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Abstract. After approximately five decades since the first proposed model, Reynolds-averaged Navier-

Stokes, RANS, simulations remain the most used technique for engineering applications in turbulent

flows. In the last few years, after a stagnant period in RANS model development, there has been a

resurgence of research on RANS techniques. Based on a large amount of high-quality data of turbulent

flows (from direct numerical simulation, DNS, and large eddy simulation, LES), researchers have begun

to systematically use this information in turbulence to quantify and reduce model uncertainties and to

incorporate more physics of turbulence into RANS models or the eddy viscosity model. This study

presents the results of using of deep neural networks to directly calculate the Reynolds stresses of a

turbulent flow, without using the linear eddy viscosity model. Based on features of turbulent flows from

DNS data, deep neural networks are adjusted to predict the relevant Reynolds stresses. First, an a priori

comparison for perturbed turbulent flows, and second, the propagation of the Reynolds stresses through

the velocity field of a developed channel flow are made. In both cases, there is a significant improvement

versus results from the standard kappa-epsilon model.
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1 INTRODUCTION

After a long period of stagnation, RANS modeling is entering a new era due to using machine

learning techniques. Machine learning encompasses a broad set of data-driven algorithms, in-

cluding known methods such as linear regression and more advanced concepts such as neural

networks. With high-fidelity data available, machine-learning use includes capturing potentially

complex relationships between turbulence mean-flow characteristics (features) and modeling

terms (predictions).

The machine learning techniques have been used in RANS models in a wide range of prob-

lems and with a broad range of methods. One problem can be to study RANS uncertainty as

it was done by Ling and Templeton (2015). Also, Ling with another group (Ling et al. (2015))

used highly resolved LES jet-in-crossflow results and the corresponding RANS results for the

same flow, intending to determining in which regions of this flow the various RANS eddy vis-

cosity assumptions were violated and to explore the potential of machine learning techniques to

provide improved models.

Deep learning, DL, is a branch of machine learning that has gained attention owing to its

flexibility and precision. In DL input features get transformed through multiple layers of non-

linear interaction. In one of the first applications to turbulent flow, Ling et al. (2016b) pre-

sented a method of using deep neural networks, DNN, to learn a model for the Reynolds stress

anisotropy tensor from high-fidelity simulation data. They proposed a DNN with an invariant

tensor basis to embed Galilean invariance into the predicted anisotropy tensor. They propagated

the Reynolds stress anisotropy prediction in two flows and found significant improvements (by

propagation is meant to use these predicted values in the RANS equations and solve it for the

mean flow).

Wang et al. (2017) used a machine learning technique based on random forests, to predict

the discrepancies between RANS and the true Reynolds stresses formulated as functions of the

mean flow features. Using this technique, predicted these discrepancy functions based on exist-

ing DNS databases. Then, they used the predicted Reynolds stress discrepancies in a developed

flow in a square duct and flows with massive separation with clear improvement.

Based on the fact that the Reynolds stresses are the principal source of model-form uncer-

tainty in RANS simulations, the majority of the recent work aim to predict the Reynolds stress

tensor or the anisotropy of the Reynolds stress tensor. However, predictions of the correct

Reynolds stresses from a machine learning model adjusted to DNS databases cannot necessar-

ily guarantee obtaining improved mean flow fields, as is commented by Wu et al. (2019). Even

solving RANS equations with Reynolds stresses from DNS data for high Reynolds numbers can

lead to large errors in the velocities Poroseva et al. (2016); Thompson et al. (2016). Wu and co-

workers addressed the possible ill-conditioning problem of the RANS equations when explicit

Reynolds stresses get propagated for the mean velocity. They have shown that the global matrix

condition number of the discretized RANS equations cannot explain the ill-conditioning. As

they have shown, the local metric can explain deteriorated model conditioning with increasing

Reynolds number. They considered an ideal scenario in which the Reynolds stress is directly

computed from the DNS database at various friction Reynolds numbers of 180, 550, 1000,

2000, and 5200, showing the increasing errors for higher Reynolds numbers.

In an attempt to circumvent the amplification of errors in the propagation of DNS data

through RANS equations, Cruz et al. (2019) employed the Reynolds force vector rather than

the Reynolds stress tensor as the target for learning and prediction. They used to predict with

machine learning the Reynolds force vector correction, and have shown to be able to reconstruct
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the mean velocity field with a higher fidelity concerning the DNS data.

