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Abstract. Three dimensional direct numerical simulations are presented for cylindrical density cur-
rents using the Boussinesq approximation for small density difference. Three Reynolds numbers (Re)
are investigated (895, 3450 and 8950, this particular choice corresponds to values of Grashof number of
105, 1.5 × 106 and 107, respectively) in order to identify differences in the flow structure and dynamics,
and to compare with planar density currents. The simulations are performed using a fully de-aliased
pseudospectral method. The simulated flows present the main features observed in experiments for the
large Re. As the current develops, it transitions through different phases of spreading, namely accel-
eration, slumping, inertial and viscous. Soon after release the interface between light and heavy fluids
rolls up forming Kelvin-Helmholtz vortices. The formation of the first vortex sets the transition between
acceleration and slumping phases. Vortex formation continues only during the slumping phase. The
coherent Kelvin-Helmholtz vortices undergo azimuthal instabilities and eventually breakdown into small
scale turbulence. In the case of planar currents this turbulent region extends over the entire body of the
current, while in the cylindrical case it only extends to the near-front region. The flow develops three-
dimensionality right from the initial acceleration phase. During this phase, incipient lobes and clefts start
to form at the lower frontal region. These instabilities grow in size and extend to the upper part of the
front. Lobes and clefts continuously merge and split and, thus result in a complex pattern that dynami-
cally evolves. The wavelength of the lobes grows as the flow spreads, while the local Reynolds number
of the flow decreases. Due to the high resolution of the simulations, we have been able to link the lobe
and cleft structure to local flow patterns and vortical structures. In the near front region and body of the
current several hairpin vortices populate the flow. Laboratory experiments have been performed at the
higher Reynolds numbers and the results have been compared to the simulation results. The agreement
has been documented to be very good.
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1 INTRODUCTION

Density (or gravity) currents are flows that are driven by horizontal pressure gradients gener-
ated due to the action of gravity over two different fluids with density difference (Allen, 1985;
Simpson, 1997). In many real applications and laboratory experiments the current is canalized
and is confined to flow between parallel lateral walls. In such situations, if the viscous effects of
the lateral walls can be ignored, the current moves as a statistically two-dimensional (2D) flow
with a nominally planar front (planar current). There are a number of other applications, such
as the release of heavy gas into an open space, the collapse of an axisymmetric volcanic plume,
or a point discharge into a lake or ocean, in which the gravity current is not channelized and
is allowed to spread out over the entire horizontal plane. In such situations, the current moves
as a statistically circular flow with a nominally cylindrical front (cylindrical current). Many
examples of engineering, environmental and geological applications can be found in the books
by Allen (1985) and Simpson (1997).

In a planar current the planform increases linearly with front location, while in a cylin-
drical current the planform increases quadratically. This fundamental difference dramatically
decreases the intensity of the cylindrical current as it evolves. On the other hand, in a cylindri-
cal current the concentrated vorticity at the head of the current initially intensifies as the current
flows out due to intense vortex stretching (Patterson et al., 2006). These differences contribute
to a distinct dynamics for the cylindrical currents. There are instances of directed release, for
example heavier fluid released from a finite opening down a flat slope, where the current does
not spread all around, but forms a conical planform. Density currents in such sector-shaped
geometric tanks are often studied in the laboratory, instead of a full cylindrical current, due to
their simplicity.

The dynamics of planar density currents is reasonably well understood (see for example
Marino et al., 2005). Planar currents form a coherent front and a relatively long highly tur-
bulent body behind the front (Cantero et al., 2006b). As the current spreads, it passes trough
different phases, namely slumping, inertial and viscous (Huppert and Simpson, 1980). In the
slumping phase the planar current moves at a nearly constant speed. The duration of the slump-
ing phase depends on the initial volume and Reynolds number (Re) of the release. Provided
the Re of the current is sufficiently large, the flow first enters an inertial self-similar phase
(Rottman and Simpson, 1983) in which the current moves under the balance of buoyancy and
inertial forces. In this phase the current’s spreading rate (front velocity) scales as t−1/3 (see
for example Hoult, 1972). At later times, when viscous effects become important the current
transitions to the viscous phase. In this phase the current’s spreading rate scales as t−5/8 if
the dominant viscous effect arises from interfacial friction between the heavy and light fluids
(Hoult, 1972) or as t−4/5 if the viscous effect is primarily from bottom friction (Huppert, 1982).

In contrast to planar currents, as cylindrical currents spread they form a highly turbulent front
and a relatively shallow calm body (Cantero et al., 2006a). Cylindrical currents are also thought
to pass through a similar sequence of different phases of spreading. Provided the Reynolds
number of the current is sufficiently high, after the slumping phase the current enters the self-
similar inertial phase and the spreading rate scales as t−1/2 (see for example Hoult, 1972).
During the final viscous phase, the front velocity of the cylindrical current scales as t−3/4 if the
dominant viscous effect arises from interfacial friction (Hoult, 1972) or as t−7/8 if the viscous
effect is primarily from bottom friction (Huppert, 1982).

Several experiments have been performed to study the dynamics and structure of planar
density currents. Allen (1971) and Simpson (1972) have devoted great effort to study the
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lobe and cleft pattern observed at the front of planar density currents. Simpson and Britter
(1979) studied the dynamics of the head of a gravity current. Huppert and Simpson (1980) and
Rottman and Simpson (1983) have studied the different phases of spreading of a current pro-
duced by the release of a fixed volume of denser fluid in a lighter ambient. Garcı́a and Parsons
(1996) and Parsons and Garcı́a (1998) have studied the similarity of planar density currents
fronts, to mention but a few.

