Asociación Argentina



de Mecánica Computacional

Mecánica Computacional Vol XXXVIII, págs. 239-248 (artículo completo) H.G. Castro, J.L. Mroginski, R.R. Paz, M.A. Storti (Eds.) Resistencia, 1-5 Noviembre 2021

# VIBRACIONES TRANSVERSALES Y PANDEO DE VIGAS AFG TIMOSHENKO CON CARGAS AXILES

# TRANSVERSE VIBRATIONS AND BUCKLING OF AFG TIMOSHENKO BEAMS WITH AXIAL LOADS

Gonzalo J. Gilardi <sup>a,b</sup>, Carlos A. Rossit <sup>a,b</sup> y Diana V. Bambill <sup>a,b</sup>

<sup>a</sup> Departamento de Ingeniería (UNS), Instituto de Ingeniería-II-UNS (UNS-CIC), Universidad Nacional del Sur (UNS), Avenida Alem 1253,8000 Bahía Blanca, Argentina, <u>http://www.uns.edu.ar</u>

<sup>b</sup> Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. gonzalo.gilardi@uns.edu.ar, carossit@criba.edu.ar, dbambill@criba.edu.ar

Palabras clave: Viga Timoshenko, Vigas AFG, Vibración de vigas, Pandeo, Rayleigh-Ritz.

**Resumen** Como es sabido, los problemas de vibraciones transversales libres y la inestabilidad bajo una carga axil de una viga son dos situaciones tecnológicas distintas, que tienen semejanzas en su enfoque cuando se pretende obtener su solución elástica. De hecho, son dos problemas de valores propios en los que se analiza la situación de equilibrio de la viga en configuraciones que difieren muy ligeramente de la configuración original no deformada. Se acoplan en el caso de que la viga vibrando transversalmente tenga aplicadas fuerzas en su eje. Para el caso particular de frecuencia nula, los valores de la carga axial se corresponden con los valores críticos de pandeo. En el presente estudio se determinan las cargas críticas para vigas constituidas por material funcionalmente graduado, cuyas propiedades varían en la dirección axial (AFG, por sus siglas en inglés). El comportamiento flexional de la viga se describe mediante la teoría de Timoshenko. El problema se resuelve aplicando el método de Ritz. Se analizan diferentes casos numéricos, variando los parámetros geométricos y del material en la viga, para distintas condiciones de borde. Los resultados numéricos del modelo propuesto se contrastan satisfactoriamente con casos disponibles en la literatura técnica.

Keywords: Timoshenko beam, AFG beams, Vibration of beams, Rayleigh-Ritz, Winkler-Pasternak.

**Abstract**. As it is known, the problems of free transverse vibrations and instability under axial load of a beam are two different technological situations that have similarities in their approach to elastic solution. In fact, they are two eigenvalue problems in which we analyze the equilibrium situation of the beam in configurations which differ very slightly from the original, straight configuration. They are coupled when axial forces are applied to the ends of the vibrating beam. The presence of forces can have a significant effect on structural performance and should be taken into account in the formulation of the dynamic problem The forces' magnitude is varied and the first natural frequencies of transverse vibration of AFG beams are obtained. The critical values of the forces which cause instability are also obtained. Different numerical cases are analyzed, varying the geometric and material parameters in the AFG beam, for different edge conditions The behavior of the beam is described by Timoshenko's theory. Due to the analytical complexity the Ritz method is employed. The results agree with particular situations of the model, available in the scientific literature.

### 1 INTRODUCCIÓN

Las vibraciones transversales libres y el fenómeno de inestabilidad elástica (pandeo), son dos áreas de investigación que adquirieron gran protagonismo en la última centuria. Hearmon (1956) demostró experimentalmente que el pandeo puede considerarse como un caso especial del problema de vibración. Es decir, es posible determinar las tensiones en el plano que hacen que la frecuencia de vibración se haga cero.

En la ingeniería, estas dos situaciones tecnológicas diferentes cumplen un rol clave en el diseño de las estructuras. Para minimizar el peso de un elemento estructural o maximizar la carga de compresión axial aplicada, es viable elegir una sección transversal variable adecuada y/o usar materiales con propiedades funcionalmente graduados (FGM, según siglas en inglés).

Los primeros estudios de vigas con propiedades graduadas en la dirección axial (AFG, por sus siglas en inglés) se realizaron por medio del método semi-inverso (Elishakoff, 2000). Sin embargo, este método posee dificultades en el cálculo del campo de desplazamiento para vigas AFG cuyas distribuciones de densidad de masa y módulo de elasticidad son conocidas. Es por eso que los métodos aproximados comenzaron a tener mayor auge de implementación.

En lo que respecta a las vibraciones transversales libres en vigas AFG Timoshenko, Gilardi (2019) presenta variados estudios, así como una amplia bibliografía de trabajos relacionados.

En cuanto a la determinación de cargas críticas en vigas ahusadas AFG Timoshenko, aparecen los casos propuestos por Shahba et al. (2011). Estos autores obtuvieron, mediante el método de elementos finitos, los coeficientes de frecuencia y el primer coeficiente de carga crítica para distintas condiciones de borde clásicas. Luego, Rajasekaran (2012) utilizando el método de transformación diferencial; Lepik y Hein (2014) utilizando las transformadas Haar Wavelets, Huang et al. (2016) empleando una función auxiliar y series de potencias, Soltani y Asgarian (2018) empleando el método de elementos finitos y Soltani et al. (2019) con el método de diferencias finitas, entre otros, se valieron de estos casos para validar sus modelos. Todos estos autores implementaron leyes de distribuciones axiles asimétricas, del tipo de serie de potencias, etc. Soltani (2017) con el método de serie de potencias obtuvo, además, el primer coeficiente de frecuencia para vigas ahusadas AFG con carga axil de compresión y de tracción, para vigas cantiléver y simplemente apoyada.

