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Abstract. Source identification problems have multiple applications in engineering such as the iden-

tification of fissures in materials, determination of sources in electromagnetic fields or geophysical ap-

plications, detection of contaminant sources, among others. In this work we are concerned with the

determination of a time-dependent source in a transport equation from noisy data measured at a fixed

position. By means of Fourier techniques can be shown that the problem is ill-posed in the sense that the

solution exists but it does not vary continuously with the data. A number of different techniques were

developed by other authors to approximate the solution. In this work, we consider a family of parametric

regularization operators to deal with the ill-posedness of the problem. We proposed a way to select the

regularization parameter as a function of noise level in data in order to obtain a regularized solution that

approximate the unknown source. We find a Hölder type bound for the error of the approximated source

when the unknown function is considered to be bounded in a given norm. Numerical examples illustrate

the convergence and stability of the method.
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1 INTRODUCTION

Source identification problems are inverse problems of great interest due to the amount of ap-

plications in different disciplines. For instance, in the problems of source identification we can

find applications in heat conduction processes (Hansen and O’Leary, 1993), electromagnetic

theory (El Badia and Ha-Duong, 2000), contaminant detection (Li et al., 2006) and detection

of tumor cells (Macleod, 1999). The determination of the foci of pollution of the layers of

groundwater triggers environmental and health problems for the population. The identification

of sources of pollution in groundwater can be modeled by a transport equation where its input

represents the mean concentration of contaminants per unit average of effective porosity (Li

et al., 2006; Sun, 1996). As a first approach, this work focus on the determination of a source

for a one-dimensional equation based on noisy measurements taken in a fixed position, in an

unbounded domain. This is an ill-posed problem in the sense of Hadamard (Hadamard, 1923)

because its solution does not depend continuously on data. In particular, the high frequency

components in arbitrarily small data errors can lead to arbitrarily large errors in the result. For

this type of problems, regularization methods are widely used in the literature in order to obtain

a stabilized approximate solution (Fu, 2004; Johansson and Lescnic, 2008). Here, we designed

a (parametric) family of regularization operators (see (Engel et al., 1996)) that compensates the

factor that causes the instability of the inverse operator. These operators approximate the given

ill-posed problem by a family well-posed problems. To this end, an a priori or a-posteriori

rule (parameter choice rule) must be selected to choose the regularization parameter. For more

details see (Engel et al., 1996), (Kirsch, 2011). The proposed family of regularization operators

provides a framework in the theory of operators for the modified regularization method used,

for instance, in (Qian et al., 2006, 2007; Xiao et al., 2012; Z. Zhao et al., 2014). Assuming

that the source is bounded in a given Hilbert space Hp, we propose a parameter choice rule

that depends on p and on the data noise level. We demonstrate the stability and convergence

of the regularization family and obtain a Hölder type bound for the estimation error. Numeri-

cal examples illustrate its performance including the calculation of the error and the theoretical

bound.

2 THE PROBLEM OF THE SOURCE DETERMINATION

We focus on the problem of determining the source f for the one-dimensional transport

equation from noisy data measurements with conditions. Specifically, we look for the source f
that satisfies the system































ut(x, t) = α2uxx(x, t)− βux(x, t)− νu(x, t) + f(t), x ∈ R, t > 0

u(x, 0) = 0, x ∈ R

u(0, t) = 0, t > 0

u(x0, t) = y(t), t > 0, x0 > 0

lim
x→∞

|u(x, t)| < M t > 0, for some M ∈ R

(1)

where α2, ν > 0, β ≥ 0. In addition, we assume that u(x, ·), f(·) ∈ L2(R) are unknown

functions and that y ∈ L2(R) can be measured with certain noise level δ, i.e., the data function

yδ ∈ L2(R) satisfies ||y − yδ||L2(R) ≤ δ.
We define all functions to be zero for t < 0. By means of the Fourier transform, the problem
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can be written in the frequency space as























−α2ûxx(x, ξ) + βûx(x, ξ) + z(ξ) û(x, ξ) = f̂(ξ), ξ, x ∈ R,

û(0, ξ) = 0, ξ ∈ R

û(x0, ξ) = ŷ(ξ), ξ ∈ R, x0 > 0

lim
x→∞

|û(x, ξ)| < M∗ ξ ∈ R, for some M∗ ∈ R,

(2)

where z(ξ) = ν + iξ ∈ C.