In comparison, experimental investigation of cylindrical currents has been relatively lim-
ited. Bonnecaze et al. (1995) analyzed the spreading rate and deposition patterns of cylindrical
particle-driven gravity currents. Alahyari and Longmire (1996) performed Particle Image Ve-
locimetry of a cylindrical gravity current and described the vortex dynamics in the early stages
of the flow. Hallworth et al. (1996) studied experimentally the ambient fluid entrainment in 2D
and axisymmetric currents. Hallworth et al. (2001) studied experimentally the effect of rota-
tion on the propagation of cylindrical currents. Recent experiments in a sector-shaped tank for
varying fractional depth of lease has been reported by Patterson et al. (2006).

Three-dimensional highly resolved simulations at modest Reynolds numbers have been per-
formed for the planar currents (Lee and Wilhelmson, 1997a,b; Härtel et al., 2000b; Necker et al.,
2002; Özgökmen et al., 2004; Cantero et al., 2006b). These simulations have provided a wealth
of information, among other things, on the propagation speed of the current, the lobe and cleft
structure of the head, and the turbulent structure of the body. Such detailed information for a
cylindrical current over a range of Reynolds number is highly desired.

Here we center our attention on the release of a fixed cylindrical volume of homogeneous
fluid in a slightly less dense environment and the time evolution of the resulting cylindrical
current. We perform highly resolved simulations for 3D cylindrical currents at three differ-
ent Reynolds numbers and document the results. We also compare the simulation results to
experiments, where available.
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Figure 1: Sketch of a density current showing the main features of the flow and nomenclature for this work.

2 NUMERICAL FORMULATION

We consider flows in which the density difference is small enough for Boussinesq approxi-
mation to be valid. By this approximation density variations are only incorporated in the buoy-
ant terms. The dimensionless equations read
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Here ũi is the velocity vector, p̃ is the pressure, ρ̃ is the density, Re is the Reynolds number, Sc
is the Schmidt number and ei is a unit vector pointing in the gravity direction.

We have adopted the height of the fluid layer, H , as the length scale. Since there is no
externally-imposed velocity scale for the flow, we have adopted

U =
√

g′H (4)

as the velocity scale. Here g′ = g(ρ1 − ρ0 )/ρ0 , where g is the acceleration of gravity, ρ1 is the
density of the denser fluid and ρ0 is the density of the ambient fluid. Consequently, the time
scale is H/U . The dimensionless density and pressure are given by

ρ̃ =
ρ − ρ0

ρ1 − ρ0

, and p̃ =
p

ρ0 U2
. (5)

The two dimensionless numbers in equations (1)–(3) are, respectively, the Reynolds and Schmidt
numbers, defined as

Re =
U H

ν
=

√

g′ H3

ν
and Sc =

ν

κ
, (6)

where ν is the kinematic viscosity and κ is the diffusivity of temperature or chemical species
responsible for the density difference. A cylindrical volume of height H (full-depth) and radius
r0 containing the heavier fluid is released into the surrounding lighter fluid. Figure 1 shows
the nomenclature used in this work and the initial setting of the flow. In this work we will
concentrate on the condition r0 = H .

The computational domain is a rectangular box of size L̃x × L̃y × L̃z. Since the current
spreads radially outward along the entire x̃ − ỹ plane we choose L̃x = L̃y. Periodic bound-
ary conditions are employed along the (x̃) and (ỹ) directions and thus here we approximate a
doubly periodic array of cylindrical gravity currents with a lateral spacing of L̃x = L̃y along
the horizontal directions. At the top and bottom walls no-slip and zero-gradient conditions are
enforced for velocity and density, respectively. The planform of the periodic box is taken to
be 15 × 15 in order to allow unhindered development of the current for sufficiently long time.
The interaction of the radially advancing front with the adjacent currents across the periodic
boundaries becomes significant only as the front reaches within 1 dimensionless unit from the
boundaries (Härtel et al., 2000b; Cantero et al., 2006a). The flow was started from rest with a
minute random disturbance prescribed in the density field. The details of the initial conditions
can be found in Cantero et al. (2006a). The governing equations are solved using a de-aliased
pseudospectral code whose details can be found in Cantero et al. (2006b).

In this work, three different Re are considered: Re = 895, 3450 and 8950. The corre-
sponding Grashof number, defined as Gr = Re2/8 are 105, 1.5 × 106 and 107, respectively.
The intermediate Reynolds number corresponds to that considered by Härtel et al. (2000b) in
the planar configuration. With increasing Re the complexity of the flow increases, and this
required increased resolution. The grid resolution employed for the three different simulations
are 280 × 280 × 72, 512 × 512 × 110 and 880 × 880 × 180 and thus they involve, 5.6, 28.8
and 139.4 million grid points. The numerical resolution for each simulation was selected to
have between 6 and 8 decades of decay in the energy spectrum for all the variables. The time
step was selected to produce a Courant number smaller than 0.5. The simulation at Re = 8950
required about 1 month of continuous run on 64 processors of the new SGI Altix 3000 (put to
production on April 2005 at NCSA, University of Illinois at Urbana-Champaign), about 70Gb

M.I. CANTERO, C.M. GARCIA, M.H. GARCIA, S. BALACHANDAR2270

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



of RAM memory to run, 600Gb of storage for raw data, and 18Tb (18000 Gb) of storage for
visualization postprocessing made by NCSA scientists.