En el presente trabajo se emplean distribuciones simétricas para mejorar la rigidez de vigas homogéneas, tanto al esfuerzo axil como al movimiento vibratorio transversal, que presentan restringido el desplazamiento transversal en sus extremos.Primero se obtienen los coeficientes de cargas críticas para distintas vinculaciones y esbelteces, para luego obtener los coeficientes de frecuencias bajo carga axil de compresión y tracción, las cuales se expresarán como proporción de las cargas críticas de pandeo obtenidas. Se emplea el método energético de Rayleigh-Ritz para llevar a cabo el análisis (Ilanko et al., 2014).



### 2 MODELO DE ANÁLISIS



La Figura 1 muestra el modelo de viga Timoshenko AFG con carga axial P (de tracción), que se implementa para el presente estudio. Se aprecia que los parámetros geométricos de la sección transversal rectangular, ancho b y altura h, varían de forma ahusada en la dirección de la directriz de la viga; y que las propiedades del material lo hacen de forma funcionalmente graduada y simétrica a lo largo de la longitud L.

El movimiento vibratorio de la viga se referencia mediante un sistema de ejes coordenados, con origen en la sección transversal inicial de la viga. El eje  $\overline{x}$  coincide con el eje de flexión (en la posición sin deformar), y es perpendicular al eje  $\overline{y}$  en el baricentro de dicha sección. A cada parámetro geométrico y del material se le asocia un subíndice, de manera de identificar la sección transversal a la que se hace referencia. Para el extremo izquierdo se implementa el subíndice "0" y para el derecho se utiliza el subíndice "L".

El modelo considera que las fuerzas P son colineales con el eje de flexión.

### **3 DISTRIBUCIÓN DE LAS PROPIEDADES Y VARIACIÓN DE LA GEOMETRÍA**

Dado que la sección transversal de la viga se considera variable y está constituida por material AFG, resulta adecuado definir la siguiente expresión genérica:

$$R(\bar{x}) = R_0 f_R(\bar{x}) \tag{1}$$

 $R(\bar{x})$ es una característica geométrica o del material, cuya variación axial tiene un valor referenciado a la sección inicial  $R_0$  y sigue una ley de distribución  $f_R(\bar{x})$ . En particular:

 $A(\bar{x}) = A_0 f_A(\bar{x}), I(\bar{x}) = I_0 f_I(\bar{x}), \rho(\bar{x}) = \rho_0 f_\rho(\bar{x}), E(\bar{x}) = E_0 f_E(\bar{x}), G(\bar{x}) = G_0 f_G(\bar{x});$  (2) donde *A* es el área de la sección transversal e *I* es el momento de inercia respecto al eje de flexión, y para las secciones rectangulares se tiene  $A_0 = b_0 \times h_0$  y  $I_0 = (b_0 \times h_0^3)/12$ . En cuanto al material,  $\rho$  es la densidad de masa, *E* es el módulo de Young y *G* es el módulo de corte. Al considerar propiedades de material isótropo, *G* puede obtenerse mediante la siguiente expresión (Kang y Zhong-Ci, 1996), extendida a materiales funcionalmente graduados:

$$G(\overline{x}) = E(\overline{x})/2(1+\mu) \tag{3}$$

donde  $\mu$  es el coeficiente de Poisson, y por ende se cumple que  $f_G(\bar{x}) = f_E(\bar{x})$ .

# 4 MÉTODO ENERGÉTICO DE RAYLEIGH RITZ

Asumiendo que la viga vibra según uno de sus modos normales, el desplazamiento vertical  $v(\bar{x},t)$  de los puntos de la superficie media en la dirección del eje  $\bar{y}$  y el giro normal  $\psi(\bar{x},t)$  de la sección transversal durante la deformación, pueden escribirse como:

$$v(\overline{x},t) = \overline{V}(\overline{x})\cos(\omega t) \quad ; \quad \psi(\overline{x},t) = \overline{\Psi}(\overline{x})\cos(\omega t) \tag{4}$$

donde  $\overline{V}(\overline{x})$  y  $\overline{\Psi}(\overline{x})$  son las amplitudes del desplazamiento y del giro,  $\omega$  es la frecuencia natural circular de vibración transversal de la viga, y *t* es la variable temporal.

Para el desarrollo analítico, se implementa la adimensionalización global de la coordenada espacial  $\bar{x}$  y de las amplitudes  $\bar{V}(\bar{x})$  y  $\bar{\Psi}(\bar{x})$ , respecto de la longitud *L* de la viga.

$$x = \overline{x} / L \quad ; \quad V(x) = \overline{V}(\overline{x}) / L \quad ; \quad \Psi(x) = \overline{\Psi}(\overline{x}) \tag{5}$$

A continuación, se presenta al funcional de energía J del problema de vibraciones en vigas, en términos de las energías máximas de deformación  $U_{máx}$  y cinética  $T_{máx}$  (Laura, 1995):

$$J\left[V(x),\Psi(x)\right] = U_{max} - T_{max}.$$
(6)

 $U_{max}$  para una viga AFG Timoshenko con una carga axial aplicada, puede escribirse como:

$$U_{máx} = U_{máx(1)} + U_{máx(2)}$$

$$U_{máx(1)} = \frac{1}{2L} \int_{0}^{1} \left[ E(x) I(x) (\Psi'(x))^{2} + \kappa G(x) A(x) (V'(x) - \Psi(x))^{2} \right] dx, \quad (7)$$

$$U_{máx(2)} = \frac{PL}{2} \int_{0}^{1} (V'(x))^{2} dx.$$

 $U_{máx(1)}$  corresponde a la energía propia de la viga y  $U_{máx(2)}$  a la que introduce la carga axial aplicada, ambos términos escritos en su forma adimensionalizada.  $\kappa$  es el factor de corrección de corte y el cual se adopta  $\kappa = 5/6$  para la viga de sección transversal rectangular y maciza. (<sup>'</sup>) representa a la derivada respecto a variable espacial x. P es la magnitud de la carga axial aplicada, positiva cuando es de tracción.