Solving the second order linear ordinary differential equation (2) we obtain

f̂(ξ) = Λ(ξ)ŷ(ξ) where Λ(ξ) =
z(ξ)

1− e
β−

√
β2+4α2z(ξ)

2α2 x0

. (3)

We introduce the operator T for y ∈ L2(R),

Ty =
1√
2π

∫ +∞

−∞
eiξtΛ(ξ) ŷ(ξ)dξ. (4)

Note that

f(t) = Ty(t). (5)

For simplicity, we drop the variable t in (5) and denote fδ = Tyδ. Hence

f − fδ = T (y − yδ) =
1√
2π

∫ +∞

−∞
eiξtΛ(ξ) (ŷ(ξ)− ŷδ(ξ))dξ. (6)

We observe that the factor Λ(ξ) increases without bound as |ξ| → ∞ amplifying the high

frequency components of the error ŷ(ξ) − ŷδ(ξ) which is an undesirable behavior (Hadamard,

1923).

Regularization methods are commonly used in dealing with unstable solutions. Regarding

the determination of a source for a parabolic equation, most of the research articles that use cer-

tain regularization techniques are restricted to particular cases. In (Sivergina et al., 2003) the au-

thor focus on a convection-diffusion equation, while in (Dou and Fu, 2009), (Dou et al., 2009),

(Trong et al., 2005), (Trong et al., 2006), (Yang and Fu, 2010), (Yan et al., 2010), (Z. Zhao

et al., 2014) only diffusion is considered. In this work we focus on a general one dimensional

advection-difussion transport equation with a time dependent source.

We define a family of operators and an a-priori parameter choice rule (Engel et al., 1996),

(Kirsch, 2011) in order to regularize the solution to the inverse source problem (5). The sta-

bility and convergence of the proposed regularization family is analyzed and an error bound

is obtained based on the data noise level, assuming some smoothness on the source. The per-

formance of this approach is numerically illustrated. A comparision with the unregularized

solution is included.

3 INVERSE PROBLEM REGULARIZATION

Definition (Kirsch, 2011) Let T : Y −→ X , X and Y be Hilbert spaces and T an unbounded

operator. A regularization strategy for T is a family of linear and bounded operators

Rµ := Y −→ X, µ > 0, / lim
µ→0

Rµy = Ty, ∀y ∈ Y. (7)
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Let us define the parametric family of integral operators Rµ : L2(R) → L2(R) for µ ∈ (0, 1),

Rµy :=
1√
2π

∫ +∞

−∞
eiξt

Λ(ξ)

1 + µ2ξ2
ŷ(ξ)dξ (8)

where Λ(ξ) given in (3) and the denominator 1 + µ2ξ2 is introduced for stabilization purposes.

Theorem 3.1 Let us consider the problem of identifying f from noisy data yδ(t) measured at a

given position x0 > 0, where δ is the data noise level and u and f satisfy























ut(x, t) = α2uxx(x, t)− βux(x, t)− νu(x, t) + f(t), x ∈ R, t > 0

u(x, 0) = 0, x ∈ R

u(0, t) = 0, t > 0

lim
x→∞

|u(x, t)| < M t > 0, for some M ∈ R.

(9)

Let {Rµ} be the family of operators defined by (8). Then, for every y(t) = u(x0, t) there exists

an a-priori parameter choice rule for µ > 0 such that the pair (Rµ, µ) is a convergent regular-

ization method for solving the identification problem (5).

Proof The factor
Λ(ξ)

1 + µ2ξ2
is bounded for all ξ since it is continuous for all ξ ∈ R and

lim
ξ→±∞

∣

∣

∣

∣

Λ(ξ)

1 + µ2ξ2

∣

∣

∣

∣

= lim
ξ→±∞

∣

∣

∣

∣

∣

∣

∣

∣

z(ξ)
(

1− e
β−

√
β2+4α2z(ξ)

2α2 x0

)

(1 + µ2ξ2)

∣

∣

∣

∣

∣

∣

∣

∣

< ∞.