In the planar case, along the spanwise direction, the width of the periodic domain is typically
chosen to be 1.5 dimensionless units, which is adequate to include several spanwise lobe and
cleft structures (Härtel et al., 2000a). Thus the present simulations of the cylindrical current
are an order of magnitude more computationally expensive than the planar simulations, for
similar Reynolds number and grid resolution. By imposing symmetry along the x̃ = 0 and
ỹ = 0 planes the computational domain and correspondingly the computational cost can be
reduced by factor 4 (Patterson et al., 2006). However, in the context of the present spectral
simulations, it is more complex to impose such symmetry boundary conditions. Despite the
increased computational cost there are advantages with the larger domain. First, if there are
low circumferential wavenumber (kθ = 1 or 2) instabilities in the propagation of the front, such
instabilities can only be captured in the larger domain, without imposed symmetries. The initial
perturbation included a wide range of circumferential modes. Thus, the present simulations will
capture the low wavenumber instabilities if they are present in a real system. If the computed
results do not show such low wavenumber undulation in the propagation of the front, then
these modes are not important and the use of symmetry boundary conditions will be supported.
Furthermore, in the initial perturbation we make sure that the evolution of the current in the four
quadrants is dissimilar. The evolution of the current in the four different quadrants, although
statistically identical, are not exactly the same. Thus, at the higher Re turbulent flows, we have
four times larger data base for more accurate extraction of the statistics.

3 RESULTS AND DISCUSSION

3.1 Roll up of the interface

3.1.1 Re = 895

After the release of the denser fluid, an intrusive front forms. Figure 2 shows the structure of
the current as visualized by a density isosurface of ρ̃ = 0.15 for the lower Re of 895. The figure
shows only one quarter of the computational domain to allow for better visualization of the
flow structures. Two different dimensionless time instances are shown, t̃ = 7 and 10. At both
times a well-defined head of the current can be seen. The head initially consists of a coherent
anti-clockwise rotating vortex ring (marked A1 on the x̃ − z̃ plane in figure 2) that forms first
due to the roll up of the interfacial shear layer between the heavy and light fluids. As the front
of the current progresses radially out, the vortex ring A1 slightly lifts up above the ground and
a new anti-clockwise vortex ring A5 (numbering will become clear below) forms ahead of it.
At the earlier time of t̃ = 7, the presence of two different vortex rings, one behind the other,
can be clearly observed and together these two vortex rings form the distinct raised head of the
current seen in the density isosurface. At this Re the currents remains axisymmetric at all times
and the initial non-axisymmetric disturbance introduced into the flow decays away quickly.

3.1.2 Re = 3450

Figure 3 shows the structure of the current at the intermediate Re of 3450. At the earlier
time of t̃ = 7 a sequence of four vortex rings, one right behind the other, can be seen. The anti-
clockwise vortex marked A1 is the first one to form, as a result of the roll up of the interface that
develops soon after the release of the heavy fluid. With increase in time, the front of the heavy
fluid propagates radially out, while the front of the light fluid propagates back towards the axis.
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As new interface develops, subsequent roll up of the interface results in the formation of vortex
ring A2. In the present case the back propagating disturbance reaches the axis by about t̃ = 3,
after which the mean interface between light and heavy fluids increases only due to the forward
propagation of the heavy front. Also at around t̃ ≈ 3.0 the interface begins to roll up again to
form the third vortex ring A3. These later vortices can be observed to be progressively weaker
than the first one. We observe no further roll up of the interface into coherent vortex rings. At
the earlier time of t̃ = 7 the three vortices A1, A2 and A3 are nearly equispaced. The formation
of vortex ring A5 ahead of A1 will be discussed below in the context of the higher Re case. By
about t̃ ≈ 10.0 the vortex rings A1 and A5 merge and form a single head of the current, which
can be observed at the later time of t̃ = 14 shown in figure 3. Also at this time, due to their
faster propagation, we observe the combined vortex ring A1+A5 is farther ahead of the weaker
vortex rings A2 and A3.

At this Re the initial disturbance introduced into the flow grows over time and quickly the
flow forms a lobe-and-cleft structure. The initial random disturbance introduced at the interface
includes a wide range of circumferential modes. It is, however, clear from the figure that there is
a preferred most amplified circumferential mode of instability. At the earlier time about 20 lobe
and cleft structures can be observed within the quadrant that is visualized, while at the later time
slightly lower number of lobe and cleft structures are observed. At the early time the instability
can be observed only at the head of the current, but at later time the instability is not limited to
only the head of the current, and it can be clearly observed along the subsequent vortex rings
as well. The lobes and clefts are observed to be reasonably well organized at the earlier time,
while at the later time their structure is less regular, suggesting the strong role of nonlinearity.
The height of the current is elevated only at the location of the vortex rings. In between the
vortex rings the current appears to be relatively thin and calm and devoid of strong instabilities.
The remnant heavy fluid observed along the axis (x̃ = ỹ = 0) and near the top boundary are
artifacts of the no-slip boundary condition applied at the top boundary. But changing this to a
free slip top boundary does not alter the physics of the current to be discussed below.

3.1.3 Re = 8950

Figure 4 shows the time development of the flow structure for the higher Re of 8950. Initially,
the flow evolves as a nearly axisymmetric flow in which Kelvin-Helmholtz rolls develop and
form along the front and body of the current (Cantero et al., 2006a). At this time of t̃ = 2.7
the front nose of the current is slightly lifted away from the bottom wall and, as a consequence
of no-slip condition, a layer of light fluid penetrates below the raised nose resulting in unstable
stratification. It can be observed that at this early time some incipient lobes and clefts are starting
to form. However, the three-dimensionality is primarily limited to the nose of the current.