Por su parte,  $T_{máx}$  en su forma adimensionalizada e independizada del tiempo es:

$$T_{max} = \frac{\omega^2 L}{2} \int_0^1 \rho(x) \Big[ A(x) (V(x))^2 L^2 + I(x) (\Psi(x))^2 \Big] dx \,. \tag{8}$$

Posteriormente, para aplicar el método de Rayleigh-Ritz, es necesario aproximar a las componentes espaciales de la solución de la siguiente forma:

$$V(x) \cong V_{a}(x) = \sum_{i=1}^{N} C_{i} p_{i}(x) ; \Psi(x) \cong \Psi_{a}(x) = \sum_{j=1}^{N} D_{j} q_{j}(x)$$
(9)

siendo N el número de términos a sumar;  $C_i$  y  $D_j$  las constantes arbitrarias que multiplican a las  $p_i(x)$  y  $q_j(x)$  funciones aproximantes, respectivamente. Para las vigas simplemente apoyada (A-A), empotrada-apoyada (E-A) y biempotrada (E-E), se adoptan los siguientes polinomios:

A-A: 
$$p_i(x) = (x-1)x^i$$
;  $q_j(x) = x^{j-1}$ ,  
E-A:  $p_i(x) = (x-1)x^i$ ;  $q_j(x) = x^j$ ,  
E-E:  $p_i(x) = (x-1)x^i$ ;  $q_j(x) = (x-1)x^i$ .  
(10)

Seguidamente, asumiendo en la Ec. (7) una carga axil de compresión, y considerando las Ecs. (2-8), puede reescribirse al funcional de energía J (Ec. (6)) como:

$$(2L/E_0I_0)J[V_a, \Psi_a] = \int_0^1 f_E f_I (\Psi_a')^2 dx + S^2 \xi^{-1} \int_0^1 f_E f_A (V_a' - \Psi_a)^2 dx - \overline{P} \int_0^1 (V_a')^2 dx - \Omega^2 \int_0^1 [f_\rho f_A V_a^2 + f_\rho f_I S^{-2} \Psi_a^2] dx$$
(11)

donde  $\xi = 2(1+\mu)/\kappa$ ,  $\Omega = \omega L^2 \sqrt{(\rho_0 A_0)/(E_0 I_0)}$  los coeficientes de frecuencia naturales,  $S = L \sqrt{A_0/I_0}$  el coeficiente de esbeltez, y  $\overline{P} = (PL^2)/(E_0 I_0)$  el coeficiente de carga axial.

Posteriormente, el funcional J es minimizado respecto de cada constante arbitraria:

$$\partial J \left[ V_a, \Psi_a \right] / \partial C_j = 0 , \ \partial J \left[ V_a, \Psi_a \right] / \partial D_j = 0 ; \ i, j = 1, 2, ..., N$$

$$\tag{12}$$

generando el siguiente sistema de ecuaciones lineales, que en su forma matricial simbólica es:

$$\mathbf{R}\left\{C_{i}, D_{j}\right\}^{T} = \left\{0\right\} \operatorname{con} \mathbf{R} = \mathbf{K} \cdot \Omega^{2} \mathbf{M}.$$
(13)

K es la matriz de rigidez, y la cual está compuesta por los elementos  $k_{ij}$ :

$$\mathbf{K} = \begin{bmatrix} S^{2} \xi^{-1} \int_{0}^{1} f_{E} f_{A} p_{i}' p_{i}' dx - \overline{P} \int_{0}^{1} p_{i}' p_{i}' dx & -S^{2} \xi^{-1} \int_{0}^{1} f_{E} f_{A} p_{i}' q_{j} dx \\ -S^{2} \xi^{-1} \int_{0}^{1} f_{E} f_{A} q_{j} p_{i}' dx & \int_{0}^{1} f_{E} f_{I} q_{j}' q_{j}' dx + S^{2} \xi^{-1} \int_{0}^{1} f_{E} f_{A} q_{j} q_{j} dx \end{bmatrix}$$
(14)

y M es la matriz de masa, constituida por los correspondientes elementos  $m_{ii}$ :

$$\mathbf{M} = \begin{bmatrix} \int_{0}^{1} (f_{\rho} f_{A} p_{i} p_{j}) dx & 0\\ 0 & S^{-2} \int_{0}^{1} (f_{\rho} f_{I} q_{j} q_{j}) dx \end{bmatrix}$$
(15)

Para resolver el problema de autovalores basta cumplir con la condición de no-trivialidad, es decir, igualar el determinante de **R** (Ec. (13)) a cero. Por lo tanto, se puede escribir:

$$\left|\mathbf{K}\mathbf{M}^{-1} - \Omega^2 \mathbf{I}\right| = \left|\mathbf{B} - \beta \mathbf{I}\right| = 0$$
(16)

 $\cos \beta = \Omega^2$  como los autovalores de la matriz **B** e **I** la matriz identidad. De esta manera se determinan los coeficientes de frecuencia de la viga en presencia de una carga axil.