Other aspects in machine learning apart from the ill-conditioning of the RANS equations

are input-output invariance and model feasibility. When choosing the input features to adjust

a data-driven model, a question is: how should the domain knowledge be incorporated into

the machine learning process? For example, the classical laws of motion are known to obey

Galilean invariance. Therefore, the input and thus the obtained regression functions should be

in principle Galilean-invariant (Pope (2000)). There are two ways to encompass the invariance

of the input data: a)entering data that are Galilean-invariant, and; b)training the model with

different data so that it learns the property of invariance from these data. Although it is expected

that the model trained on the invariant basis will be more effective at enforcing this invariance,

it is also possible to let the model learn these properties (Milano and Koumoutsakos (2002),

Cruz et al. (2019)).

This study presents the first results predicted with DL applied to some simple turbulent flows.

As a novelty, in this work the input features are from the DNS data rather than the RANS

data. A frame-independent formulation is unnecessary for problems where training and testing

cases have the same geometry and the same coordinate system, as in the flows used here. A

minimum of 12 features is adjusted through a DNN to predict the Reynolds stresses from a

DNS database. The Reynolds stresses are propagated for the mean velocity in a developed flow.

These a posteriori results are presented together with some a priori results for perturbed flow.

In the following section, the methodology is presented, together with a description of the input

and output data to the DNN. Then in section 3, results are commented on and discussed. In 4

some conclusions are listed.

2 METHODOLOGY

2.1 Deep Neural Networks

DL is a branch of machine learning in which input features get transformed through multiple

layers of nonlinear interaction. DNN is compound by multiple interconnected nodes (neurons),

two of them modeling a perceptron (Lecun et al. (2015)). Each node takes an input (the output

of a previous node) and outputs the result through an activation function; e.g., Relu and Sigmoid

are the most common. In this study, the Sigmoid activation function is used. All interconnected

nodes conform to a mesh with a different number of neurons and layers depending on the

problem: a) one input layer (in this case the layer with the input features of the flow); b)

one or multiple hidden layers (called hidden layers because the physical interpretation of their

activation is not always clear); and c) one output layer (with the predicted values, in the present

work the Reynolds stress). DNN with multiple layers can capture very complex and nonlinear

interactions among the different input features, that get transformed through the final activation

function.

Since the idea was to propagate the predicted Reynolds stress through the RANS equations

for the mean flow, only 12 features were used as input.

Neural networks have three tunable hyperparameters: the number of hidden layers, the num-

ber of neurons per hidden layer, and the learning rate coefficient. For the multilayer perceptron

and the invariant neural network used in their work, Ling et al. (2016b) used a Bayesian op-

timization for optimizing DNN for these hyperparameters, and the optimal number of hidden

layers was 10 and 8, respectively.

In the present study, only one hidden layer was used to make a simple and faster prediction

with the DNN in the RANS solver. The number of neurons in the hidden layer and the learning

Mecánica Computacional Vol XXXVIII, págs. 905-914 (2021) 907

Copyright © 2021 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



rate were chosen by try and failure, with 12 neurons in the hidden layer (the input number of

features), and the initial learning rate was 0.05. After the initial training, the net was saved,

and then subsequent training with decreasing learning rate was used. A DNN was considered

adjusted when the accuracy of the prediction of the testing data was higher than 95%.

In this work, a numerical code in Fortran developed by M. Curcic from the University of

Miami, was used to train and test the DNN (Curcic (2016)). These efforts in developing tools

for machine learning techniques are invaluable for the turbulence modeling community.

The following is a summary of the approach:

1. Compute DNS for the base flows;

2. Compute the features from these DNS data;

3. Train, and test the DNN;

4. Use the trained and tested DNN in a RANS solver to compute for the mean flow.

2.2 Input and output data

To have a minimum computational cost, only twelve simple features of the flow were used.

Table 1 shows a list of these features, which are dimensionless using the friction velocity, u
τ
,

and half the distance between walls, δ.