The roll up process of the interface can be better observed from circumferentially-averaged
variable plots. For any flow variable f , the circumferential-average is indicated by an overbar
and computed as

f̄(r̃, z̃) =
1

2π

2π
∫

0

f(r̃, θ, z̃) dθ. (7)

In figure 5 circumferentially-averaged velocity vector plots are presented at several time in-
stances. To allow better visualization of the rolled up vortices, the velocity field is plotted in
a frame of reference moving with the front of the current together with contours of constant
density. The interface between the heavy and light fluids is taken to be marked by ρ̃ = 0.15.
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At the earliest time shown (t̃ = 1.77) only the incipient roll up of the anti-clockwise vortex
ring A1 can be seen. By t̃ = 2.7 the back propagating front has almost reached the axis and
in addition to the initial vortex ring A1, two additional anti-clockwise vortex rings A2 and A3
can be observed upstream. Also, as a consequence of the bottom no-slip boundary condition,
the strong anti-clockwise vortex ring A1, results in the formation of a clockwise rotating vortex
ring C1 closer to the bottom wall. At t̃ = 3.54 the pair of vortex rings A1 and C1 form the
head of the current. Vortex rings A2 and A3 have merged and have resulted in the formation
of the clockwise vortex ring C2. A new rolled up anti-clockwise vortex A4 and the associated
clockwise vortex ring C3 can be seen as well. The resulting vortex ring structure and the in-
terface can be verified in figure 4. The presence of counter-rotating vortices has been observed
in cylindrical gravity currents in the experiments of Alahyari and Longmire (1996). They inter-
preted them as boundary layer separation caused by the adverse pressure gradient produced by
the anti-clockwise vortex rings formed.

By t̃ = 5.31 an important development has occurred. The effect of C1 is to lift the dominant
vortex ring A1 further away from the bottom wall. This lift up lowers the outward propagation
velocity of the vortex ring. The front thus advances faster than the vortex ring A1 and results
in the formation of a new anti-clockwise vortex ring A5, downstream of A1. This mechanism
is the cause of vortex ring marked A5 in the two lower Re cases as well. As the flow evolves,
instabilities grow and destabilize the Kelvin-Helmholtz rings, which suffer strong stretching
and bending in the azimuthal direction. By t̃ = 7 a fully developed pattern of lobes and clefts
can be observed at the front, but the vortex rings have decayed to smaller and weaker vortices.
At t̃ = 21 only A5 that forms the front of the current and the remnant of the original vortex
ring A1 can be observed. Despite the decay, the lobe and cleft pattern is still present. The level
of turbulence has decayed substantially and only the front of the current presents some vortical
structures. The body of the current has become a relatively calm region, where most of the flow
features manifest as interfacial waves.

3.2 Interface circulation estimates

The roll up of the flow into coherent vortex rings is clearly associated with vorticity (or
circulation) at the interface. A rough estimation of circulation at the interface will be pur-
sued for the circumferentially averaged flow in order to understand the roll up process. The
(circumferentially averaged) velocity jump across the nearly horizontal interface between light
and heavy fluids is proportional to the (circumferentially averaged) velocity of the propagating
front, uF (t̃). The constant of proportionality is 1.0 for a deeply submerged current and is equal
to 2.0 for a current of height half the layer depth and for all other intermediate current depths
the constant of proportionality is between 1.0 and 2.0. Net circulation at the (circumferentially
averaged) interface is then

Γ(t̃) ∼ uF (t̃)lF (t̃) , (8)

where lF is the length of the current. If we assume a uF ∼ t̃β behavior for the (circumferentially
averaged) front velocity, then we obtain the following power-law evolution for circulation

Γ(t̃) ∼ t̃ 2β+1 . (9)

It can be readily seen from the equation above that only for β > −1/2, net circulation at the
interfaces increases with time. If the front velocity decays more rapidly (i.e., for β < −1/2),
then net circulation at the interface decreases.
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In a cylindrical current during the slumping phase were the front moves at a constant velocity,
then corresponding β = 0, and as a result in this phase net vorticity will increase as t̃. In the iner-
tial phase, where the gravitational and inertial forces are in approximate balance, the asymptotic
behavior of the cylindrical current is given by uF ∼ t̃−1/2 (Fay, 1969; Fannelop and Waldman,
1971; Hoult, 1972; Huppert and Simpson, 1980). Thus, in the inertial phase the circulation at
the interface can be expected to stay constant (Γ(t̃) ∼ t̃ 0). In the viscous phase, where the
gravitational and viscous forces are in approximate balance, two different power-law solutions
can be obtained depending on the importance of interfacial friction between the heavy and light
fluids versus friction at the bottom wall. In the case of former, the power-law solution for a
cylindrical current is uF ∼ t̃−3/4 (Hoult, 1972), and for the later self-similar solution yields
uF ∼ t̃−7/8 (Huppert, 1982). Both these viscous phase solutions predict a decrease in interfa-
cial circulation as either t̃−1/2 or t̃−3/4. Based on above argument, one can anticipate interface
to strengthen and continue to roll up into vortex rings in the slumping phase. The interface roll
up remain constant during the inertial phase and eventually decrease during the viscous phase.

Figure 6 show the log-log plot of velocity of the front as a function of time for the three dif-
ferent Re. Also show in the figure are the t̃−1/2, t̃−3/4 and t̃−7/8 power-laws (which are straight
lines in the log-log plot) corresponding to the inertial phase and the two viscous phase predic-
tions, respectively. Although a perfect constant velocity is not observed, a brief period of slow
variation in velocity is observed, which can be taken to be the slumping phase of a cylindri-
cal current (Cantero et al., 2006b). From this figure it can be identified that the lower Re flow
transition directly from the slumping to the viscous phase, while the higher two Re flows tran-
sition from the slumping to the inertial and eventually to the viscous phase. The corresponding
transition times can be estimated from the figure to be t̃ ' 5 for the slumping/viscous tran-
sition for the lower Re flow, and t̃ ' 5 for the slumping/inertial transition and t̃ ' 9 for the
inertial/viscous transition for the higher two Re flows.