Según una conocida expresión (Ec. (17)), se puede relacionar el efecto de una carga *P* de compresión con las vibraciones transversales de una viga (Hearmon, 1956):

$$\left(\omega / \omega_0\right)^2 = 1 - \left(P / P_{cr}\right) \tag{17}$$

donde  $\omega$  es la frecuencia natural bajo una carga de compresión *P*,  $\omega_0$  es la frecuencia natural cuando P = 0 y  $P_{cr}$  es la carga crítica de pandeo. De la Ec. (17) se deduce que  $(\omega / \omega_0)^2 = 0$  cuando  $P = P_{cr}$ . Por lo tanto, si se quieren obtener los coeficientes de carga crítica de pandeo, el problema se reduce a resolver el determinante de la Ec. (14) igualado a cero. Los autovalores obtenidos son:

$$\overline{P}_{cr} = \left(P_{cr}L^2\right) / \left(E_0I_0\right) \tag{18}$$

Si bien la solución al problema brinda más de un coeficiente de carga de pandeo, se informa el primero, es decir el más bajo, ya que es el único que tiene significado práctico.

## **5 RESULTADOS NUMÉRICOS**

### 5.1 Casos de comparación

Se considera el caso de la viga AFG simplemente apoyada de sección transversal ahusada, propuesto por Shahba et al. (2011). Además, se consideran las soluciones obtenidas por Rajasekaran (2012), Huang et al. (2016), Soltani (2017) y Soltani et al. (2019). El material que constituye a la viga se compone de zirconia ( $ZrO_2$ ) y aluminio (Al), cuyas propiedades son:

$$E_{\text{ZrO}_2} = 200\text{GPa}, \rho_{\text{ZrO}_2} = 5700\text{kg/m}^3; E_{\text{Al}} = 70\text{GPa}, \rho_{\text{Al}} = 2702\text{kg/m}^3; \mu_{\text{ZrO}_2} = \mu_{\text{Al}} = 0,3$$
 (19)

y las cuales varían de acuerdo con la siguiente ley axial asimétrica:

$$R(x) = R_{\text{ZrO}_2} + (R_{\text{Al}} - R_{\text{ZrO}_2})x^n \quad \text{con} \quad n = 2 \quad \text{y} \quad x \in [0, 1].$$
(20)

El exponente *n* es el parámetro de heterogeneidad del material. Respecto a la geometría, consideraron un coeficiente de esbeltez S = 10 y dos variaciones para la sección transversal:

<u>Caso A</u>: ancho *b* constante y altura *h* variando linealmente. La ley de variación adoptada es:

$$A(x) = A_0(1 - \alpha x) ; I(x) = I_0(1 - \alpha x)^3 \text{ con } 0 \le \alpha < 1 \text{ y } x \in [0, 1];$$
(21)

donde  $\alpha$  es el coeficiente que indica la relación de estrechamiento.

Caso B: ancho b y altura h variando linealmente. La ley de variación adoptada es:

$$A(x) = A_0 (1 - \alpha x)^2 ; I(x) = I_0 (1 - \alpha x)^4 \text{ con } 0 \le \alpha < 1 \text{ y } x \in [0, 1];$$
(22)

En la Tabla 1 se contrastan los primeros tres coeficientes de frecuencia, y el primer coeficiente adimensional de carga crítica. Se emplean en el cálculo N=13 términos de

|     |            | CAS        | SO A       |              |            | CAS        | SO B       |              | Calmaián              |  |
|-----|------------|------------|------------|--------------|------------|------------|------------|--------------|-----------------------|--|
| α   | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $ar{P}_{cr}$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $ar{P}_{cr}$ | Solución              |  |
|     | 7,2921     | 23,135     | 41,120     | 4,0176       | 7,2245     | 23,140     | 41,124     | 3,4735       | Shahba et al. (2011)  |  |
|     | ~          | ~          | ~          | ~            | 7,2225     | 23,126     | 41,067     | 3,4698       | Rajasekaran (2012)    |  |
| 0.2 | ~          | ~          | ~          | 4,0137       | ~          | ~          | 1          | 3,4691       | Huang et al. (2016)   |  |
| 0,2 | 7,2923     | 23,115     | 41,009     | 1            | 7,2246     | 23,119     | 41,012     | ~            | Soltani (2017)        |  |
|     | ~          | ~          | ~          | 4,0310       | ~          | ~          | 1          | 3,4868       | Soltani et al. (2019) |  |
|     | 7,2901     | 23,111     | 41,008     | 4,0137       | 7,2222     | 23,116     | 41,011     | 3,4691       | M.R-Ritz              |  |
|     | 4,1244     | 17,236     | 32,975     | 0,5502       | 3,4452     | 17,720     | 33,532     | 0,1697       | Shahba et al. (2011)  |  |
|     | ~          | ~          | ~          | ~            | 3,4305     | 17,669     | 33,425     | 0,1670       | Rajasekaran (2012)    |  |
| 0.0 | ~          | ~          | ~          | 0,5460       | ~          | ~          | ~          | 0,1674       | Huang et al. (2016)   |  |
| 0,0 | 4,1974     | 17,374     | 33,054     |              | 4,1244     | 17,236     | 32,975     | ~            | Soltani (2017)        |  |
|     | ~          | ~          | ~          | 0,5629       | ~          | ~          | ~          | 0,1759       | Soltani et al. (2019) |  |
|     | 4,1152     | 17,202     | 32,876     | 0,5459       | 3,4309     | 17,670     | 33,404     | 0,1670       | M.R-Ritz              |  |

polinomios, en ambos casos. Se aprecia una buena correlación con los resultados comparados.