When adjusting a machine learning model like a DNN, it should be trained based on features

of a different turbulent flow configuration, upon which it is then tested, looking for the ability

of the model to generalize to new flows for which high fidelity results are not available. The

flows used to train the DNN are named training flows, and the flow to be predicted test flow.

Description Symbol Description Symbol

Kinetic energy κ Dissipation of κ ǫ
Longitudinal velocity U Wall-normal velocity V
Longitudinal U gradient ∂U/∂x Wall-normal U gradient ∂U/∂y
Longitudinal V gradient ∂V/∂x Wall-normal V gradient ∂V/∂y
Longitudinal pressure gradient ∂P/∂x Wall-normal pressure gradient ∂P/∂y
Deformation tensor moduli S Wall distance y

Table 1: Input or features used to feed the DNN. All these variables are dimensionless using the friction

velocity, uτ , and half of the channel height, δ (the dimensionless symbol has been dropped for simplic-

ity).

The usual practice in the literature is that since the true mean flow (DNS) in the test flows is

not available, the inputs features to the DNN should be information of the mean flow produced

by the RANS simulations ( Ling and Templeton (2015); Ling et al. (2016b); Wu et al. (2018)).

Therefore, the adopted features are usually based on RANS-predicted pressure P, mean velocity

U, turbulent kinetic energy κ, and so on. Hence, it is usual that RANS results (not DNS re-

sults), are inputs to the neural network. High fidelity data is used only to provide true (output)

anisotropy, or the true Reynolds stress, during model training and testing. The reason for this

choice is that the DNN must be able to make predictions in the absence of DNS data as input.

In this situation, the input features are computed using a RANS model; e.g., κ − ǫ, or κ − ω.
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Then, the output or final prediction are the Reynolds stresses, which for an optimal prediction,

are equal to the true (DNS) Reynolds stresses.

Ideally, the machine learning prediction would be identical to the DNS data; to the true

anisotropy of Reynolds stresses, or to the total Reynolds stress. In this case, the RANS mean

flow should approach the Reynolds-averaged mean flow extracted from DNS data. The errors or

differences between these two mean flows should be attributed only to the small errors associ-

ated with the RANS techniques themselves (Pasinato and Krumrick (2021)). Hence, in this case

the RANS mean flow should be close to the Reynolds-averaged DNS mean flow. Consequently,

if these optimal Reynolds stresses from the DNN get introduced in an a posteriori RANS sim-

ulation, the mean features will substantially differ from those of the solution computed with a

RANS model. For this reason in the present study the input features are extracted from the DNS

database.

Another aspect of machine learning techniques is the Galilean invariance requirement of the

input and output. In the present work, vector components and scalars feed the DNN. A frame-

independent formulation is unnecessary for problems where training and testing cases have the

same geometry and the same coordinate system, as in the flows presented here.

2.3 Training and testing set of data

The usual practice in the literature is to train the network in turbulent flows with different

characteristics, to achieve an extensive spectrum of turbulence phenomena. In this case, the

DNN must adjust to a large number of non-linear phenomena, requiring a large number of

hidden layers and neurons per layer. This would be a versatile DNN, but would also require

more processing time to propagate the predicted Reynolds stresses. In this study, following a

different path, a DNN as simple as possible with only one hidden layer with 12 neurons was

adjusted to developed turbulent flow, with the goal to predict developing turbulent flows with a

different Reynolds number.

The DNN was trained with a developed flow with Re
τ
= 149, and then used to predict

the Reynolds stress of two developing turbulent flows, one perturbed with blowing and the

other perturbed with an adverse pressure gradient step (APGS) in the buffer region; both with

Re
τ
= 302. Furthermore this DNN was used to propagate the Reynolds stress in a developed

flow with Re
τ
= 300.

The DNS data belong to previous works. Here only a summary description of these flows

is commented; more details are elsewhere (Pasinato (2013). Every DNS case is run with two

simulations in parallel. Both simulations are for a channel flow with the same Re, the same

physical domain, and the same grid. The first simulation is implemented with periodic boundary

conditions to give inlet boundary conditions for the second simulation. Thus, the simulation

with the perturbed (developing) flow runs with the inlet boundary condition of a developed

turbulent flow and convection boundary conditions at the outlet. The width of the region for

perturbation or slot is W+ = 220, the injection dimensionless velocity is v+ = 0.60, and the

adverse pressure gradient step, ∂P+/∂x+ = 0.25. Furthermore, the distance from the entrance

to the slot or perturbation region is X+ = 600. All previous parameters made dimensionless

with the friction velocity, u
τ
, and half the distance between walls, δ. These perturbed turbulent

flows are 2D statistical stationary. The statistics (e.g. mean velocities, Reynolds stresses, and

so on) are evaluated along z and time.