In Cantero et al. (2006b) it was observed that the formation of the first vortex ring (A1)
marked the start of the slumping phase after a short acceleration period of the flow (acceleration
phase). Here we note that the formation and intensification of all new anti-clockwise vortex
rings happens over t̃ < 5 for all Re (during the slumping phase). The number of vortex rings
that form in a cylindrical current is primarily a function of both Re and the volume of release.
With increasing volume of heavy fluid at release, the time spent in the slumping phase increases
and during these period circulation at the interface continues to increase. With increasing Re
the frequency at which the interface rolls up to form coherent vortices increases. At Re = 895
only one vortex ring (A1) forms in the slumping phase. At Re = 3450 and 8950 three and four
vortex rings form, respectively, before the inertial phase. In all the case, the only exception is
vortex ring A5 that forms ahead of the primary vortex ring A1.

In a cylindrical current, as the current radially propagates out the vortex rings are stretched.
Circulation within the vortex is preserved, but stretching tends to intensify the vortex by de-
creasing its cross-section. The resulting long and thin vortex experiences stronger diffusion and
dissipation.

3.3 Qualitative experiments

For comparison, we have also performed laboratory experiments in a rectangular tank of
2m × 2m × 0.5m. At one corner of the box a quarter cylinder of radius 0.165m is filled with
salt water of slightly higher density. The rest of the tank is filled with fresh water and the two
are initially separated with a cylindrical lock. Both the fresh and salt water are maintained to
the same height of 0.165m and therefore here we consider a full-depth release with r/H = 1.
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The salt water is also dyed with potassium permanganate in order to visualize the front as it
propagates out. The present experiment can thus be considered as a cylindrical current in a 90◦

sector. Density difference and the height of the layer are chosen to yield a Reynolds number
of 8950, and thus the results can be directly compared against those presented in figure 4. The
bottom of the tank presents a smooth no-slip surface for the flow and the free surface at the top
presents a slip condition. In the experiment, the heavy fluid is released in a finite amount of
time (the time to lift the gate) and thus, the initial condition is not exactly the same as in the
simulations. Despite the differences in the experimental set up and the numerical simulation,
the results resemble very closely. Figure 6 shows the front velocity from simulations and for the
present experiment in very good agreement. Also, the lobe and cleft pattern is qualitatively well
captured by our simulation. Figure 7 shows the lobe and cleft pattern from the experiment for
four time instances when the front is located at approximately r̃ = 3.6, 4.1, 4.5 and 5.0. Each
frame shows the complete front (that is the π/2 circular sector) of the current in the experiment.
Through postprocessing of the images, the lobe and cleft pattern could be clearly demarcated.
Lobes are indicated with arrows to allow for a quantitative comparison with experiments. Note
that the Schmidt number for salt in water is 700, while the computations employ Sc = 1. This
offers some justification to findings that as long as Sc > O(1) the flow and the lobe and cleft
pattern are not very sensitive to the precise value of Sc (Härtel et al., 2000b; Cantero et al.,
2006a).

3.4 Lobes and cleft

The 3D lobe and cleft structure of the advancing front can be seen in figures 3 and 4 for
the larger two Re considered in this paper. The circumferential variation in front propagation
continues after the initial formation of lobes and clefts and, as a result, the number and location
of lobes and clefts constantly rearrange along the front. The front of the current identified by
contour of ρ̃ = 0.015 at the bottom boundary is plotted on the x̃ − ỹ plane (top view) in figure
8. The front location at several equispaced time intervals of ∆t̃ = 0.354 are superposed for
Re = 3450 (frame (a)) and Re = 8950 (frame (b)). The composite picture provides a clear view
of the formation of lobes and clefts and the footprint the clefts leave on the horizontal x̃ − ỹ
plane as the front advances over time. At the beginning (toward the center of the figure) the
front is nearly axisymmetric, but small random disturbances introduced in the initial condition
quickly develop into well-formed lobe and cleft structures. Different instability mechanisms
for the formation of lobe and cleft structure of the front have been proposed in the context
of planar currents (Allen, 1971; Simpson, 1972; Härtel et al., 2000a). These mechanisms are
likely to be active and responsible for the lobe and cleft structure of the cylindrical currents as
well. Nevertheless, the formation of lobes and clefts is due to circumferential variation in the
speed of the current. Even after they are fully formed, the speed of the current continues to vary
along the circumference of the front, thus resulting in repeated splitting and merging of existing
lobes and clefts. A complex pattern is etched by the clefts as the front advances, with repeated
formation of new ones and merger between older ones, which is well captured in figure 8.

Figure 9 shows details of the lobe and cleft pattern observed in the present experiments per-
formed at Re = 8950.The figure shows the front of the current when it is located at r̃ ' 6.5. At
this late time the concentration of potassium permanganate at the front has decreased enough to
permit clear visualization of the lobes and clefts in the flow. In the photographs, long streaks of
fresh clear water trapped between the bottom of the tank and the current can be clearly identi-
fied. These streaks mark the path traversed by the clefts and has been demarcated in the figure
with dashed lines to help their visualization. The photograph not only provides information on
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the instantaneous structure of the front, but also captures the path etched by the clefts in the
recent past. Thus the experimental photograph can be compared with the computation result
presented in figure 8 and the qualitative features are in agreement. For example, what appears
to be initiation of new clefts and merges between existing clefts (marked with arrows) can be
observed in the figure.

