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Abstract. In this work we present a finite element formulation for the stress analysis of axisymmetric

solids based on the nodal recovering of stresses and deformations. This procedure is based on a trun-

cated Taylor series expansion of the gradient matrices. For constant constitutive properties the resultant

stiffness matrices have polynomial integrands and can be integrated analytically without using numer-

ical integration. If the constitutive properties are variable over the bilinear quadrilateral element, it is

shown that we can use an equivalent constant constitutive matrix made by nodal averaged properties for

computing the stiffness matrices. Also, the procedure is convergent for any type of material nonlinearity,

including plasticity.
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1 INTRODUCTION

The isoparametric formulation of bilinear quadrilaterals leads to complex integrands of stiff-

ness matrices, and although some authors have integrated analytically these matrices (Babu and

Pinder, 1984; Rathod, 1988) numerical integration using Gauss’s quadrature is the preferred

choice (Zienkiewicz et al., 2013). This is due to many factors, for example, there is no ap-

preciable gain in accuracy using exact integration and the analytical integration produces rather

complex results involving the use of rational polynomials and logarithmic functions that require

a great number of computations.

On the other side, the use of numerical integration can be implemented by a systematic

approach (Zienkiewicz et al., 2013), independently of the complexity of the integrands. By

using Gauss’s quadrature the integrands need to be evaluated at certain integration points and a

minimum number of integration points is required for each finite element to ensure convergence

of the formulation. For bilinear quadrilaterals the minimum number of integration points (full

quadrature) is four (Zienkiewicz and Hinton, 1976). Full quadrature is costly but the use of

reduced quadrature (one integration point) can generate spurious modes or mechanisms known

as hourglass modes (Irons and Ahmad, 1980; Belytschko et al., 1984).

Many authors (Flanagan and Belytschko, 1981; Jacquotte and Oden, 1984; Liu and Be-

lytschko, 1984; Liu et al., 1985; Schulz, 1985; Hansbo, 1998) have developed effective controls

of the spurious modes that results in a stiffness matrix K composed of two parts a consistent

stiffness matrix K
C plus a stabilization stiffness matrix K

S .

K = K
C +K

S (1)

The consistent stiffness matrix K
C is the matrix obtained with one-point quadrature that

guarantees convergence. The stabilization matrix K
S is added to avoid the appearance of spuri-

ous modes (null energy modes) in the complete stiffness matrix K. The resultant matrices can

be integrated explicitly.

For axisymmetric quadrilaterals the same procedure can be applied to obtain a consistent and

a stabilization matrix. In this work we will use the procedure developed by (Liu et al., 1985,

1994) to obtain the consistent and stabilization matrices.

For nonlinear material properties usually the constitutive matrix is evaluated in each integra-

tion point, in the case of stabilized finite elements it is possible to assume constant properties

over all the element, this is equivalent to compute this properties at the centroid of each element.

But this procedure does not take into account the strong variation that occurs in an advancing

front of plasticity or near the boundaries. Then is preferable to compute the material properties

at the nodes of the mesh by a procedure, usually employed in meshfree methods and known as

nodal integration (Beissel and Belytschko, 1996; Puso and Solberg, 2006; Morrev and Gordon,

2018). It should be noted that in these methods special procedures are required to compute a

global stiffness matrix.

For the case of a mesh of bilinear quadrilaterals we will show that if the constitutive matrices

at each nodal point of the mesh are known, then the element stiffness matrices can be computed

in a conventional manner using a nodal averaged constitutive matrix, and the procedure is valid

for linear or nonlinear materials, even in the case of plasticity.

The paper is organized as follows, firstly we present the main equations for stress analysis of

axisymmetric solids by finite elements, then we show the consistent and stabilization matrices,

as deduced in (Liu et al., 1985). Finally, we show the deduction of the averaged constitutive

matrix and a numerical example is presented.
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2 FINITE ELEMENT STRESS ANALYSIS OF AXISYMMETRIC SOLIDS

Consider the mapping of a four node quadrilateral element from the physical space of co-

ordinates (r, z) to the biunit square [−1, 1] × [−1, 1] in the parametric space of coordinates

(ξ, η).

