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Abstract. In a multiphase fluid system, the transport velocity can be related to the pressure through

Darcy’s law and it is coupled to a conservation law for the saturation variable of one of the phases. The

resulting coupled system of elliptic and hyperbolic partial differential equations is used to the modeling

of, for example, two-phase flows in oil reservoirs. The classical IMPES (IMplicit Pressure Explicit Satu-

ration) method first solves the elliptic problem for the pressure and flux, and then updates the saturation

with an explicit hyperbolic solver. This method is very costly, since the expensive elliptic solver must

be invoked at time intervals defined by the stability limit of the hyperbolic solver. It is popular among

users to update the flux every C time steps, keeping it frozen in between, with C determined by the user.

In this work we propose a more accurate handling of the velocity and an automatic procedure for the

selection of C in IMPES codes. In the time steps at which the elliptic problem is not solved, the flux is

extrapolated from previously computed values with polynomials of high degree. We also introduce an

error estimator from which the correct value of C can be derived without user intervention. The algo-

rithm is very easy to implement. The results show that the proposed algorithm is stable, reliable and cost

effective.
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1 INTRODUCTION

Numerical schemes like IMPES (IMplicit Pressure Explicit Saturation) (Sheldon et al., 1959;
Chen et al., 2004) and fully implicit methods (Collins et al., 1992; Yang et al., 2016) have been
used in the industry to address multiphase problems like petroleum and gas production (Al-
Hussainy et al., 1966; Greenkorn, 1983; Douglas et al., 1997), whose discretization results in
large size linear systems (billions of unknowns) for the flow in heterogeneous domains. The
IMPES scheme uses an operator splitting to deal with these large linear systems by separating
the calculation of compositional variables (saturation) from the flow variables (pressure and
velocity).

The explicit time marching step for saturation transport (hyperblic problem) is restricted by
the CFL condition (Courant et al., 1928). So, when performing a typical simulation with the
classical IMPES algorithm, in which the flow equations (Darcy’s flow equations) solver is in-
voked as many times as the saturation transport solver, a very large number of time-expensive
calls to the Darcy solver has to be done. One strategy to reduce the computational time spent
in the simulation is to consider a larger time step (denoted ∆tD) for updating the flow vari-
ables (the computationally intensive part) than the time step for the transport variable (denoted
∆tT ), complemented with a procedure to compute intermediate flux for time marching in the
saturation transport.

As long as the data of successive velocity variables is available in an existing code, the last
mentioned strategy is easy to implement, however, special attention is required for the selection
of a suitable ∆tD in terms of ∆tT . In some cases, ∆tD is chosen based on physical intuition or
computational limitations and the flow variables are frozen at their last computed values used
as intermediate flux to feed the explicit scheme for saturations (see, e.g., (Douglas et al., 1997,
2000; Chen et al., 2004; Kou and Sun, 2010)).

In this article we present an adaptive time marching strategy for IMPES as a result of two
main ideas. First, we use high order polynomial extrapolations for velocities in the IMPES
algorithm aiming the calculation of more accurate intermediate saturations fields, instead of
(locally) constant in time (zero-degree extrapolation) velocities. And second, we develop a
criterion for choosing a good skipping number (the number of saturation transport steps between
two consecutive velocity field updates), equivalently, for selecting ∆tD, inspired by adaptive
integrators of ordinary differential equations. This strategy is applied to the layer 36 of the
SPE10 benchmark.

2 THE TWO-PHASE MATHEMATICAL MODEL

The oil-water flow is modeled here by the Buckley-Leverett equation (Bear, 2013), which
describes the transport of water saturation s, from now on just saturation, coupled with the
Darcy’s law, relating an incompressible Darcy velocity u, or velocity for short, and the gradient
pressure ∇p. The system for this two-phase model within a heterogeneous domain Ω is

∇ · u(x, t) = f(x, t), (1)

u(x, t) = −λ(s)K(x)∇p(x, t), (2)

φ∂ts(x, t) +∇ · (ϕ(s)u(x, t)) = 0, (3)

where f is a source term in the mass conservation equation, K is the absolute permeability
tensor, φ is the porosity of the medium (assumed constant), λ is the total mobility and ϕ is the
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fractional function, these last given by (Corey and Brooks, 1975)

λ(s) =
s2

µw

+
(1− s)2

µo

and ϕ(s) =
Ms2

Ms2 + (1− s)2

expressed in terms of the oil and water viscosities, µo and µw respectively, and the quotient
M = µo

µw
. In this work, we will considered the time scaled by the constant porosity, for sim-

plicity. The system (1)-(3), is completed with suitable initial and boundary conditions, such as
imposed normal flow (or pressure) at ∂Ω, initial saturation (Chen, 2001) and saturation values
at inflows, dealing with configurations of injection and production wells approximated as volu-
metric sources. Regarding the existence and uniqueness of solutions of the two-phase problem,
the reader is referred to the works of Chen (2001), Chen (2002), and Chen et al. (2006).