Tabla 1: Coeficientes  $\Omega_i$  y  $\overline{P}_{cr}$  para vigas AFG ahusadas SA-SA.

#### 5.2 Casos propuestos

Se emplea el material propuesto por Su et al. (2013), el cual está constituido por acero (Ac) y alúmina (Al<sub>2</sub>O<sub>3</sub>), y cuyas propiedades son:

 $E_{Ac}=210 \text{ GPa}, \rho_{Ac}=7800 \text{ kg/m}^3; E_{Alum}=390 \text{ GPa}, \rho_{Alum}=3960 \text{ kg/m}^3, \mu_{Ac}=\mu_{Alum}=0, 3.$  (23) Para el estudio se considera la composición Ac-Alum-Ac por ser más eficiente frente a la composición Alum-Ac-Alum, desde el punto de vista de la rigidización dinámica (Gilardi, 2019), en vigas que poseen restringido el desplazamiento transversal en sus extremos.

Las propiedades del material varían según las siguientes leyes de variación axial simétricas de la Ec. (24). En x=0 y x=1 la sección transversal es constituida por el acero, mientras que en x=0.5 lo es por la alúmina, en todos los casos, tal como se aprecia en la Figura 2.

$$AFG1: R(x) = R_{Alum} + 2(R_{Ac} - R_{Alum})|(1/2) - x| \text{ con } 0 \le x \le 1$$

$$AFG2: \begin{cases} R(x) = R_{Ac} + 4(R_{Alum} - R_{Ac})x^{2} & \text{ con } 0 \le x \le 1/2 \\ R(x) = R_{Ac} + 4(R_{Alum} - R_{Ac})(1 - x)^{2} & \text{ con } 1/2 \le x \le 1 \end{cases}$$

$$AFG3: R(x) = R_{Ac} + 4(R_{Alum} - R_{Ac})(x - x^{2}) & \text{ con } 0 \le x \le 1 \end{cases}$$
(24)



Figura 2: Distribución de las propiedades de los diferentes materiales FG.

En cuanto a la geometría se analizan los casos A y B, (Ecs. (21) y (22)), respectivamente.

CB

A-A

En todos los casos se emplean en el cálculo N=13 términos, para la determinación de los coeficientes de carga crítica y N=20 términos, para los coeficientes de frecuencia. Los resultados están dados con referencia a una viga homogénea de acero.

| CB                | Material |        | $L/h = S/\sqrt{12}$ |        |        |        |        |                                                                                                                   |        |  |  |  |
|-------------------|----------|--------|---------------------|--------|--------|--------|--------|-------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| C.D.              | Wateria  | 5      | 10                  | 25     | 50     | 100    | 250    | 500<br>9,8696<br>15,577<br>12,017<br>17,091<br>20,191<br>23,256<br>31,752<br>39,477<br>54,966<br>45,532<br>58,782 | (2005) |  |  |  |
|                   | Acero    | 8,9509 | 9,6227              | 9,8292 | 9,8595 | 9,8671 | 9,8692 | 9,8696                                                                                                            | 9,8696 |  |  |  |
| A-A               | AFG 1    | 13,744 | 15,075              | 15,495 | 15,557 | 15,572 | 15,576 | 15,577                                                                                                            | ~      |  |  |  |
|                   | AFG 2    | 10,737 | 11,669              | 11,960 | 12,003 | 12,014 | 12,017 | 12,017                                                                                                            | ~      |  |  |  |
|                   | AFG 3    | 15,090 | 16,544              | 17,001 | 17,069 | 17,086 | 17,090 | 17,091                                                                                                            | ~      |  |  |  |
|                   | Acero    | 16,406 | 19,089              | 20,006 | 20,144 | 20,179 | 20,189 | 20,191                                                                                                            | 20,190 |  |  |  |
| ΕA                | AFG 1    | 23,255 | 27,303              | 28,691 | 28,901 | 28,954 | 28,969 | 28,971                                                                                                            | ~      |  |  |  |
| A-A<br>E-A<br>E-E | AFG 2    | 18,791 | 21,955              | 23,038 | 23,201 | 23,242 | 23,254 | 23,256                                                                                                            | ~      |  |  |  |
|                   | AFG 3    | 25,516 | 29,935              | 31,447 | 31,675 | 31,733 | 31,749 | 31,752                                                                                                            | ~      |  |  |  |
|                   | Acero    | 27,987 | 35,803              | 38,841 | 39,317 | 39,438 | 39,477 | 39,477                                                                                                            | 39,478 |  |  |  |
| A-A<br>E-A<br>E-E | AFG 1    | 38,809 | 49,811              | 54,073 | 54,742 | 54,911 | 54,959 | 54,966                                                                                                            | ~      |  |  |  |
|                   | AFG 2    | 31,873 | 41,134              | 44,768 | 45,340 | 45,485 | 45,526 | 45,532                                                                                                            | ~      |  |  |  |
|                   | AFG 3    | 42,193 | 53,549              | 57,881 | 58,556 | 58,727 | 58,775 | 58,782                                                                                                            | ~      |  |  |  |

Tabla 2: Coeficientes de carga crítica  $\overline{P}_{cr}$  para vigas de sección constante y esbeltez variable.