Quantitative information on the lobe and cleft structure for both Re = 3450 and 8950 are
presented in Table 1. At several selected time instances the mean radial location of the front
(rF ), the front velocity (uF ), the current head height (hH), the local instantaneous Reynolds
number of the front (ReF = RehHuF ), the mean number of lobes observed within a 90◦ sector
(N90), and the mean wavelength of the lobe (λ̃l = πrF /2N90) are presented in the table. Also
presented in the table are wavelength of the lobe extracted from the present experiment at Re =
8950 (see figure 7 ), as well as other available experimental and computational information
for the planar case. The counting of lobes from figures 7 and 8 is subject to some variation.
Especially at instances of incipient mergers and splitting the number of lobes to be counted is
subject to some interpretation. In table 1 the number of lobes is therefore presented with an
error bar. In addition to counting we have also computed both Fourier spectra and two-point
correlation of the front location as a function of θ. Due to the complex nature of the front, both
the spectrum and the correlation present a set of broad peaks. Nevertheless, their results are
consistent with those obtained from simple counting.

The amplitude of disturbance introduced in the initial condition is the same at all Re. So from
figure 8 it can be seen that at the higher Reynolds number the disturbance grows more rapidly
and results in earlier formation of distinct lobe and cleft structure. At both Re the number
of lobes initially goes through a brief period of adjustment where N90 first increases flowed by
some reduction. After this initial adjustment the number of lobes continue to increase with time.
The increase is more prominent for Re = 3450, while at the higher Re of 8950 the increase
is only modest. At Re = 8950 an increased competition for lobes to grow can be observed.
For example, one can observe in figure 8 instances where a new lobe that forms grows to a
small size (smaller than the mean), but gets erased through merger, before it reaches maturity.
Furthermore, careful observation of the details in figure 8(b) shows instances where out of a
single lobe multiple smaller lobes are formed. Soon, all but one get killed, and only one grows
to the mean size. In contrast, at the lower Re of 3450 almost every lobe that is born, grows to
maturity and reaches the mean size of a lobe for that radial location as can be seen from figure
8(a). Typically, a lobe splits into two with both growing over time. There is, however, lobes
merging as can be seen in the details of figure 8(a), but this process is less intense than in the
case of Re = 8950. In terms of wavelength, the size of the lobes continues to steadily increase
over time.

Figure 10 shows a snapshot of the near-bed flow at the front of the current for Re = 3450
at t̃ = 21. The inset in the figure indicates the location of the horizontal section at z̃ = 0.04
relative to the front where the flow is shown. The front is visualized by the density contour
of ρ̃ = 0.015 at the bottom wall (denoted by a thick solid line). The vector field shows the
horizontal flow (velocity components ũx and ũy), and the contour lines show the vertical flow
(solid line: positive ũz, and dashed line: negative ũz). The vector field shows clearly that
the horizontal flow in the clefts is slower that in the lobes, and that there is a circumferential
component that directs from the center of the lobes into the clefts. This flow pattern had been
postulated by Allen (1985). The contours of vertical velocity show ascending flow at the clefts
and descending flow at the lobes. The composition of these results shows that each lobe has
a pair of counter rotating vortices as originally postulated by Allen (1985). Some evidence of
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Source Re t̃ rF uF hH ReF N90 λ̃l Phase
DNS - C 3450 3.9 2.4 0.36 0.4 499 16±2 0.24 SP
DNS - C 3450 5.3 2.9 0.32 0.26 283 19.5±2 0.24 IP
DNS - C 3450 7.1 3.4 0.26 0.33 291 20.25±2 0.27 IP
DNS - C 3450 10.6 4.2 0.22 0.354 266 18±2 0.36 IP
DNS - C 3450 14.1 5 0.2 0.32 221 19.5±2 0.4 IP
DNS - C 3450 17.7 5.7 0.18 0.27 167 20.5±2 0.44 VP
DNS - C 3450 21.2 6.3 0.15 0.25 129 22.3±2 0.44 VP
DNS - C 3450 24.8 6.8 0.12 0.23 99 25±2 0.42 VP
DNS - C 8950 1.8 1.7 0.41 0.3 1098 26.25±3 0.1 SP
DNS - C 8950 3.5 2.4 0.38 0.36 1226 30.5±3 0.12 SP
DNS - C 8950 7.1 3.6 0.29 0.29 774 25.25±3 0.22 IP
DNS - C 8950 10.6 4.5 0.25 0.32 711 27±3 0.26 IP
DNS - C 8950 14.1 5.3 0.22 0.28 542 27.25±3 0.31 IP
DNS - C 8950 17.7 6 0.19 0.27 446 27.5±3 0.34 VP
DNS - C 8950 20.9 6.6 0.14 0.25 301 28.25±3 0.37 VP
EXP - C 8950 3.6 25±3 0.23
EXP - C 8950 4.1 28±3 0.23
EXP - C 8950 4.5 29±3 0.24
EXP - C 8950 5 31±3 0.25

Table 1: Quantitative information on the lobe and cleft structure. In the table: rF is the mean radial location of the
front, uF is the front velocity, hH is the current head height, ReF = RehHuF is the local instantaneous Reynolds
number of the front, N90 is the mean number of lobes observed within a 90◦ sector, and λl = πrF /2N90 is the
mean wavelength of the lobe. C refers to cylindrical currents and P to planar currents. †Most unstable wavelength
computed from initiation of lobe and cleft structure from figure 11 in Simpson (1972). ‡Most unstable wavelength
computed from figure 6 in Härtel et al. (2000a).
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vortical activity at the front of the current can be seen in figure 11, which will be discussed in
detail in section 3.5.

3.5 Turbulent structures

The complex 3D vortical structure of the current is not entirely apparent in the density iso-
surface presented in figure 4. The corresponding isosurface of swirling strength at the later three
times are shown in figure 11. Here the swirling strength, λ̃ci, is defined as the absolute value
of the imaginary portion of the complex eigenvalues of the local velocity gradient tensor. As
discussed in Zhou et al. (1999) and Chakraborty et al. (2005) the swirling strength provides a
clean measure of the compact vortical structures of the flow. Swirling strength picks out regions
of intense vorticity, but discriminates against planar shear layers, where vorticity is balanced by
strain-rate. As can be seen from figure 11, the 3D vortical structure of the high Re current is
well extracted by λ̃ci.