Figure 1: Four node isoparametric quadrilateral

The geometry of the finite element is define by interpolating the spatial coordinates (r, z)
from the nodal values (ri, zi) as

r(ξ, η) =
4

∑

i=1

Ni(ξ, η)ri = N
T
b r

z(ξ, η) =
4

∑

i=1

Ni(ξ, η)zi = N
T
b z

(2)

where r, z are the vectors of nodal coordinates.

r =
{

r1 r2 r3 r4
}T

z =
{

z1 z2 z3 z4
}T

(3)

and Nb is the vector of bilinear shape functions

Nb =
{

N1 N2 N3 N4

}T
(4)

The bilinear shape functions can be expressed as

Ni(ξ, η) =
1

4
(1 + ξiξ)(1 + ηiη) (5)

where (ξi, ηi) are the nodal values in the parametric space.

Adopting an isoparametric mapping the displacements are interpolated with the same bilin-

ear shape functions:

u(ξ, η) =
4

∑

i=1

Ni(ξ, η)ui = N
T
b u

w(ξ, η) =
4

∑

i=1

Ni(ξ, η)wi = N
T
b w

(6)

where u,w are the vectors of nodal displacements
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u =
{

u1 u2 u3 u4

}T

w =
{

w1 w2 w3 w4

}T
(7)

After substitution of the approximated displacement field (6) into the strain vector (??) we

obtain the approximated strains ϵe over the element.

ϵe = Bde (8)

where B is the gradient matrix defined as

B =





























∂NT
b

∂r
0

0
∂NT

b

∂z

∂NT
b

∂z

∂NT
b

∂r

N
T
b

r
0





























(9)

and d
T
e =

{

u
T
w

T
}

is the vector of nodal displacements of the element.

3 CONSISTENT AND STABILIZATION MATRICES

Using the procedure described in (Liu et al., 1985) we approximate the gradient matrix B by

its Taylor’s series around the element centroid and retaining up to linear terms we have

B̄(ξ, η) =
1

J00

(

B̄00 + B̄10ξ + B̄01η
)

(10)

The B-bar gradient matrix B̄00 is

B̄00 =
1

2

















z24 −z13 −z24 z13 0 0 0 0

0 0 0 0 −r24 −r13 r24 r13

−r24 −r13 r24 r13 z24 −z13 −z24 z13

J00
2rm

J00
2rm

J00
2rm

J00
2rm

0 0 0 0

















(11)

where
rij = ri − rj

zij = zi − zj
(12)

and rm is the mean radius, that is the value of the radius at the centroid

rm = (r1 + r2 + r3 + r4)/4 (13)

Also J00 is the jacobian evaluated at the centroid (which is equal to one quarter of the area A
of the element

J00 = A/4 = a1b2 − a2b1 (14)
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and the coefficients a1, b1, a2, b2 are

a1 = (−r1 + r2 + r3 − r4)/4, b1 = (−z1 + z2 + z3 − z4)/4

a2 = (−r1 − r2 + r3 + r4)/4, b2 = (−z1 − z2 + z3 + z4)/4
(15)

The B-bar gradient matrices B̄10, B̄01 are

B̄10 =
1

4

















γ1b1 γ2b1 γ3b1 γ4b1 0 0 0 0

0 0 0 0 −γ1a1 −γ2a1 −γ3a1 −γ4a1

−γ1a1 −γ2a1 −γ3a1 −γ4a1 γ1b1 γ2b1 γ3b1 γ4b1

−

J10
rm

−

J10
rm

−

J10
rm

−

J10
rm

0 0 0 0

















(16)

and

B̄01 =
1

4

















γ1b2 γ2b2 γ3b2 γ4b2 0 0 0 0

0 0 0 0 −γ1a2 −γ2a2 −γ3a2 −γ4a2

−γ1a2 −γ2a2 −γ3a2 −γ4a2 γ1b2 γ2b2 γ3b2 γ4b2

−

J01
rm

−

J01
rm

−

J01
rm

−

J01
rm

0 0 0 0

















(17)

where
γ1 = 1− γ01 − γ10

γ2 = −1 + γ01 − γ10

γ3 = 1 + γ01 + γ10

γ4 = −1− γ01 + γ10

(18)

and

γ10 =
J10
J00

, γ01 =
J01
J00

(19)

with
J10 = a1b3 − a3b1

J01 = a3b2 − a2b3
(20)

where coefficients a1, b1, a2, b2 are given in (15) and coefficients a3, b3 are

a3 = (r1 − r2 + r3 − r4)/4, b3 = (z1 − z2 + z3 − z4)/4 (21)