En la Tabla 2 se presenta el coeficiente de carga crítica para las vigas de sección constante y para distintas condiciones de borde (C.B.). Los valores de Wang et al. (2005), corresponden a la solución exacta de vigas homogéneas modeladas con la teoría de Euler-Bernoulli.

Determinado el coeficiente de carga crítica, para diferentes esbelteces, en las Tablas 3 y 4 se presentan los primeros tres coeficientes de frecuencias, con cargas de tracción y compresión proporcionales a esta, para la viga homogénea y con material AFG3, y para *L/h=5*. Queda claro que cuando  $\overline{P} = \overline{P}_{cr}$  la relación es 1 y no -1. Es por eso que se utiliza  $|\overline{P}_{cr}|$  para indicar que las relaciones negativas son para las cargas de compresión y las positivas para las cargas de tracción.

E-A

E-E

| $\overline{P}  / \left  \overline{P}_{cr} \right $ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ |
|----------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| -1                                                 | 0          | 26,5357    | 55,2108    | 0          | 27,1612    | 53,8898    | 0          | 24,2247    | 48,9371    |
| -0,75                                              | 4,63714    | 28,0502    | 56,8384    | 6,83193    | 29,8901    | 56,9295    | 9,31362    | 29,4798    | 54,5334    |
| -0,50                                              | 6,55785    | 29,4866    | 58,4198    | 9,59867    | 32,3894    | 59,8138    | 12,9844    | 33,8741    | 59,6127    |
| -0,25                                              | 8,03163    | 30,8558    | 59,9586    | 11,6914    | 34,7072    | 62,5636    | 15,7253    | 37,6678    | 64,2908    |
| 0                                                  | 9,27404    | 32,1665    | 61,4581    | 13,4367    | 36,8774    | 65,1955    | 17,9947    | 41,1899    | 68,6465    |
| 0,25                                               | 10,3686    | 33,4255    | 62,9209    | 14,9617    | 38,9243    | 67,7231    | 19,9695    | 44,3679    | 72,7361    |
| 0,50                                               | 11,3581    | 34,6384    | 64,3497    | 16,3314    | 40,8665    | 70,1575    | 21,7394    | 47,3192    | 76,6013    |
| 0,75                                               | 12,2681    | 35,8100    | 65,7466    | 17,5845    | 42,7182    | 72,5079    | 23,3568    | 50,0862    | 80,2739    |
| 1                                                  | 13.1150    | 36.9441    | 67.1136    | 18,7460    | 44,4908    | 74,7821    | 24.8554    | 52.6948    | 83.7786    |

Tabla 3: Coeficientes de frecuencia para la viga homogénea (acero) y de sección constante, L/h=5.

Cabe aclarar que las cargas de tracción no tienen por qué limitarse a la relación 1. Se indica hasta ese valor para darle simetría a las Tablas 3, 4, 7 y 8.

| CB                                                |            | A-A        |            |            | E-A        |            |            | E-E        |            |
|---------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| $\overline{P} / \left  \overline{P}_{cr} \right $ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ |
| -1                                                | 0          | 39,8131    | 82,4478    | 0          | 40,5945    | 79,1174    | 0          | 35,6912    | 69,9522    |
| -0,75                                             | 7,92213    | 42,4211    | 85,2632    | 11,0421    | 44,8746    | 83,9982    | 14,5743    | 43,5921    | 78,7470    |
| -0,50                                             | 11,2033    | 44,8763    | 87,9854    | 15,5211    | 48,7862    | 88,6115    | 20,3528    | 50,2385    | 86,6972    |
| -0,25                                             | 13,7209    | 47,2028    | 90,6229    | 18,9139    | 52,4093    | 92,9956    | 24,6932    | 56,0863    | 93,9965    |
| 0                                                 | 15,8432    | 49,4188    | 93,1830    | 21,7474    | 55,7984    | 97,1807    | 28,3059    | 61,3684    | 100,776    |
| 0,25                                              | 17,7128    | 51,5384    | 95,6720    | 24,2264    | 58,9932    | 101,191    | 31,4634    | 66,2229    | 107,129    |
| 0,50                                              | 19,4030    | 53,5733    | 98,0954    | 26,4558    | 62,0232    | 105,045    | 34,3033    | 70,7393    | 113,124    |
| 0,75                                              | 20,9571    | 55,5327    | 100,458    | 28,4976    | 64,9111    | 108,760    | 36,9061    | 74,9797    | 118,813    |
| 1                                                 | 22,4036    | 57,4244    | 102,764    | 30,3920    | 67,6750    | 112,349    | 39,3232    | 78,9891    | 124,236    |

Tabla 4: Coeficientes de frecuencia para la viga AFG3 de sección constante, L/h=5.

| Casa |          | C.B. |        | A-A    |        |        | E-A    |        | E-E    |        |        |  |
|------|----------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Ci   | iso      | L/h  | 5      | 10     | 50     | 5      | 10     | 50     | 5      | 10     | 50     |  |
|      | $\alpha$ | 0,3  | 5,4368 | 5,7340 | 5,8361 | 10,200 | 11,440 | 11,903 | 18,009 | 21,702 | 23,223 |  |
| А    |          | 0,5  | 3,4293 | 3,5761 | 3,6257 | 6,5098 | 7,1289 | 7,3526 | 11,750 | 13,599 | 14,317 |  |
|      |          | 0,7  | 1,7449 | 1,8012 | 1,8200 | 3,5504 | 3,5504 | 3,6310 | 6,1100 | 6,7868 | 7,0342 |  |
|      |          | 0,3  | 4,4884 | 4,7444 | 4,8324 | 8,4192 | 9,4789 | 9,8762 | 14,864 | 17,996 | 19,287 |  |
| В    | α        | 0,5  | 2,3129 | 2,4271 | 2,4658 | 4,4023 | 4,8702 | 5,0404 | 7,9408 | 9,3124 | 9,8461 |  |
|      |          | 0,7  | 0,8373 | 0,8750 | 0,8877 | 1,6160 | 1,7630 | 1,8149 | 2,9742 | 3,3924 | 3,5464 |  |