The root mean square of the swirling strength within the vortical region at the three different
times are 1.05, 0.93 and 0.32, respectively. The isosurface of λ̃ci = 2.12 is plotted in figure 11
and thus the figure captures only the intense vortical regions of the flow.

At the first instance shown in figure 11, the strong vortical structures extracted by λ̃ci near the
head of the current are associated with the Kelvin-Helmholtz vortex rings A1 and A5. The effect
of lobes and clefts on the vortical structure can be clearly observed. Two other rings of intense
turbulence can be seen. The one centered around r̃ ≈ 1.75 is associated with the merged vortex
ring A2+A3. The final weaker ring of turbulent structure is associated with vortex ring A4. By
t̃ = 14, all except the vortex ring associated with the front of the current have already decayed
and any turbulence associated with them are no longer captured by λ̃ci = 2.12. However this
is an artifact of the relatively high threshold of 2.12 set for visualization. Also plotted in figure
11 for t̃ = 21 is isosurface of λ̃ci = 0.35. From the figure it is clear that active turbulence is
not just limited to the vortex rings. A low level of turbulence can be observed behind the vortex
rings. In addition we observe turbulence associated with a second vortex ring (A2+A3) located
at r̃ ≈ 3.75 and close to the origin.

Apart from the vortex rings and the lobe and cleft structure the turbulent region of the flow
behind the head is dominated by inclined vortical structures and several hairpin vortices can be
observed (see for example inset for t̃ = 14). These structures are similar to those observer in a
turbulent wall layer, where the vortical structures are tilted from the wall in the flow direction.
In case of cylindrical gravity current the flow is directed radially out. However, in a frame of
reference moving with the front, the flow within the current is radially inward, which explain
the observed orientation of the vortical structures within the current. Similar trains of inclined
vortical structures were observed for the case of planar gravity currents as well (Cantero et al.,
2006b). The difference, however, is that at the present Re in the planar current the region of
turbulence extended over a large portion of the body of the current, while in the cylindrical case
the turbulence is limited to only vortex rings and the head of the current. The net effect of the
vortical structures on the concentration (density) field was seen in figure 4.

4 SUMMARY AND CONCLUSIONS

In this work we present highly resolved 3D simulations of cylindrical density currents per-
formed at three different Re = 895, 3450, and 8950. The particular choice of Re = 3450 corre-
sponds to a Grashof number Gr = 1.5× 106, the dimensionless parameter used by Härtel et al.
(2000b) in their planar current simulations. The other two Re correspond to Gr = 105 and
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Gr = 107. The simulations have been conducted with a de-aliased spectral code. This highly
accurate numerical formulation allows the capture of all relevant length scales present in the
flow.

The objective of the study is to examine the structure and dynamics of cylindrical density
currents. As the front spreads, a shear layer forms between the heavy forward advancing and
the light backward retreating fronts. As the interface develops between the two fronts, it rolls
up forming Kelvin-Helmholtz vortices. The dynamic of the interface is highly dependent on the
Reynolds number of the flow. For the lower Reynolds analyzed in this work, only one vortex
is formed, which remains axisymmetric during all the duration of the simulation. The interface
stays smooth and nearly horizontal behind the front. For the larger two Reynolds numbers
considered, the interface evolves more dynamically. Firstly, more Kelvin-Helmholtz vortices
are formed as the front advances: for Re = 3450 three vortices are formed while for Re =
8950 four are formed. In these cases, the vortices are destabilized in the azimuthal direction
and eventually decay into smaller scale vortices. High turbulence in the flow is associated to
regions where this process occurs, and as a consequence, the interface is very irregular with
large undulations. For Re = 8950 the flow is strong enough to promote vortex pairing between
the shed Kelvin-Helmholtz vortices.

The interface roll-up is not sustained during all the duration of the flow. Assuming a scaling
law uF ∼ t̃β for the front velocity of a cylindrical current, the net circulation across the interface
can be estimated as Γ(t̃) ∼ uF (t̃)lF ∼ t̃ 2β+1. Thus, circulation is sustained over time only for
β > −1/2, during the slumping phase of spreading in which β ∼ 0. During the intermediate
inertial phase β = −1/2 and circulation remains constant. During the final viscous phase
β = −3/4 (Hoult, 1972) or −7/8 (Huppert, 1982) if the viscous effects are associated to
interface shear or bottom friction, respectively. Then, circulation decreases with time and no
new vortex are formed.

Along with the formation of Kelvin-Helmholtz vortices at the interface, a series of counter-
rotating vortices forms at the bottom boundary. Each counter-rotating vortex is associated with a
Kelvin-Helmholtz vortex, and their eventual interaction results on the dissipation of the counter-
rating vortex, and the lift up and retardation of the original Kelvin-Helmholtz vortex. The retar-
dation of the first Kelvin-Helmholtz vortex formed at the leading front results in the formation
of another vortex, marked A5 in the figures. As the flow evolves, these two vortices may or may
not pair, but nevertheless, they both form the head of the current.

For the larger two Reynolds number flows, a clear pattern of lobes and clefts develops. The
minute perturbations in the initial condition grow very fast, originally at the lower part of the
leading front, but very rapidly extend to the upper and rear part of the front. In the case of
the lower Reynolds flow, the perturbations are not amplified and the flow progresses axisym-
metrically. After lobes and clefts are formed, they evolve very dynamically presenting merging
of clefts and splitting of lobes into new ones. The process is similar for both larger Reynolds
numbers, however, the larger Reynolds flow is characterized by smaller scales. The wavelength
of the lobes grows with time as the front spreads and the local Reynolds number of the flow
decreases. This is consistent with previous studies on planar currents that show that the most
unstable wavelength decreases with the Reynolds of the flow (Härtel et al., 2000a).