3.1 Approximated stiffness matrix

Then the element stiffness matrix Ke can be approximated as

Ke =

∫

Ae

B
T
CB rdA ≈

∫

Ae

B̄
T
CB̄ rdA ≈

∫

1

−1

∫

1

−1

B̄
T
CB̄ rm/J00 dξdη (22)

After substituting the approximate gradient matrix (10) we have
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Ke ≈

∫

1

−1

∫

1

−1

B̄
T
00
CB̄00 rm/J00 dξdη

+

∫

1

−1

∫

1

−1

B̄
T
00
C
(

B̄10ξ + B̄01η
)

rm/J00 dξdη

+

∫

1

−1

∫

1

−1

(

B̄
T
10
ξ + B̄

T
01
η
)

CB̄00 rm/J00 dξdη

+

∫

1

−1

∫

1

−1

(

B̄
T
10
ξ + B̄

T
01
η
)

C
(

B̄10ξ + B̄01η
)

rm/J00 dξdη

(23)

Taking into account the properties of the integrals:

∫

1

−1

∫

1

−1

dξdη = 4 ,

∫

1

−1

∫

1

−1

ξdξdη = 0

∫

1

−1

∫

1

−1

ηdξdη = 0

∫

1

−1

∫

1

−1

ξηdξdη = 0

∫

1

−1

∫

1

−1

ξ2dξdη =
4

3

∫

1

−1

∫

1

−1

η2dξdη =
4

3

(24)

then we have

Ke ≈ K
C +K

S (25)

where K
C is the consistent stiffness matrix

K
C =

∫

1

−1

∫

1

−1

B̄
T
00
CB̄00 rm/J00 dξdη =

4rm
J00

[

B̄
T
00
CB̄00

]

(26)

and K
S is the stabilization matrix

K
S =

∫

1

−1

∫

1

−1

B̄
T
10
CB̄10ξ

2 rmJ00dξdη +

∫

1

−1

∫

1

−1

B̄
T
01
CB̄01η

2 rm/J00 dξdη

=
4rm
3J00

[

B̄
T
10
CB̄10 + B̄

T
01
CB̄01

]

(27)

Matrix K
C is the one-point quadrature matrix. This matrix provides the exact internal forces

for any state of constant strain (at least in the limit for infinitesimal size). It is well known(Liu

et al., 1985; Liu and Belytschko, 1984) that this matrix is rank-deficient, that is, it has two

improper modes in addition to the modes associated with rigid body displacements.

Matrix K
S is a stabilization matrix that eliminates these spurious modes of the complete

stiffness matrix.

4 NODAL AVERAGED CONSTITUTIVE MATRICES

Suppose that constitutive properties are nonlinear and are known at each node i of the ele-

ment by a constitutive matrix Ci. We are not restricted to any material law or phenomena, only

that at nodal point i the relation between nodal stresses σi must be related to nodal strains ϵi as

σi = Ciϵi (28)
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Note that all these quantities need to be univaluated at the node, so in general some kind of

postprocessing must be necessary to unify values at the nodes, see for example (Jia et al., 2020).

Consider that the region of influence of each node on the element is the quarter area contain-

ing that node, as shown in figure 2.

Figure 2: Influence regions of each node

If we assume constant constitutive properties Ci on the quarter area containing node i then

the approximated stiffness matrix (22) can be computed as

Ke ≈

∫

0

−1

∫

0

−1

B̄
T
C1B̄ rm/J00 dξdη +

∫

1

0

∫

0

−1

B̄
T
C2B̄ rm/J00 dξdη+

∫

1

0

∫

1

0

B̄
T
C3B̄ rm/J00 dξdη +

∫

0

−1

∫

1

0

B̄
T
C4B̄ rm/J00 dξdη

(29)

And taking into account the values of the integrals on each quarter:

∫

0

−1

∫

0

−1

dξdη =

∫

1

0

∫

0

−1

dξdη =

∫

1

0

∫

1

0

dξdη =

∫

0

−1

∫

1

0

dξdη = 1

−

∫

0

−1

∫

0

−1

ξdξdη =

∫

1

0

∫

0

−1

ξdξdη =

∫

1

0

∫

1

0

ξdξdη = −

∫

0

−1

∫

1

0

ξdξdη =
1

2

−

∫

0

−1

∫

0

−1

ηdξdη = −

∫

1

0

∫

0

−1

ηdξdη =

∫

1

0

∫

1

0

ηdξdη =

∫

0

−1

∫

1

0

ηdξdη =
1

2

∫

0

−1

∫

0

−1

ξηdξdη = −

∫

1

0

∫

0

−1

ξηdξdη =

∫

1

0

∫

1

0

ξηdξdη = −

∫

0

−1

∫

1

0

ξηdξdη =
1

4

∫

0

−1

∫

0

−1

ξ2dξdη =

∫

1

0

∫

0

−1

ξ2dξdη =

∫

1

0

∫

1

0

ξ2dξdη =

∫

0

−1

∫

1

0

ξ2dξdη =
1

3

∫

0

−1

∫

0

−1

η2dξdη =

∫

1

0

∫

0

−1

η2dξdη =

∫

1

0

∫

1

0

η2dξdη =

∫

0

−1

∫

1

0

η2dξdη =
1

3

(30)

Then after substituting these results in (29) we have that the approximated stiffness is
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Ke ≈ rm/J00
[

B̄
T
00
(C1 +C2 +C3 +C4) B̄00

]

+rm/2J00
[

B̄
T
00
(−C1 +C2 +C3 −C4) B̄10 + B̄

T
00
(−C1 −C2 +C3 +C4) B̄01

]

+rm/2J00
[

B̄
T
10
(−C1 +C2 +C3 −C4) B̄00 + B̄

T
01
(−C1 −C2 +C3 +C4) B̄00

]

+rm/3J00
[

B̄
T
10
(C1 +C2 +C3 +C4) B̄10 + B̄

T
01
(C1 +C2 +C3 +C4) B̄01

]

+rm/4J00
[

B̄
T
10
(C1 −C2 +C3 −C4) B̄01 + B̄

T
01
(C1 −C2 +C3 −C4) B̄10

]

(31)

Assuming that in the limit, as the size h of the element tends to zero, the four nodal consti-

tutive matrices Ci tends to the mean value Cm

lim
h→0

Ci = Cm = (C1 +C2 +C3 +C4) /4 (32)

then we can assume that

lim
h→0

(C1 +C2 +C3 +C4) = 4Cm

lim
h→0

(−C1 +C2 +C3 −C4) = 0

lim
h→0

(−C1 −C2 +C3 +C4) = 0

lim
h→0

(C1 −C2 +C3 −C4) = 0

(33)

and the consistent and the stabilization matrices can be approximated as

K
C =

4rm
J00

[

B̄
T
00
CmB̄00

]

K
S =

4rm
3J00

[

B̄
T
10
CmB̄10 + B̄

T
01
CmB̄01

]

(34)

Note that this procedure is equivalent to assume a constant constitutive matrix Cm, obtained

by nodal averaging, to compute the approximate stiffness matrix

Ke ≈

∫

1

−1

∫

1

−1

B̄
T
CmB̄ rm/J00 dξdη (35)

Then the assembling procedure can be done in the same manner as for a constant constitutive

matrix without making any distinction for material nonlinearities.

5 NUMERICAL EXAMPLES

To test the formulation we analyze a long pressurized linear elastic pipe as shown in figure

3a

The pipe geometry is defined by its inner radius (ri = 4.5mm) and by the thickness/inner

radius ratio (t/ri = 0.1). The pipe is considered long enough to assume plane strain conditions.

An isotropic, linear elastic material was adopted, characterized by a Young’s modulus E =
210GPa and a Poisson ratio ν = 0.27. A unitary (1MPa) inner pressure was applied.
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(a) Long pressurized pipe.
(b) Finite element model. Regular and distorted

meshes.

Figure 3: Ejemplo y resultados

We have modeled this example with four squared finite elements in the thickness and for

comparisons we have used another distorted mesh. In figure 3b both meshes are shown with the

radial displacement results.

In table 1 the results for the radial displacement at the inner surface are shown. The column

labeled CAX4 corresponds to the standard four node axisymmetric quadrilateral (Bathe, 2014)

integrated with 2 Gauss points in each direction and the exact solution for this example can be

found in (Di Puccio and Celi, 2012). Also, in this table we can see the results for the distorted

mesh.

Table 1: Internal radial displacements.

CAX4 error % current error % exact

regular 0.000216399 0.009 0.000216399 0.009 0.000216418

distorted 0.000216393 0.009 0.000211631 0.012 0.000216418

Analyzing the results we can see that the current and the conventional formulations give

similar results.