Tabla 5: Coeficientes de carga crítica para las vigas homogéneas (acero) y de sección ahusada.

| Caso         |   | C.B. |        | A-A    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E-A    |        | E-E    |        |        |  |
|--------------|---|------|--------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--|
|              |   | L/h  | 5      | 10     | 50     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10     | 50     | 5      | 10     | 50     |  |
|              |   | 0,3  | 9,1605 | 9,8100 | 10,037 | 15,596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17,624 | 18,382 | 26,920 | 32,287 | 34,463 |  |
| А            | α | 0,5  | 5,6912 | 6,0134 | 6,1236 | 9,7265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,735 | 11,099 | 17,292 | 20,006 | 21,045 |  |
|              |   | 0,7  | 2,7728 | 2,8945 | 2,9354 | E-A         E-E           0         5         10         50         5         10           037         15,596         17,624         18,382         26,920         32,28           236         9,7265         10,735         11,099         17,292         20,00           354         4,7586         5,1304         5,2602         8,7168         9,728           709         12,723         14,483         15,143         22,062         26,688           953         6,4165         7,2021         7,4875         11,460         13,54           729         2,2282         2,4729         2,5597         4,0885         4,746 | 9,7283 | 10,094 |        |        |        |  |
|              |   | 0,3  | 7,5093 | 8,0738 | 8,2709 | 12,723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14,483 | 15,143 | 22,062 | 26,680 | 28,547 |  |
| Ca<br>A<br>B | α | 0,5  | 3,7534 | 4,0079 | 4,0953 | 6,4165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,2021 | 7,4875 | 11,460 | 13,548 | 14,345 |  |
|              |   | 0,7  | 1,2651 | 1,3456 | 1,3729 | 2,2282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4729 | 2,5597 | 4,0885 | 4,7466 | 4,9861 |  |

Tabla 6: Coeficientes de carga crítica para las vigas AFG3 y de sección ahusada.

En la Tablas 5 y 6 se presenta el coeficiente  $\overline{P}_{cr}$  para vigas de sección ahusada (caso A y B), con  $\alpha = 0,3$ ; 0,5; 0,8; para distintas C.B. y relaciones de esbeltez de *L/h=5*, 10, 50. Nótese que los coeficientes  $\overline{P}_{cr}$  incrementan su valor con el aumento de la esbeltez. Esto es debido a la forma de adimensionalización adoptada para la carga axial. Obteniendo las cargas  $P_{cr}$  a partir de esos coeficientes, se observará cómo éstas descienden conforme aumenta la esbeltez.

Seguidamente, se exponen en las Tablas 7 y 8 los primeros tres coeficientes de frecuencias, considerando la presencia de cargas de tracción y compresión proporcionales a la carga crítica de una viga ahusada con  $\alpha = 0.5$  (Caso A) y con relación de esbeltez *L/h=5*.

#### **6** CONCLUSIONES

Para las condiciones de borde expuestas, el material AFG3 es el que maximiza la carga

axial de compresión. El mayor contenido porcentual de alúmina a lo largo de la viga, hace que la viga sea más rígida y más liviana frente a las demás. Es por eso que en los cálculos posteriores a la Tabla 2 se emplea el material AFG3 para la composición de la viga.

Para  $L/h \ge 500$ , los  $\overline{P}_{cr}$  coindicen con los que predice la teoría de Euler-Bernoulli.

Respecto a los coeficientes de frecuencia bajo carga axial, se aprecia que disminuyen en presencia de una carga de compresión, ya que disminuye la energía de deformación, y que  $\Omega_1 = 0$  cuando  $\overline{P} = \overline{P}_{cr}$ . Contrariamente, bajo una carga de tracción todos aumentan, ya que se incrementa la energía de deformación.

El incremento de los coeficientes de frecuencia y de carga crítica, debido a la introducción del material AFG3, es mayor en las vigas ahusadas que en las vigas de sección constante.

| C.B.                                              |            | A-A        |            |            | E-A        |            |            | E-E        |            |
|---------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| $\overline{P} / \left  \overline{P}_{cr} \right $ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ |
| -1                                                | 0          | 21,5557    | 47,0432    | 0          | 23,3253    | 47,9191    | 0          | 22,5223    | 46,5120    |
| -0,75                                             | 3,45948    | 22,6395    | 48,1397    | 5,90424    | 25,3943    | 50,0153    | 7,49111    | 26,2298    | 50,2891    |
| -0,50                                             | 4,87891    | 23,6685    | 49,2086    | 8,20170    | 27,2923    | 52,0157    | 10,4125    | 29,3942    | 53,0284    |
| -0,25                                             | 5,96100    | 24,6498    | 50,2516    | 9,89455    | 29,0500    | 53,9311    | 12,5749    | 32,2116    | 57,0045    |
| 0                                                 | 6,86853    | 25,5891    | 51,2578    | 11,2786    | 30,6910    | 55,7706    | 14,3514    | 34,7539    | 60,0430    |
| 0,25                                              | 7,66476    | 26,4912    | 52,2668    | 12,4694    | 32,2335    | 57,5420    | 15,8868    | 37,0912    | 62,9143    |
| 0,50                                              | 8,38216    | 27,3599    | 53,2419    | 13,5259    | 33,6919    | 59,2518    | 17,2547    | 39,2651    | 65,6428    |
| 0,75                                              | 9,04003    | 28,1986    | 54,1969    | 14,4829    | 35,0776    | 60,9057    | 18,4982    | 41,3051    | 68,2476    |
| 1                                                 | 9,65093    | 29,0101    | 55,1330    | 15,3628    | 36,3999    | 62,5086    | 19,6452    | 43,2330    | 70,7438    |