Hence, for all µ > 0, Rµ is a continuous operator and Rµ → T pointwise on L2(R) as µ → 0
for T given in (4). Therefore, by Proposition 3.4 in (Engel et al., 1996), Rµ is a regularization

for T and for every y(t) = u(x0, t) there exists an a-priori parameter choice rule µ such that

(Rµ, µ) is a convergent regularization strategy for solving (5). The regularized solution is given

by

fδ,µ = Rµyδ =
1√
2π

∫ +∞

−∞
eiξt

Λ(ξ)

1 + µ2ξ2
ŷδ(ξ)dξ. (10)

Remark We observe that the proposed family of regularized operators (10) is equivalent to

the regularization method proposed in (Yang and Fu, 2011) when taking α2 = 1; β = ν = 0
and x0 = 1.

4 ERROR ANALYSIS

In this section we are concerned with the stability and error analysis of the regularization

method. We assume that the source f is bounded in the Sobolev space Hp(R), p > 0, i.e., for

some C > 0 it holds

‖f‖Hp(R) :=

(
∫ ∞

−∞
|f̂ |2

(

1 + ξ2
)p

dξ

)1/2

≤ C. (11)

Optimal order strategies require a parameter choice rule that depends on the a-priori bound C
in (11). Since in practice this bound is unknown, we look for a regularization parameter that
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leads to a convergent strategy that only depends on the noise level of the data δ. Some results

are now introduced that will be used later to obtain a bound for the regularization error, that is,

the error between the source f(x) and its estimate fδ,µ(x).

Lemma 4.1 For ω ∈ C with Re(ω) > 0 holds
∣

∣

∣

∣

1

1− e−ω

∣

∣

∣

∣

≤ 1

1− e−Re(ω)
, Re(

√
ω) =

√

Re(ω)+|ω|
2

≥
√

Re(ω).

Lemma 4.2 If 0 < µ < 1 then
|x|

1 + x2µ2
≤ 1

2µ
, ∀x ∈ R.

Lemma 4.3 The function g : R>0 → R given by g(x) =







x

1− e−x
0 < x < 1

1

1− e−x
1 ≤ x

satisfies

g(x) ≤ 2, ∀x > 0.

Lemma 4.4 Let α2, ν, x0 > 0, β ≥ 0 and 0 < µ < 1 then,

∣

∣

∣

∣

Λ(ξ)

1 + ξ2µ2

∣

∣

∣

∣

≤ 1

µ2

(

2α2(2ν + 1)

(−β +
√

β2 + 4α2ν) x0

)

.

Proof From equation (3), Lemma 4.1 and the triangular inequality we have
∣

∣

∣

∣

Λ(ξ)

1 + ξ2µ2

∣

∣

∣

∣

≤ ν + |ξ|
(

1− e−(−β+
√

β2+4α2ν

2α2 )x0

)

(1 + ξ2µ2)

. (12)

Let us denote m = m(α, β, ν) =
−β+

√
β2+4α2ν

2α2 and consider two cases: mx0 ≥ 1 and

mx0 ∈ (0, 1)

Case mx0 ≥ 1 : Using Lemmas 4.2-4.3, for 0 < µ < 1 results

ν + |ξ|
(1− e−mx0) (1 + ξ2µ2)

≤ 2

(

ν

1 + ξ2µ2
+

|ξ|
1 + ξ2µ2

)

≤ 2ν +
1

µ
. (13)

Case mx0 ∈ (0, 1):

Observe that multiplying and diving by mx0 for 0 < µ < 1, Lemmas 4.2-4.3 imply

ν + |ξ|
(1− e−mx0) (1 + ξ2µ2)

≤ 2

mx0

(

ν + |ξ|
1 + ξ2µ2

)

≤ 2

mx0

(

ν

1 + ξ2µ2
+

1

2µ

)

≤
(

2ν +
1

µ

)

1

mx0

. (14)

Note that for 0 < µ < 1, equations (13) - (14) yield

∣

∣

∣

∣

Λ(ξ)

1 + ξ2µ2

∣

∣

∣

∣

≤ 1

µ2

(

2α2(2ν + 1)

(−β +
√

β2 + 4α2ν) x0

)

.

and the proof is completed.
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Theorem 4.5 Consider the inverse problem of determining the source f(t) in (1). Let fδ,µ(t) be

the regularization solution given in (10) and assume that ‖f‖Hp(R) is bounded in Hp(R) (11).