6 CONCLUSIONS

A nodal averaged formulation has been presented for axisymmetrical problems solved with

quadrilateral finite elements. In this formulation the constitutive matrices only need to be com-

puted at nodes and this implies a substantial reduction reduction in the number of integration

points over the conventional formulation. Also, an element averaged procedure has been pre-

sented to compute the finite element stiffness matrices where the element constitutive matrix

is calculated as an average from the nodal constitutive matrices. The procedure can be applied

to any type of nonlinear material, including plasticity, without need of using Gauss numerical

integration.

Mecánica Computacional Vol XXXVIII, págs. 1017-1026 (2021) 1025

Copyright © 2021 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



REFERENCES

Babu D.K. and Pinder G.F. Analytical integration formulae for linear isoparametric finite el-

ements. International Journal for Numerical Methods in Engineering, 20(6):1153±1163,

1984.

Bathe K.J. Finite Element Procedures. Klaus-Jürgen Bathe, 2nd edition, 2014.

Beissel S. and Belytschko T. Nodal integration of the element-free Galerkin method. Computer

Methods in Applied Mechanics and Engineering, 139(1-4):49±74, 1996.

Belytschko T., Ong J.S.J., Wing Kam Liu, and Kennedy J.M. Hourglass control in linear and

nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 43(3):251±

276, 1984.

Di Puccio F. and Celi S. A note on the use of first order quadrilateral elements in axisymmetric

analysis. Computer-Aided Design, 44(11):1083±1089, 2012.

Flanagan D.P. and Belytschko T. A uniform strain hexahedron and quadrilateral with orthogonal

hourglass control. International Journal for Numerical Methods in Engineering, 17(5):679±

706, 1981.

Hansbo P. A new approach to quadrature for finite elements incorporating hourglass control as a

special case. Computer Methods in Applied Mechanics and Engineering, 158(3-4):301±309,

1998.

Irons B. and Ahmad S. Techniques of Finite Elements. E. Horwood, 1980.

Jacquotte O.P. and Oden J.T. Analysis of hourglass instabilities and control in underinte-

grated finite element methods. Computer Methods in Applied Mechanics and Engineering,

44(3):339±363, 1984.

Jia Y., Bergheau J.M., Leblond J.B., Roux J.C., Bouchaoui R., Gallée S., and Brosse A. A New

Nodal-Integration-Based Finite Element Method for the Numerical Simulation of Welding

Processes. Metals, 10(10), 2020.

Liu W.K. and Belytschko T. Efficient linear and nonlinear heat conduction with a quadrilateral

element. International Journal for Numerical Methods in Engineering, 20(5):931±948, 1984.

Liu W.K., Hu Y.K., and Belytschko T. Multiple quadrature underintegrated finite elements.

International Journal for Numerical Methods in Engineering, 37(19):3263±3289, 1994.

Liu W.K., Ong J.S.J., and Uras R.A. Finite element stabilization matrices-a unification ap-

proach. Computer Methods in Applied Mechanics and Engineering, 53(1):13±46, 1985.

Morrev P.G. and Gordon V.A. An axisymmetric nodal averaged finite element. Latin American

Journal of Solids and Structures, 15(2):e14, 2018.

Puso M.A. and Solberg J. A stabilized nodally integrated tetrahedral. International Journal for

Numerical Methods in Engineering, 67(6):841±867, 2006.

Rathod H.T. Some analytical integration formulae for a four node isoparametric element. Com-

puters & Structures, 30(5):1101±1109, 1988.

Schulz J.C. Finite element hourglassing control. International Journal for Numerical Methods

in Engineering, 21(6):1039±1048, 1985.

Zienkiewicz O.C. and Hinton E. Reduced integration, function smoothing and non-conformity

in finite element analysis (with special reference to thick plates). Journal of the Franklin

Institute, 302(5-6):443±461, 1976.

Zienkiewicz O.C., Taylor R.L., and Zhu J.Z. The Finite Element Method: Its Basis and Funda-

mentals. Elsevier Butterworth-Heinemann, 7th edition, 2013.

C.E. JOUGLARD, J.M. PEREIRAS1026

Copyright © 2021 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	INTRODUCTION
	FINITE ELEMENT STRESS ANALYSIS OF AXISYMMETRIC SOLIDS
	CONSISTENT AND STABILIZATION MATRICES
	Approximated stiffness matrix

	NODAL AVERAGED CONSTITUTIVE MATRICES
	NUMERICAL EXAMPLES
	CONCLUSIONS

