it should be noted that this discrepancy comes not
from the shape of the distribution, but from the value of the curvature radius (by playing with
this value, the numerical distribution can be made to fit the theoretical one). Thus, the observed
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difference hints at the fact that the computation of the curvature radius from nodal positions is
not really precise.

In the case of triangular meshes (Fig) and Fig.11), the correspondence is better, except
in the case of the unstructured mesh, where the high level of element distortion at high loading
levels leads to a very scattered distribution of pressure, clearly unphysical. This scattering effect
is much lessened by the use of the structured mesh, but would probably still show up at higher
elongations. So, on the one hand, the structured triangular mesh seems to provide a better
approximation of the curvature radius (values obtained with the mid-point node were used), but
on the other hand, the distortion of the mesh at high loading levels could be considered as a
limitation to the use of triangular quadratic elements.

Finally it is worthwhile to remark that pressure distribution results in the necking zone exhibit
discrepancies for the formulations and finite element approximations considered in this work.
Results obtained with quadratic triangular elements, based in displacements, suggests that per-
haps the lack of agreement in pressure distribution is due to difficulties in properly computing
the curvature radius at the neck zone and does not come from the finite element approaches.
Further discussions on these results will be addressed.

6 GRECO BEAM BENDING
6.1 Numerical model

In order to further compare the different formulations, we now consider a classical bench-
mark, initially proposed within the research grouprREco Grandes @formations et endom-
magement” in the 80’s. It consists of a beam (length 3mm, thickness 1mm), as illustrated in
Figure12, in plane strain state, clamped at its left side and to which a large displacement (of
1mm downwards) is imposed on its upper right corner.

Different meshes were considered, based on 4-noded (bilinear) quadrangles and 6-noded
(quadratic) triangles. All meshes share the same number (and initial position) of nodes. Like in
the previous example, triangular meshes have half the number of elements of the quadrangular
mesh.

The material of the beam is steel-like, with the following elastic properties:

E =200000MPa v =10.3
while the hardening law is linear:
Y (&) =0y + He (91)
with o) = 400 MPa andH = 1000 MPa.

6.2 Results

Contours of equivalent plastic strain in the fully deformed beam are illustrated in Fi§ure
for the various meshes, used with the fully variational formulation of ZorgLib. Again, for the
purpose of the representation, quadratic triangles have been subdivided in linear triangles on
these plots. Few differences appear on the deformed shape, except maybe for a more marked
fold on the lower left corner in the case of the quadrangular mesh. As for the plastic strain
distribution, it looks like the quadrangular mesh yields better results, since the maxima are well
located on the outer fibres, as should be in pure bending. Triangular meshes yield less regular
distributions.
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(c) Al =10 mm
Figure 9: Radial distribution of stresses in neck (ZorgLib Q1/P0)
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Figure 10: Radial distribution of stresses in neck (ZorgLib T2a)
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Figure 11: Radial distribution of stresses in neck (ZorgLib T2b)
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(triangles left) (triangles crossed)

(quadrangles) (triangles right)
Figure 12: Meshes for the®&cobeam

In terms of macroscopic quantities, we can compare results from ZorgLib to thosesoES
Figure14 shows the different force-displacement curves. The agreement between ZorgLib and
SOGDE is very good, despite differences in the formulation of the elastoplastic constitutive
update, and in the formulation of the quadrangular element. It is interesting to note that the
crossed triangles curve follows the quadrangles curve in the first half of the loading path, and
then transitions to the left triangles in the second half. In the same manner, the right triangles
transitions to the quadrangles curve at higher levels of loading.

A more detailed analysis, comparing stress components in integration points seems necessary
and it will be performed in the future steps of this collaboration.

7 CYLINDER UPSETTING

7.1 Numerical model

The last application concerns the upsetting of a cylindrical billet (of radius 6 and half-height
1.5). Given both axial and longitudinal symmetries, only the upper part of the specimen is mod-
elled in an axisymmetrical setting. As before, different meshes, based on 4-noded quadrangles
and 6-noded triangles, will be considered (Fif).

As it was the case with the & cobeam, all meshes share the same number of nodes (and
identical nodal positions), while triangular meshes have half the number of elements of the
guadrangular mesh.

The billet is made of a model material, with the following elastic properties:

E=1000 v=0.3

while the hardening law is linea®{) with

7.2 Results

The upsetting process is simulated by applying an imposed displacement to the upper face of
the billet. This imposed displacement s purely vertical (no horizontal sliding allowed) and leads
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Figure 13: Distribution of plastic strain for various meshes (from left to right, bottom to top: quadrangles, triangles
right, triangles left, triangles crossed). All results obtained with the fully variationnal formulation.
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Figure 14: Load-displacement curves for different meshes and formulations
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(a) quadrangles (b) triangles right

(c) triangles left (d) triangles crossed

Figure 15: Meshes for cylindrical billet

to a reduction in height of 32%. The resulting deformed shape and equivalent plastic strain dis-
tribution, obtained with ZorgLib, are shown in Figuté, for the different meshes. In this plot,
guadratic triangles have been subdivided in linear triangles for the purpose of representation.
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Figure 16: Deformed shape and equivalent plastic strain distribution for various meshes

Significant differences appear at the level of the upper right corner. Clearly, neither the quad-
rangular nor the left triangular mesh does allow to model correctly the rounding of the billet.
The shape obtained with the crossed triangular mesh appears the most satisfying. Nonethe-
less, this effect is only local, as shown in Figuré which displays the superposition of the
radial displacement fields obtained with the quadrangular mesh (worst) and the crossed trian-
gular mesh (best). Clearly, both fields coincide for the most part and the difference becomes
significant only in the last column of elements.

We can also look at macroscopic measures, such as the crushingvfordesplacement
curves shown in Figuré8. We see that, in the case of the quadrangular elements, both for-
mulations agree very well. But they differ significantly from results obtained with triangular
meshes at high compression levels. In the case of triangular elements, the various arrangements
of mesh do not lead to significant differences. Differences which appear (at high compression
levels) seem to be linked to the formulation of the constitutive updates. A possible explanation
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Figure 17: Radial displacement fields obtained with quadrangular and crossed triangular meshes

for this could be the importance of (elastic) volumic strains in this benchmark.
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Figure 18: Load-displacement curves obtained from quadrangular and crossed triangular meshes with ZorgLib and
SOGDE

8 CONCLUSIONS

The conclusions which can be drawn from the various numerical simulations run till now
are:

e The differences in formulation betweer®&8DE and ZorgLib do not lead to significant
variations in the results ;

e Quadratic 6-noded triangles provide a good alternative to bilinear quadrangles, even in
the case of large plastic strains ;

¢ Bilinear quadrangles seem to lead to a stiffer model than quadratic triangles, at equivalent
number of degrees of freedom. But this additional compliance of triangular meshes also
leads to higher levels of distortion, especially in the case of fully unstructured meshes.
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These high levels of distorsion can be detrimental to the quality of solution in terms of
internal variable fields, while it seems to have little effect on macroscopic measures.

Further work should focus on more detailed comparisons, especially of stress and strain distri-
bution. A fully 3-dimensional benchmark should also be considered.
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