Then choosing the regularization parameter µ2 = δ
2

p+2 , there exists a constant K independent

of δ such that

‖f − fδ,µ‖L2(R) ≤ K max
{

δ
p

p+2 , δ
2

p+2

}

. (15)

Proof From now on, let us denote ‖ · ‖ = ‖ · ‖L2(R). Defining f̂µ(ξ) :=
Λ(ξ)

1 + µ2ξ2
ŷ(ξ), one has

∣

∣

∣
f̂(ξ)− f̂µ(ξ)

∣

∣

∣
=

∣

∣

∣

∣

f̂(ξ)− Λ(ξ)

1 + µ2ξ2
ŷ(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

f̂(ξ)
(1 + ξ2)

p

2

(1 + ξ2)
p

2

(

1− 1

1 + ξ2µ2

)∣

∣

∣

∣

≤ sup
ξ∈R

∣

∣

∣

∣

(1 + ξ2)−
p

2

(

1− 1

1 + ξ2µ2

)∣

∣

∣

∣

∣

∣

∣
f̂(ξ)(1 + ξ2)

p

2

∣

∣

∣
. (16)

By (10) and the triangle inequality we have that

‖f̂ − f̂δ,µ‖ ≤ ‖f̂ − f̂µ‖+ ‖f̂µ − f̂δ,µ‖. (17)

Now, (16)- (17), the definition of Hp(R)-norm given in (11) and (10) lead to

∥

∥

∥
f̂ − f̂δ,µ

∥

∥

∥
≤ sup

ξ∈R

∣

∣

∣

∣

(1 + ξ2)−
p

2

(

1− 1

1 + ξ2µ2

)∣

∣

∣

∣

‖f‖Hp(R) + sup
ξ∈R

∣

∣

∣

∣

Λ(ξ)

1 + ξ2µ2

∣

∣

∣

∣

‖ŷ − ŷδ‖ .

From (Yang and Fu, 2010), it holds

sup
ξεR

∣

∣

∣

∣

(1 + ξ2)−
p

2

(

1− 1

1 + ξ2µ2

)
∣

∣

∣

∣

≤ max
{

µp, µ2
}

.

Thus, Lemma 4.4 and the assumption ‖ŷ − ŷδ‖ ≤ δ yields to

‖f̂ − f̂δ,µ‖ ≤ max
{

µp, µ2
}

‖f‖Hp(R) +
δ

µ2

(

2α2(2ν + 1)

(−β +
√

β2 + 4α2ν) x0

)

.

By Parseval’s identity, the linearity of the Fourier transform and (11), choosing µ2 = δ
2

p+2 we

obtain

‖f −Rµyδ‖ =
∥

∥

∥
f̂ − f̂δ,µ

∥

∥

∥
≤ Kmax

{

δ
p

p+2 , δ
2

p+2

}

. (18)

where K = C +

(

2α2(2ν+1)

(−β+
√

β2+4α2ν)x0

)

and C is the bound in(11).

5 NUMERICAL EXAMPLES

We consider functions u and f that satisfy a given transport equations on an interval (0, TM ]
and define a uniform partition P = {tj, j = 0, ..., n} on that interval. A set of numerically

simulated noisy data {u(x0, tj) = yδ = y(tj) + ej, tj ∈ P , j = 0, ..., n} is obtained where

{ej, j = 1.., n} are realizations of normally distibuted random variables with mean 0 and

standard deviation ǫ < 1 and δ satisfies ‖yδ(t)− y(t)‖L2(R) ≤ δ. Then, we set the regularization

parameter µ = δ
2

p+2 and calculate the approximated solution fδ,µ(t) given by (10).
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Example 5.1 Consider the inverse source problem defined in (1) with modeling parameter val-

ues α2 = 0.01, β = 0.5, ν = 1.51. Hence, the problem is to determine f in



















ut(x, t) = 0.01uxx(x, t)− 0.5ux(x, t)− 1.51u(x, t) + f(t), x ∈ R, t > 0

u(x, 0) = 0, x ∈ R,

u(0, t) = 0, t > 0

u(x0, t) = y(t), t > 0.

We consider the source f given by

f(t) =

{

6.51e−t, 20 > t > 0,
0, t ≥ 20.