3 NUMERICAL SCHEME

Given a saturation field sn at a discrete time tn, the classical IMPES strategy, to numerically
solve the system (1)-(3), consist in the implicit calculation of the pressure pn and velocity u

n

by means of the elliptic problem

∇ · un = f(x, tn), (4)

u
n = −λ(sn)K(x)∇pn, (5)

which can be discretized using, e.g., cell-centered finite volumes. Thence, the saturation is
explicitly updated to time tn+1 by using a numerical scheme for the hyperbolic problem (3),
namely

sn+1 = sn +∆tn G (sn,un) , (6)

where G is a discrete transport operator such as the first order upwind scheme, for which the
time step ∆tn = tn+1 − tn should be small enough so as to satisfy the CFL condition CFL =
∆tn ‖ϕ′(sn)un‖∞

h
≤ 1, with h being the spatial mesh size (Ewing, 1983; Douglas et al., 2000)

On a transient simulation, most of the computational time is spent in the calculation of pres-
sure and velocity. In this way, strategies leading to less frequent velocity updates in the IMPES
scheme are desirable, which induces one time step for the elliptic problem and a different time
step for the hyperbolic problem (Chen et al., 2004).

3.1 The skipping number and saturation time marching

We denote by tn ∈ [0, T ], T > 0, the dicrete time at which the Darcy’s problem is solved
and ∆tnD = tn+1 − tn its n-th coarse time step. This time step is subdivided into Cn substeps,
leading to intermediate discrete times tn,m = tn +

∑m

l=1 ∆t
n,l
T , 0 ≤ m ≤ Cn, for the updating

of transport saturation, so the fine time step ∆t
n,m
T must satisfy CFL ≤ 1. The integer number

Cn, referred here as skipping number, determines the quantity of transport steps solved between
two consecutive Darcy velocity calculation.

Intermediate saturation update, at time tn,m, is computed using a velocity field u
n,m, which

is obtained by polynomial extrapolation of previously computed velocities u
n, un−1, etc., de-

pending on the polynomial degree.

3.2 Adaptive Darcy time step

In principle, the skipping number Cn can be chosen as an arbitrary constant, which, if too
small, no time-computational gain is achieved and, if too large, possible important time varia-
tions in the flux will be ignored. An adaptive strategy to find a good Cn (equivalently, to adapt
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∆tnD) is then a pertinent feature to accelerate the IMPES scheme. We propose the following
steps:

• Compute the velocities u
n+1, coming from the Darcy’s problem, and û

n+1, an extrap-
olated flux resulting from interpolating polynomials of degree k ≥ 0. In particular, if
k = 1, then

û
n+1 (x) =

tn+1 − tn−1

∆tn−1
D

u
n (x)−

tn+1 − tn

∆tn−1
D

u
n−1 (x) , x ∈ Ω.

• Compute an error estimator e = e (un+1, ûn+1). Supposing that this estimator has a pos-

teriori polynomial error of the form e ≃ α (∆tnD)
k+1, with α > 0, and, if ε ≃ α (∆tn∗D )k+1

is a given tolerance for e and ∆tn∗D is the ideal time step, then

ε

e
≃

(

∆tn∗D
∆tnD

)k+1

, implying ∆tn∗D ≃ ∆tnD

(ε

e

)
1

k+1

,

and the estimation of the skipping number is

Cn∗ = Cn
(ε

e

)
1

k+1

.

• Check whether e > ε or e ≤ ε:

(a) If e > ε then redefine the previous constant Cn of the interval [tn, tn+1] as Cn,new =
max {Cn∗, Cmin} and go back to time tn,1 and start over. Here, Cmin is a minimum
allowed value for the skipping number, for example, 1.

(b) If e ≤ ε then define the skipping constant of the interval [tn+1, tn+2] as Cn+1 =
min

{

Cn∗,
⌊

7
4
Cn

⌋}

and continue with the time marching The factor 7
4

was empiri-
cally chosen.

The substep (a) of going back to tn,1, referred here as backward approach, is optional.
Instead, before proceeding the time marching, one can use a forward approach by taking
the obtained skipping number as the one to be used for the next time step ∆tn+1

D .

A convergence analysis of the extrapolation strategy for the IMPES algorithm is presented
in Paz et al. (2021).

4 APPLICATION TO THE SPE10 BENCHMARK LAYER 36

The numerical scheme described in Section 3 requires the selection of the initial skipping
number C0, the degree of the polynomial k, the tolerance ε for the error estimator and the error
estimator function e, so as to perform the flux and saturation time marching. Cell-centered
finite volumes were used to solve the elliptic and hyperbolic problems. The proposed adaptive
time marching strategy for IMPES is tested here for the SPE10 benchmark layer 36, varying the
previously mentioned parameters of the algorithm.