To propagate the predicted Reynolds stress in a developed flow, the grid used in the RANS

simulations was 64 × 64 × 64, and the time step 0.15δ/u2
τ
. In the wall-normal direction, a

non-uniform mesh is used and the expansion ratio is adjusted to ensure that the y+ of the first
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Figure 1: Comparison of the 〈uu〉+ prediction with DNN (unfilled symbols), with DNS data (filled sym-

bols), and a priori results from the κ − ǫ model (lines), at two positions from the perturbation slot start.

(a) blowing, (b) APGS. circle, 6W+; ——, κ− ǫ; star, 10W+, − − −, κ− ǫ (where W+
= 220 is the

dimensionless width of the blowing/pressure step perturbation region).
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Figure 2: Idem to Figures 1(a)-1(b) for 〈vv〉+.
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Figure 3: Idem to Figures 1(a)-1(b) for 〈ww〉+.
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Figure 4: Idem to Figures 1(a)-1(b) for 〈uv〉+.

cell center is equal to 1. A van Driest function near the wall is used in those cases with viscosity

from the κ− ǫ model.

3 RESULTS AND DISCUSSION

The main goal of the present work is to show the methodology used to predict the Reynolds

stresses in some simple turbulent flows using DNN, together with details of some problems

related to the propagation of the Reynolds stresses. In this sense, only the first results are

considered, since more work to improve these aspects should be done.

A priori results (or DL predictions as they are named here) for perturbed flows with blowing

and with an adverse pressure gradient are presented and a posteriori (DL-RANS) results of the

propagation of the Reynolds stress for a developed turbulent flow; all these turbulent flows for

a friction Reynolds number of about 300. The κ − ǫ model is used for comparison because its

results have become a reference for researchers in RANS models.

3.1 Results without propagation (a priori comparison)
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Figure 5: Mean velocity U+ comparison for developed turbulent channel flow with Reτ = 300.

Filled squares, DNS; ——-, ke; − · − · − , dnsrs; unfilled squares, DL-RANS; + · + · +, U+ =
(1/0.41)ln(y+) + 5.5.

Two a priori results are presented for turbulent channel flow perturbed with blowing from a

thin slot (W+ = 220) and two more for channel flow perturbed with a pressure gradient step

through the buffer layer in the same region. Details of the flow are elsewhere Pasinato (2013);
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Pasinato and Krumrick (2021).

Figures 1(a)-3(b) show a comparison of the normal Reynolds stresses and 4(a)-4(b) show

a comparison of the shear Reynolds stresses, of the DL prediction with DNS data and with a

priori results of the κ − ǫ model. These comparisons are at two positions from the slot start (6

and 10 W+).

All these figures show an improvement of the DL results in comparison with the κ−ǫ model.

However, the optimism should be moderate since these are only a priori results. As found in

the literature (Wu et al. (2018, 2019,b)), RANS solvers are unstable and difficult to drive to

convergence with explicit Reynolds (See also Thompson et al. (2016); Poroseva et al. (2016)).

This clearly shows the difference between a priori and a posterior performance in the assessment

of turbulence models.

Having said that, it is also true that the agreement between DNS data and DL adjusted with

only 12 features of two developed turbulent flows is reasonably good. Blowing and APGS are

perturbed turbulent flows with significant modifications from the developed conditions. The

best agreement between DL and DNS data is for 〈uu〉+. The reason for the good behavior

of 〈uu〉+ from DL is the information entered to the DNN through κ. As is well known, in a

boundary layer, the turbulent production enters energy from the mean flow to the 〈uu〉+, and

then this energy in 〈uu〉+ is redistributed into 〈vv〉+, and 〈ww〉+, through the pressure gradient

(Tennekes and Lumley (1972)).