(19)

0 2 4 6 8 10 12 14 16 18 20

t

-4

-2

0

2

4

6

8

10
Original source and its non-regularized estimations (p=2 and x

0
=2)

f
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f
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, ε฀= 0.3

f
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, ε฀= 0.4

f
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, ε฀= 0.5

f (Source)

0 2 4 6 8 10 12 14 16 18 20

t

-4

-2

0

2

4

6
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Original source and its regularized estimations (p=2 and x

0
=2)

f
δ,µ(δ)
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f
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f (Source)
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f (Source)
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0
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f
δ,µ(δ)

, ε = 0.5

f (Source)

Figure 1: Example 5.1: Original Source and its estimations for the solution fδ (left) and the regularized one fδ,µ
(right) for the same set of noise levels.

Figure 1 shows the original source f , for the example 5.1 along with the non-regularized

solution fδ = Tyδ (left side) and the regularized one fδ given by (10) (right side). The plots on

the top correspond to p = 2 and the data measured at x0 = 2 and the one below correspond to

p = 0.5 and x0 = 10. Also, high level noise were considered, we take ǫ ∈ {0.2, 0.3, 0.4, 0.5}.
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ǫ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

‖f − fδ‖ 9.54 9.59 9.62 9.75 10.09 10.17 10.283 10.90 11.85 12.19

‖f − fδ,µ‖ 5.282 5.305 5.307 5.309 5.310 5.315 5.318 5.320 5.326 5.369

Theoretical Bound 6.47 6.75 6.98 7.13 7.46 7.84 8.11 8.30 9.41 10.46

Table 1: Absolute errors for the non-regularized and regularized estimations and theoretical bound for example 5.1

with p = 2 and data measured at x0 = 2.

Table 1 contains the absolute errors for the non-regularized and the regularized source solu-

tions when considering p = 2 and measuring position x0 = 2.

Example 5.2 Consider the inverse source problem defined in (1) with modeling parameter val-

ues α2 = 0.1, β = 0.9, ν = 1. Hence, the equation is given by



















ut(x, t) = 0.1uxx(x, t)− 0.9ux(x, t)− u(x, t) + f(t), x ∈ R, t > 0

u(x, 0) = 0, x ∈ R,

u(0, t) = 0, t > 0,

u(x0, t) = y(t), t > 0

with f given by

f(t) =















































































0, 2 > t > 0,

2, 4 > t ≥ 2,

−2, 6 > t ≥ 4,

1, 8 > t ≥ 6,

−1, 10 > t ≥ 8,

1/2, 12 > t ≥ 10,

−1/2, 14 > t ≥ 12,

1/4, 16 > t ≥ 14,

−1/4, 18 > t ≥ 16,

0, t ≥ 18.

(20)

Figure 2 shows the original source f , for the example 2 along with fδ (left side) and the

regularized solution fδ,µ (right side). The plots on the top correspond to p = 3 and the data

measured at x0 = 3 and the ones below correspond to p = 0.2 and x0 = 8. For this example,

the level noises are ǫ ∈ {0.1, 0.15, 0.2, 0.25}.

ǫ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

‖f − fδ‖ 13.64 13.72 13.82 13.88 13.97 14.01 14.23 14.61 14.72 15.43

‖f − fδ,µ‖ 2.21 2.85 3.23 3.97 4.31 4.78 4.92 5.03 5.49 5.88

Theoretical Bound 2.37 3.13 3.68 4.13 4.52 4.86 5.17 5.46 5.72 5.97

Table 2: Absolute errors for the non-regularized and regularized estimations and theoretical bound for example 5.2

with p = 3 and data measured at x0 = 3.

Table 2 contains the absolute errors for the non-regularized and the regularized source solu-

tions when considering p = 3 and measuring position x0 = 3.
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Figure 2: Example 5.2: Original Source and its estimations fδ (left) and the regularized solution fδ,µ (right) for

the same set of noise levels.

6 CONCLUSIONS

We consider the inverse source problem for a 1D transport equation. We define a regular-

ization family of operators to deal with the ill-posedness of the problem by compensation the

instability factor in the inverse operator. We proposed a regularization parameter choice rule

based on assumption of the noise level in data and the smoothness of the source to be identify.

We prove that for the parameter choice rule proposed here, the method is stable and a Hölder

type bound for the regularization error is obtained. The numerical examples show an improve-

ment in the regularized solution with the respect to the one obtained when no regularization

is applied. In this work we have included few examples where the sources belong to different

Hilbert spaces to illustrate the performance of this method. The numerical experiments show

good estimates for the source at different noise levels.
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