The permeability field shown in Figure 1 corresponds to the layer 36 of the SPE10 bench-
mark Christie et al. (2001) in a domain Ω = [0, 670.56m]× [0, 365.76m], divided by a regular
partition of 220× 60 cells. For this simulation, two volumetric sources, ΩL and ΩR, are located
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Figure 1: SPE10 layer 36 permeability field.

at the left and right boundaries and act as injector and production sources, respectively. So,
when water saturation is injected in ΩL, we have the oil produced fraction at ΩL given by

Poil(t) = 1−

∫

∂ΩR ϕ(s(t))u(x, t) · dΓ
∫

∂ΩR u · dΓ
. (7)

Also, we impose no-flow boundary conditions, the initial condition is s(x, 0) = 0 for x ∈ Ω\ΩL

and, for time, we introduce the dimensionless time

TPV I(t) =
1

Vp

∫ t

0

∫

Ω1
w

f(x, τ) dx dτ,

being Vp the reservoir’s total pore-volume.
To evaluate the effect of the adaptive time step technique proposed in Section 3.2, we start

by using polynomials of degree k = 2 to extrapolate the Darcy velocity at both fine and coarse
time steps, and estimating the errors with

e = e (u(·, t), û(·, t)) =
‖u(·, t)− û(·, t)‖L2

‖u(·, t)‖L2

, (8)

in simulations going beyond the breakthrough time with forward approach. As shown in Figure
2 (left), a restrictive tolerance for the estimator induces low values for the skipping number C.
Before the breakthrough time, oscillations in the skipping number indicate important variations
while estimating the Darcy flux, being necessary to reduce C down to 5 for ε = 10−6, noticing
that, in previous times, the skipping raised up to 41.

Equation (7) defines the oil production curve which is also presented in Figure 2 (right) for
different tolerances of the error estimator (8). The breakthrough time is well captured in all
cases and no essential difference is found between the reference solution (Fine time, resulting
from setting Cn = 1) and the solutions calculated with the time adaptive strategy. The proposed
algorithm allows for much more efficient computation without any appreciable loss of accuracy
in the production curve, since the Darcy solver is invoked much less compared to the classical
IMPES.

In order to assess accuracy gain with the adaptive strategy, we proceed to compare (a) the
simulation with adapted Cn and (b) another one in which the Cn = 43 is fixed for all n (corre-
sponding to the average skipping number found in (a)) to the fine time solution resulting from
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Figure 2: Skipping number as a function of time for ε = 10−3, 10−4 (left) and Oil production
curve using three different values for the estimator tolerance ε (right).

Constant skipping Adapted skipping

Figure 3: Absolute error between the saturation field computed using a constant skipping num-
ber Cn = Cavg (left) and an adaptive time step (right) at time TPV I = 0.066.

setting Cn = 1 for all time steps, using k = 2, ε = 10−4 and forward approach. By design,
simulations (a) and (b) take approximately the same computational time because they require to
solve almost the same quantity of Darcy and transport problems. Figure 3 compares the spatial
distribution of the saturation absolute error (based on the reference Cn = 1 solution) at time
TPV I = 0.066, showing that the adapted skipping number strategy locally recovers a better
saturation field than the one coming from a constant skipping number strategy.

Finally, for simulations with adapted Cn up to TPV I = 0.11, Table 1 (left) contains the
speedup, defined as the ratio of the computational time for Cn = 1 to that of the adaptive
time step strategy, for different configurations resulting of varying the polynomial degree for
extrapolation combined with the forward and backward approach. When k = 0, we already
have a speedup of 7 (forward approach) and, for extrapolation of degree k > 0, speedups in
the forward approach are almost the double of its backward counterpart. In terms of relative
errors at time TPV I = 0.11, also Table 1 shows no significant differences among the variants for
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k backward forward
0 6.4 7.2
1 14.8 25.8
2 13.7 28.7
3 11.5 24.7

k backward forward
0 8.51 · 10−5 8.45 · 10−5

1 1.30 · 10−5 4.49 · 10−5

2 3.51 · 10−5 7.38 · 10−6

3 2.02 · 10−5 2.11 · 10−5

k backward forward
0 7.74 · 10−5 8.40 · 10−5

1 1.22 · 10−5 1.92 · 10−5

2 1.84 · 10−5 1.26 · 10−5

3 2.13 · 10−5 2.57 · 10−5

Table 1: Speedup for different configurations (left), L2(Ω) relative errors for velocity (center)
and L1(Ω) relative errors saturation (right).

both velocity and saturation fields compared to the fine time solution. So, regarding speedup
and error control, the configuration (k = 2, forward) produced the best cost-benefit ratio for the
simulation.

5 CONCLUSIONS

In this work we have modified the classical IMPES algorithm in such a way that the quantity
of Darcy problems in a simulation is reduced and controlled by a certain tolerance and an error
estimator that feed an adaptive time step process. The intermediate saturations are computed
based on a polynomial extrapolations of previously calculated fluxes.

In the application to the layer 36 of the SPE10 benchmark, the use of quadratic polynomials
with forward strategy gave us the best cost-benefit ratio in terms of accuracy and speedup.
Also, for two different simulations performing approximately the same quantity of Darcy and
transport problems (equivalently, spending the same computational time), the adaptive choice
of ∆tD produced more accurate solutions than the standard strategy of using a constant value
of ∆tD.
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