The DL prediction for the shear Reynolds stress 〈uv〉+ is substantially better than the results

from the κ− ǫ model, but it is a poor prediction in comparison with DNS data. It is important to

remark that generally, the role of 〈uv〉+ in turbulent channel flows is substantially more relevant

than the role of the normal Reynolds stresses. In fact, for developed turbulent flows the normal

Reynolds stresses are irrelevant (their effects in the momentum equations are zero).

3.2 Predicted results propagated in developed flow (a posteriori comparison)
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Figure 6: Normal Reynolds stresses comparison of DL-RANS (unfilled symbols) for developed turbulent

flow with Reτ = 300, with DNS data (filled symbols), and κ − ǫ model (solid line). ◦ · ◦ · ◦ , u+;

⋆ · ⋆ · ⋆; w+; � · � · � , v+.

Figures 5-7 show the comparison of the predicted results from the DNN, then propagated in a

developed turbulent flow (DL-RANS), with data from DNS, the κ−ǫ model, and DNS Reynolds

stress propagated through the RANS equations (dnsrs) (Pasinato and Krumrick (2021)).

Figure 5 shows a comparison of the distribution of the mean longitudinal velocity U. The

profile of U for DL-RANS is a pseudo converged value since the equation for κ (κ and ǫ from

H.D. PASINATO, F.D. GEROSA, E.A. KRUMRICK912

Copyright © 2021 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

y+

d
U

+
/d

y
+
; 
<

u
v
>

+
; 
T

o
ta

l

Figure 7: Shear Reynolds stresses comparison of DL-RANS (unfilled symbols) for a developed turbulent

channel flow with Reτ = 300, with DNS data (filled symbols), and κ− ǫ results (lines). ; ⋆ · ⋆ · ⋆, total;

� · � · � , turbulent; ◦ · ◦ · ◦ , molecular. κ − ǫ, solid line, total; − − −, turbulent; − · − · − ,

molecular.

the κ − ǫ model) occasionally presented a low increase generating a wrong value of 〈uv〉+, as

is shown in Figure 7. Figure 6 shows the performance of the Reynolds normal stresses from

the DNN. Since normal Reynolds stresses do not affect the mean flow, there is not a non-linear

interaction between the input features and this prediction. Thus this prediction of the normal

Reynolds stresses is irrelevant in developed flow.

Figure 7 shows the comparison of the molecular, the turbulent, and the total stress for DNS,

κ− ǫ, and DL-RANS. It became clear in this figure that the prediction of 〈uv〉+ for DL-RANS

is wrong. Note that this value of the shear Reynolds stress is the result from the propagation

through the RANS equations for a developed flow. It is the result of the nonlinear interaction

between the RANS features with the predicted Reynolds stresses. As commented above, in-

stability problems have been found in the literature when Reynolds stresses are propagated in

RANS equations. These problems are due to amplification of errors of the Reynolds stresses

(Poroseva et al. (2016); Thompson et al. (2016). Here the production term in the κ equation is

evaluated with the predicted 〈uv〉+, generating this wrong value in the center of the channel.

4 CONCLUSIONS

This study presented results of the use of DL to predict the Reynolds stresses of turbulent

flow. Based on features of turbulent flows from DNS data, a DNN was adjusted to predict

the relevant Reynolds stresses. First, an a priori comparison for perturbed turbulent flows was

made, and second, the predicted Reynolds stresses were propagated through the velocity field

of a developed channel flow. In both cases there were improvements versus results from the

standard κ−ǫ model, although some instability problems were found in the κ equation, resulting

in the poor final prediction of the shear Reynolds stress.

The following are the main conclusions of this study:

1. In this study, to adjust the DNN, input features taken from DNS were used rather than

RANS features.

2. A DNN with only 12 simple features of the flow has been efficient enough in capturing the

Reynolds stress-flow characteristics dependence. Machine learning has proved to be a powerful

tool for turbulence modeling research.

3. The propagation of the Reynolds stresses in a developed flow has shown instability prob-

lems in the κ equation, leading to the wrong prediction of the shear Reynolds stress.
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4. Is it necessary to develop universal ML turbulence models or specialized models for

specific turbulent flows? In this study, a DNN was adjusted to a developed flow and used in

perturbed flow with reasonable a priori comparison with DNS data.
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