Tabla 7: Coeficientes de frecuencia para la viga homogénea (acero) y de sección constante, L/h=5 y  $\alpha=0,5$ .

| C.B.                                              |            | A-A        |            |            | E-A        |            |            | E-E        |            |  |
|---------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| $\overline{P} / \left  \overline{P}_{cr} \right $ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ |  |
| -1                                                | 0          | 32,6850    | 70,8246    | 0          | 35,6925    | 71,4381    | 0          | 34,3280    | 68,4495    |  |
| -0,75                                             | 5,93721    | 34,5277    | 72,6958    | 9,42660    | 38,7877    | 74,6206    | 11,8044    | 39,7649    | 74,1577    |  |
| -0,50                                             | 8,36447    | 36,2660    | 74,5118    | 13,1011    | 41,6229    | 77,6521    | 16,4109    | 44,4266    | 79,3989    |  |
| -0,25                                             | 10,2105    | 37,9149    | 76,2770    | 15,8104    | 44,2465    | 80,5506    | 19,8223    | 48,5621    | 84,2684    |  |
| 0                                                 | 11,7560    | 39,4859    | 77,9952    | 18,0259    | 46,6953    | 83,3311    | 22,6268    | 52,3130    | 87,0556    |  |
| 0,25                                              | 13,1101    | 40,9887    | 79,6697    | 19,9320    | 48,9971    | 86,0063    | 25,0522    | 55,7684    | 93,1465    |  |
| 0,50                                              | 14,3289    | 42,4310    | 81,3038    | 21,6229    | 51,1740    | 88,5869    | 27,2147    | 58,9883    | 97,2430    |  |
| 0,75                                              | 15,4456    | 43,8193    | 82,8999    | 23,1544    | 53,2430    | 91,0819    | 29,1823    | 62,0150    | 101,153    |  |
| 1                                                 | 16,4818    | 45,1591    | 84,4606    | 24,5621    | 55,2183    | 93,4990    | 30,9985    | 64,8799    | 104,901    |  |

Tabla 8: Coeficientes de frecuencia para la viga AFG y de sección ahusada, L/h=5 y  $\alpha = 0, 5$ .

### **AGRADECIMIENTOS**

Los autores agradecen el patrocinio del presente trabajo a la Universidad Nacional del Sur (UNS), al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC). El mismo se llevó a cabo en el Departamento de Ingeniería y en el Instituto de Ingeniería de la UNS.

### REFERENCIAS

- Elishakoff, I., A selective review of direct, semi-inverse and inverse eigenvalue problems for structures described by differential equations with variable coefficients. *Arch. Comput. Methods Eng.*, 7(4), 387–461, 2000.
- Gilardi, G.J., Vibraciones de vigas constituidas por materiales funcionalmente graduados. Tesis Doctoral, 2019. http://repositoriodigital.uns.edu.ar/handle/123456789/4496.
- Hearmon, R.F.S., The frequency of vibration and the elastic stability of a fixed-free strip. *Br. J. Appl. Phys.*, 7(11): 405–407, 1956.
- Huang, Y., Zhang, M. y Rong, H., Buckling Analysis of AFG and Non-Uniform Beams Based on Timoshenko Theory. *Acta Mechanica Solida Sinica*, 29(2):201–207, 2016.
- Ilanko, S., Monterrubio, L.E. y Mochida, Y., *The Rayleigh-Ritz Method for Structural Analysis*. Wiley & Sons, 2014.
- Kang, F. y Zhong-Ci, S., *Mathematical Theory of Elastic Structures*. Springer-Verlag Berlin Heidelberg, 1996.
- Lepik, Ü. y Hein, H., Haar Wavelets with Applications. Springer, 2014.
- Laura, P.A.A., Optimization of Variational Methods. Ocean Eng., 22(3):235-250, 1995.
- Rajasekaran, S., Buckling and vibration of axially functionally graded non-uniform beams using differential transformation based dynamic stiffness approach. *Meccanica*, 48:1053–1070, 2013.
- Shahba, A., Attarnejad, R., Marvi, M.T. y Hajilar, S., Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. *Composites: Part B*, 42:801–808, 2011.
- Soltani, M., Vibration characteristics of axially loaded tapered Timoshenko beams made of functionally graded materials by the power series method. *Numerical Methods in Civil Engineering*, 2(1):1–14, 2017.
- Soltani, M. y Asgarian, B., Finite Element Formulation for Linear Stability Analysis of Axially Functionally Graded Non-prismatic Timoshenko Beam. *Int. J. Struct. Stab. Dyn.*, 19(2):1–33, 2018.
- Soltani, M., Asgarian, B. y Jafarzadeh F., Finite difference method for buckling analysis of tapered Timoshenko beam made of functionally graded material. *J. Civ. Eng.*, 1–22, 2019.
- Su, H., Banerjee, J.R. y Cheung, C.W., Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Composite Structures, 106:854–862, 2013.
- Wang, C.M., Wang, C. Y. y Reddy, J. N., *Exact Solutions for Buckling of Structural Member*. CRC Press, 2005.