Laboratory experiments for the larger Reynolds were performed in order to compare with the
numerical simulations. Although the setting of the experiments is not exactly as the simulations,
front velocity and lobes wavelength from numerical results and experimental observations agree
very well. The experiments were performed with salt water spreading in quiescent fresh water.
The Schmidt number for this experiment is 700, while for the numerical simulations is 1. This
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offers some justification to findings that as long as Sc > O(1) the flow and the lobe and cleft
pattern are not very sensitive to the precise value of Sc (Härtel et al., 2000b; Cantero et al.,
2006a).

As mentioned above, regions of high turbulence in the flow are associated to Kelvin-Helmholtz
vortices. These regions are populated with trains of hairpin vortices tilted toward the axis. Sim-
ilar findings have been reported by Cantero et al. (2006b) for planar currents, however, in that
case the hairpin vortices are distributed evenly all over the head and body of the current.
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C. Härtel, F. Carlsson, and M. Thunblom. Analysis and direct numerical simulation of the flow
at a gravity-current head. Part 2. The lobe-and-cleft instability. Journal of Fluid Mechanics,

M.I. CANTERO, C.M. GARCIA, M.H. GARCIA, S. BALACHANDAR2280

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



418:213–229, 2000a.
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Figure 2: Flow visualized by isosurface of ρ̃ = 0.15 for Re = 895. The figure shows only one quadrant of the
computational domain. The head consists of two coherent anti-clockwise rotating vortex rings marked A1 and A5
on the x̃ − z̃ plane. For this Re the flow progresses axisymmetrically. The insets show a front view of the flow.
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Figure 3: Flow visualized by isosurface of ρ̃ = 0.15 for Re = 3450. The figure shows only one quadrant of the
computational domain. The interface rolls up and forms three vortex rings marked A1, A2 and A3 on the x̃ − z̃
plane. Then A5 is formed, which eventually merges with A1 to form the head of the current at later times. For this
Re, the front instabilities of the initial condition grow with time and form a pattern of lobes and clefts. The insets
show a front view of the flow.
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Figure 4: See caption in figure 4, frames for t̃ = 14 and 21.
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Figure 4: Flow visualized by isosurface of ρ̃ = 0.15 for Re = 8950. The figure shows only one quadrant of
the computational domain. Initially, the flow evolves axisymmetrically. Kelvin-Helmholtz vortex rings develop
forming the front and body of the current marked A1, A2, A3 and A4 on the x̃− z̃ plane. Then A5 is formed, which
eventually merges with A1 to form the head of the current at later times. Later, three-dimensionality develops and
destabilize the vortex rings in the azimuthal direction which decay to smaller scale turbulence. Eventually, the
Kelvin-Helmholtz vortex decay and the body of the current becomes a calm region where most of the flow manifest
as interfacial waves. For this Re, the front instabilities of the initial condition grow very rapidly with time and
form a pattern of lobes and clefts. The insets show a front view of the flow.
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Figure 5: Flow field visualized by circumferentially-averaged velocity vectors. To allow for better vortex visual-
ization, the nose velocity has been subtracted in each frame. The current interface is visualized by the contour of
ρ̃ = 0.15. Density contours are also shown to help visualize the current structure.
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Figure 7: Lobes and cleft from an experiment for Re = 8950 and Sc = 700. Each frame shows the entire front
in the experiment which extend a circular section of π/2. From top to bottom, the frames correspond to time
instances when the front is locate at r̃ = 3.6, 4.1, 4.5 and 5.0, respectively. Through postprocessing the lobe-and-
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other hand, locations where a lobe has been counted but was not clearly seen are demarcated with a (-) sign. In
this way, an error can be estimated in the number of lobes counted.
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Figure 8: Composite picture of the front location over time. Front visualized by bottom contour of ρ̃ = 0.015. The
time separation between contour is ∆t̃ = 0.354. The details show several lobe splitting and merger. Frame (a):
Re = 3450, and frame (b): Re = 8950.
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Figure 9: Detail of lobes and cleft from an experiment for Re = 8950 with Sc = 700. The front is located at
r̃ ' 6.5. At this time the concentration of potassium permanganate at the front has decreased enough to allow the
visualization of cleft by streaks of fresh clear water trapped between the bottom boundary and the current in the
near-front region. These streaks has been demarcated in the figure with dashed lines to help their visualization.
Two merger of clefts (marked with arrows) can be observed in the figure. Compare to figure 8.
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Figure 10: Near-bed flow at the front of the current for Re = 3450 at t̃ = 21. The inset indicates the location of
the section at z̃ = 0.04 relative to the front. The front is visualized by the corresponding bottom density contour of
ρ̃ = 0.015 (thick solid line). The vector field shows the horizontal flow (velocity components ũx and ũy) and the
contour lines show the vertical flow (solid line: positive ũz , and dashed line: negative ũz). By the vector field it can
seen that the horizontal flow in the clefts is slower that in the lobes. It is clear also, that there is a circumferential
horizontal flow from the center of the lobes into the clefts. The vertical flow is upwards (solid line contours) at the
cleft locations and downwards at the lobes location (dashed line contours).
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Figure 11: Flow structures visualized by an isosurface of λ̃ci. For t̃ = 7 and 14 the isosurface of λ̃ci = 2.12 is
shown, while for t̃ = 21 the isosurface of λ̃ci = 0.35 is shown The insets show detailed view. The inset in frame
for t̃ = 14 shows in detail a train of asymmetric hairpin vortices that have formed behind the front.
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